文档库 最新最全的文档下载
当前位置:文档库 › 初中数学竞赛因式分解

初中数学竞赛因式分解

初中数学竞赛因式分解
初中数学竞赛因式分解

初中数学竞赛专题辅导因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;

(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;

(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]

=-2x n-1y n(x2n-y2)2

=-2x n-1y n(x n-y)2(x n+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.

解因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,

前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解 (1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析先将两个括号内的多项式分解因式,然后再重新组合.

解原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

第一讲因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相

乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;

(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;

(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]

=-2x n-1y n(x2n-y2)2

=-2x n-1y n(x n-y)2(x n+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.

解因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解 (1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析先将两个括号内的多项式分解因式,然后再重新组合.

解原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

人教版初中数学因式分解知识点训练及答案

人教版初中数学因式分解知识点训练及答案 一、选择题 1.下列各式从左到右的变形中,属于因式分解的是( ) A .m (a +b )=ma +mb B .a 2+4a ﹣21=a (a +4)﹣21 C .x 2﹣1=(x +1)(x ﹣1) D .x 2+16﹣y 2=(x +y )(x ﹣y )+16 【答案】C 【解析】 【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】 A 、是整式的乘法,故A 不符合题意; B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意; C 、把一个多项式转化成几个整式积的形式,故C 符合题意; D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意; 故选C . 【点睛】 本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式. 2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ y B .x ≥ y C .x < y D .x > y 【答案】D 【解析】 【分析】 判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系. 【详解】 解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>, 0x y ∴->, x y ∴>, 故选:D . 【点睛】 本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大. 3.下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222 111x y x x y -+=-++

历年全国高中数学联赛试题及答案

历年全国高中数学联赛试题及答案 1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题。 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效,考试时不 能使用计算器。 参考公式:二次函数图象的顶点坐标是。 温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”。 卷Ⅰ(选择题) 一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.2的相反数是(▲) A.-2 B.2 C.- D. 2.下列计算正确的是(▲)A.B.9 =3 C.3-1= -3 D.2 +3= 5 3.据交通运输部统计,2013年春运期间,全国道路、水路、民航、铁路运送旅客总量超过了3400000000人次,该数用科学记数法可表示为(▲) A.B.C. D. 4.如图是由个相同的正方体搭成的几何体,则其俯视图是(▲) 5.使分式无意义的的值是(▲) A. B. C. D. 6.如图,已知,若, ,则等于(▲) A.B.C.D. 7.市委、市政府打算在2015年底前,完成国家森林城市创建.这是小明随机抽取我市10个小区所得到的绿化率情况,结果如下表: 小区绿化率(%) 20 25 30 32 小区个数 2 4 3 1 则关于这10个小区的绿化率情况,下列说法错误的是(▲) A.中位数是25% B.众数是25% C.极差是13% D.平均数是26.2% 8.将一个半径为R,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r,则R与r的关系正确的是(▲) A.R=8r B.R=6r C.R=4r D.R=2r 9.甲、乙两车分别从相距的两地同时出发,它们离A地的路程随时间变化的图象如图所示,则下列结论不正确的是( ▲) A.甲车的平均速度为; B.乙车行驶小时到达地,稍作停留后返回地; C.经小时后,两车在途中相遇; D.乙车返回地的平均速度比去地的平均速度小。 10.如图,为等边三角形,点的坐标为,过点作直线交于点,交于,点在反比例函数<的图象上,若和(即图中两阴影部分)的面积相等,则值为(▲)A.B.C.D. 卷Ⅱ(非选择题) 二、填空题(本大题有6小题,每题4分,共24分) 11.分解因式:= ▲。 12.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

人教版初二数学上册因式分解复习

长郡雨花外国语学校教案

二、课前演练 1 ?计算(x+2)2的结果为/+□ x+4,则“□”中的数为( ) A.—2 B. 2 C ? - 4 D ? 4 1 2 ?分解因式:-a3+a 2b-? 2 3. 计算:2000 —1999 X 2001= . 4. 十字相乘法 (1)分解因式:X2-6X+8= (2)分解因式:2a2-a-6= . 三、例题分析 例1分解因式: 2 2,/、 /~/、2 2 2、2, 22 (1) mn(m- n)-4mn(n-m); (2) (x+y)+64-16(x+y); (3) (x +y ) -4 x y ; 练习.长沙中考基础 (1)(2016年长沙)分解因式:x2y-4y= (2)(2014长沙)分解因式:a2-4b2= . (3)(2013 长沙)分解因式:x2+2x+1= . 长沙中考因式分解拓广 (2015年?长沙25题) 在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”。(1)求函数y = 3x 2的图像上所有“中国结”的坐标 k ⑵求函数y =一(k工0, k为常数)的图像上有且只有两个“中国结”,试求出常数k的值与 X 相应“中国结”的坐标. ⑶若二次函数y =(k2-3k 2)x2(2k2-4k 1)x k2-k(k 为常数) 的图像与x轴相交得到两个不同的“中国结”,试问该函数的图像与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”? 因式分解:(k2-3k+2)x2+(2k2-4k+1)x+k2-k

四、巩固练习 1. 若实数x、y、z满足(X —z)2—4( x - -V 6/h 日( 、y)( y z) =0,则下列式子定成立的是() A. x+y+z=O B.x+y-2 z=0 C. y+z-2 x=0 D. z+x-2 y=0 2. 因式分解: “八 3 八2 ⑴ a —6a b+ 9ab; ⑵2 3 介2 2 “c、, “ x -8 x y+8xy ;(3)-4( 2 2 x-2 y) +9( x+y); 3. (2015大庆)已知a、b 、c是厶ABC的三边长,且满足a3+ab 2 2 3 2 2 + bc =b +a b+ac , 判断△ ABC的形状. 五、作业: 全效 教 学 后 记

初中数学因式分解难题汇编及答案

初中数学因式分解难题汇编及答案 一、选择题 1.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( ) A .-2 B .2 C .-50 D .50 【答案】A 【解析】 试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可. 当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2. 考点:因式分解的应用. 2.若()()21553x kx x x --=-+,则k 的值为( ) A .-2 B .2 C .8 D .-8 【答案】B 【解析】 【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值. 【详解】 ∵()()253215x x x x -+=-- ∴2k -=- 解得2k = 故答案为:B . 【点睛】 本题考查了因式分解的问题,掌握十字相乘法是解题的关键. 3.已知12,23x y xy -==,则43342x y x y -的值为( ) A .23 B .2 C .83 D .163 【答案】C 【解析】 【分析】 利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进 行计算即可. 【详解】 ∵12,23 x y xy -==, ∴43342x y x y - =x 3y 3(2x-y)

=(xy)3(2x-y) =23×1 3 =8 3 , 故选C. 【点睛】 本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键. 4.下列等式从左到右的变形属于因式分解的是() A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣a C.6x2y3=2x2?3y3D.mx﹣my+1=m(x﹣y)+1 【答案】A 【解析】 【分析】 直接利用因式分解的定义分析得出答案. 【详解】 解:A、a2﹣2a+1=(a﹣1)2,从左到右的变形属于因式分解,符合题意; B、a(a+1)(a﹣1)=a3﹣a,从左到右的变形是整式乘法,不合题意; C、6x2y3=2x2?3y3,不符合因式分解的定义,不合题意; D、mx﹣my+1=m(x﹣y)+1不符合因式分解的定义,不合题意; 故选:A. 【点睛】 本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别. 5.下列各式中不能用平方差公式进行计算的是( ) A.(m-n)(m+n) B.(-x-y)(-x-y) C.(x4-y4)(x4+y4) D.(a3-b3)(b3+a3) 【答案】B 【解析】 A.(m-n)(m+n),能用平方差公式计算; B.(-x-y)(-x-y),不能用平方差公式计算; C.(x4-y4)(x4+y4),能用平方差公式计算; D. (a3-b3)(b3+a3),能用平方差公式计算. 故选B. 6.下列各式中,从左到右的变形是因式分解的是()

概率统计-历届全国高中数学联赛真题专题分类汇编

概率统计 1、(2009一试8)某车站每天8 00~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为 一旅客820∶【答案】27 【解析】旅客候车的分布列为 候车时间的数学期望为10305070902723361218 ?+?+?+?+?= 2、(2010一试6)两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 . 【答案】 12 17 3、(2012一试8)某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是.(用最简分数表示) 【答案】 61 243 【解析】用k P 表示第k 周用 A 种密码的概率,则第k 周末用A 种密码的概率为 1k P -.于是,有11(1),3k k P P k N *+=-∈,即1111()434k k P P +-=--由11P =知,14k P ? ?-???? 是首项为34,公

比为13-的等比数列.所以1131()443k k P --=-,即1311()434k k P -=-+,故761243 P = 4、(2014一试8)设D C B A ,,,是空间四个不共面的点,以 2 1 的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则B A ,可用(一条边或者若干条边组成的)空间折线连接的概率是__________. 【答案】 3 4 2221219B C D -?-=点相连,且与,中至少一点相连,这样的情况数为()() 22(3)AB AD DB 无边,也无CD 边,此时AC,CB 相连有2种情况,,相连也有2种情况, ,,,,AC CB AD DB A B 但是其中均相连的情况被重复了一次,故可用折线连接的情况数为 222+2-1=7. 483++==.644以上三类情况数的总和为329748,故A,B 可用折线连接的概率为 5、(2015一试5)在正方体中随机取三条棱,它们两两异面的概率为. 【答案】 2 55 【解析】设正方体为ABCD-EFGH ,它共有12条棱,从中任意选出3条棱的方法共有3 12C =220种. 下面考虑使3条棱两两异面的取法数,由于正方体的棱共确定3个互不平行的方向(即AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能,当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH. 由上可知,3条棱两两异面的取法数为4×2=8,故所求的概率为82 22055 =.

初中数学竞赛辅导资料之因式分解附答案

初中数学竞赛辅导资料之因式分解 甲内容提要和例题 我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。下面再介紹两种方法 1.添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式 例1因式分解:①x4+x2+1②a3+b3+c3-3abc ①分析:x4+1若添上2x2可配成完全平方公式 解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x) ②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2 解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2 =(a+b)3+c3-3ab(a+b+c) =(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-ac-bc) 例2因式分解:①x3-11x+20②a5+a+1 ①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这里 16是完全平方数) ②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4) =x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5) ③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式 解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1 =a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1) 2.运用因式定理和待定系数法 定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a ⑵若两个多项式相等,则它们同类项的系数相等。 例3因式分解:①x3-5x2+9x-6②2x3-13x2+3

初二数学因式分解精选100题

初二数学因式分解精选100题

提升课堂托辅中心 初二数学因式分解精选100题 2013年1月25日 一、选择题 1.下列各式中从左到右的变形,是因式分解的是( ) A (a +3)(a -3)=a 2-9 B x 2+x -5=(x -2)(x +3)+1 C a 2 b +ab 2=ab (a +b ) (D)x 2+1=x (x +x 1) 2.下列各式的因式分解中正确的是( ) A -a 2+ab -ac = -a (a +b -c ) B 9xyz -6x 2y 2=3xyz (3-2xy ) C 3a 2x -6bx +3x =3x (a 2-2b ) D 21xy 2+21x 2y =2 1xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( ) (A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1) 4.下列多项式能分解因式的是( ) (A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +4 5.下列多项式中,不能用完全平方公式分解因式的是 ( ) (A) 412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D) 13292+-n n

6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是() (A)4x(B)-4x(C)4x4(D)-4x4 7.下列分解因式错误的是() (A)15a2+5a=5a(3a+1) (B)-x2-y2= -(x2-y2)= -(x+y)(x-y)(C)k(x+y)+x+y=(k+1)(x+y) (D)a3-2a2+a=a(a-1)2 8.下列多项式中不能用平方差公式分解的是() (A)-a2+b2(B)-x2-y2(C)49x2y2-z2 (D)16m4-25n2p2 9.下列多项式:①16x5-x;②(x-1)2-4(x-1)+4;③(x+1)4-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果含有相同因式的是()(A)①②(B)②④ (C)③④(D)②③ 10.两个连续的奇数的平方差总可以被k整除,则k等于() (A)4 (B)8 (C)4或-4 (D)8的倍数 11下列各式中从左到右的变形属于分解因式的是() A a(a+b-1)=a2+ab-a B a2 –a-2=a(a-1)-2C- 4 a2+9b2=(-2a+3b)(2a+3b) D.2x+1=x(2+1/x) 12下列各式分解因是正确的是()

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

八年级数学竞赛因式分解

第1讲:因式分解 一.因式分解的定义: 二.因式分解的方法: 1.提取公因式法:提取所有项的公共的因式,将多项式化成两个多项式的乘积的形式 例1:分解因式4121315242+-+---+-n n n n n n y x y x y x 例2:试说明139792781--能被45整除 例3:已知01234=++++x x x x ,求1200820092010+++++x x x x 2.运用公式法:运用公式法进行因式分解的关键是利用各公式的特点,建立运用公式的模型,以下公式都应该熟记. 例4:分解因式xyz z y x 68333--- 例5:分解因式:abc c b a 3333-++ 例6:分解因式:12131415++++++x x x x x 3.分组分解法:关键是如何分组,原则是:①各组能分解或部分组能分解,②组间能继续分解,从而达到分解的目的.常用的分组思路有,按系数分组,按符号分组,安某一字母一次或二次分组,联想公式分组,按项的次数分组等,对多项式分组的方法往往不唯一,但最终的结果是一致的。 例7:分解因式2105ax ay by bx -+- 例8:分解因式2222428x xy y z ++- 4.十字相乘法:对二次三项式分解的重要方法,即:()()22112c x a c x a c bx ax ++=++,其中a a a =21,c c c =21, b c a c a =+1221。十字相乘法通常借助画“十”字来分解系数。 例9:分解因式(1)2524x x +-;(2)226x xy y +-;(3)222 ()8()12x x x x +-++ 例10:分解因式(1)22y 8x y 6x 5-+;(2)22 5681812x xy y x y +++++ 例11:已知:,,a b c 为三角形的三条边,且222433720a ac c ab bc b ++--+= 求证:2b a c =+ 5.求根公式法:一般适合于对二次三项式的因式分解,如要对c bx ax ++2进行因式分解,可令02=++c bx ax ,若0≥?,则方程有两个实数根,可用一元二次方程的求根公式求出,设为21,x x ,则有()()212x x x x a c bx ax --=++ 例12:分解因式: 222(1)616 (2)44x x x xy y +-+- 例13:分解因式:422x +x +2ax+1-a 6.拆项、添项法:因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即

八年级数学上册《因式分解》教案

八年级数学上册《因式分解》教案 1、理解运用平方差公式分解因式的方法。 2、掌握提公因式法和平方差公式分解因式的综合运用。 3、进一步培养学生综合、分析数学问题的能力。 运用平方差公式分解因式。 高次指数的转化,提公因式法,平方差公式的灵活运用。 我们数学组的观课议课主题: 1、关注学生的合作交流 2、如何使学困生能积极参与课堂交流。 在精心备课过程中,我设计了这样的自学提示: 1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么? ①-x2+y2 ②-x2-y2 ③4-9x2 ④ (x+y)2-(x-y)2 ⑤ a4-b4 3、试总结运用平方差公式因式分解的条件是什么? 4、仿照例4的分析及旁白你能把x3y-xy因式分解吗? 5、试总结因式分解的步骤是什么? 师巡回指导,生自主探究后交流合作。 生交流热情很高,但把全部问题分析完已用了30分钟。 生展示自学成果。 生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x) 生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。 生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x) 生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。 生5: a4-b4可分解为(a2+b2)(a2-b2) 生6:不对,a2-b2 还能继续分解为a+b)(a-b) 师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。…… 反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生

人教版初中数学因式分解真题汇编含答案

人教版初中数学因式分解真题汇编含答案 一、选择题 1.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=- D .244(2)(2)x x x x -+=+- 【答案】C 【解析】 【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底. 【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()2 1x xy x x x y ++=++,故B 选项错误; C. ()()()2 x x y y y x x y -+-=- ,故C 选项正确; D. 244x x -+=(x-2)2,故D 选项错误, 故选C. 【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 2.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形 D .等边三角形 【答案】C 【解析】 【分析】 已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状. 【详解】 已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0, ∵a+b-c ≠0, ∴a-b=0,即a=b , 则△ABC 为等腰三角形. 故选C . 【点睛】 此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键. 3.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( )

高中数学竞赛历届IMO竞赛试题届完整中文版

第1届I M O 1.求证(21n+4)/(14n+3)对每个自然数n都是最简分数。 2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解: (a)A=√2;(b)A=1;(c)A=2。 3.a、b、c都是实数,已知cosx的二次方程 acos2x+bcosx+c=0, 试用a,b,c作出一个关于cos2x的二次方程,使它的根与原来的方程一样。当a=4,b=2,c=-1时比较cosx和cos2x的方程式。 4.试作一直角三角形使其斜边为已知的c,斜边上的中线是两直角边的几何平均值。 5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N, (a.)求证AF、BC相交于N点; (b.)求证不论点M如何选取直线MN都通过一定点S; (c.)当M在A与B之间变动时,求线断PQ的中点的轨迹。 6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q 上。 第2届IMO 1.找出所有具有下列性质的三位数N:N能被11整除且N/11等于N的各位数字的平方和。 2.寻找使下式成立的实数x: 4x2/(1-√(1+2x))2<2x+9 3.直角三角形ABC的斜边BC的长为a,将它分成n等份(n为奇数),令为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证: tan=4nh/(an2-a).

初中数学竞赛专题辅导因式分解(一)

初中数学竞赛专题辅导因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

八年级数学上册因式分解拔高题型

八年级数学(上)周末辅导资料 一、知识点梳理: 1、因式分解:因式分解就是把一个多项式变为几个整式的积的形式。 2、因式分解的方法: (1)提公因式法,即ma+mb+mc=m(a+b+c); (2)运用公式法,平方差公式:()()b a b a b a -+=-22; 完全平方公式:222b ab a ++=()2b a +和)(b a b ab a -=+-2222 (3)十字相乘法:对于二次三项式2x Px q ++,若能找到两个数a 、b ,使,, a b p a b q +=???=? 则就有22()()()x Px q x a b x ab x a x b ++=+++=++. 注:若q 为正,则a ,b 同号;若q 为负,则a ,b 异号; 二、典型例题: (1)如果2592++kx x 是一个完全平方式,那么k 的值是( ) A 、 15 B 、 ±5 C 、 30 D ± 30 (2)若215(3)()x mx x x n --=++ 则m=_____,n=______。 (3)计算 29982+2998×4+4= 。 (4)若442-+x x 的值为0,则51232-+x x 的值是________。 例2:分解因式: 22288a axy a y x -+ 4a 2(x -y )+9b 2(y -x ) 例3:已知a –b = 1 ,2522=+b a 求ab 和a+b 的值。

三、强化训练: 1、已知x +y =6,xy =4,则x 2y +xy 2的值为 . 2、观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是______________________。 3、分解因式: (2a -b )2-(a +b )2 -3ma 3+6ma 2-3ma a 2(m -n )+b 2(n -m ) 4416n m - (8)4224817216b b a a +- 4、已知:a=2999,b=2995,求655222-+-+-b a b ab a 的值。 5、利用因式分解计算 ?? ? ??-??? ??-??? ??-??? ??-??? ??-2222211......511411311211n 6,已知a 为任意整数,且()22 13a a -+的值总可以被n 整除(n 为自然数,且n 不等于1),则n 的值为 。

初中数学因式分解习题

数学因式分解习题: 1、提公因式法因式分解 () 2226m n mn -= (4)9123y 23--y =___________________ (6)x n x m 221624-- 2、利用平方差公式因式分解 29a - = (6)22814y x -=____________________ 3、利用完全平方公式因式分解 (4)24129m m -+= (5) ________________102522=+-n mn m 4、利用十字相乘法因式分解 (8)256x x -+= (9)2412x x +-= 5、将下列多项式因式分解 (1)2510a b abc - (2)81182+-a a (5)245a a -- (6)2441a a -+ (7)220m m -- (三)把下列各式分解因式: 3、2244y xy x -+- 4、212x x -- 7、-x x 253+ 8、 322344x y x y xy ++

9、2()10()25x y x y +-++ 10、22(2)(2)x y x y +-+ (四)用适当的方法计算: (3)22300600297297-?+ (4)22231019923?-? (五)把下列各式因式分解 2、 ()()224a b a b +-- 解:原式= 3、 323412x x x +-- 解:原式=

分式练习题 7.若关于x 的方程01 11=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-1 8.若方程,) 4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1 9.如果,0,1≠≠= b b a x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.1 1+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程:2 211-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于2 1. 13.分式方程02 22=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时. 15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余

历年全国高中数学联赛试题及答案

1988年全国高中数学联赛试题 第一试(10月16日上午8∶00——9∶30) 一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分): 1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象及第二个函数的图象关于x +y=0对称,那么,第三个函数是( ) A .y=-φ(x ) B .y=-φ(-x ) C .y=-φ-1(x ) D .y=-φ- 1(-x ) 2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1π 3 ; 命题乙:a 、b 、c 相交于一点. 则 A .甲是乙的充分条件但不必要 B .甲是乙的必要条件但不充分 C .甲是乙的充分必要条件 D .A 、B 、C 都不对 5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠?. ⑶ M ≠?. ⑷ P ≠?中,正确的表达式的个数是 A .1 B .2 C .3 D .4 二.填空题(本大题共4小题,每小题10分): 1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3 a 2-a 1= . 2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 . 3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DE BC = . 4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再及负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 . 三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积. 四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置. 五.(15分)已知a 、b 为正实数,且1a +1 b =1,试证:对每一个n ∈N *, (a +b )n -a n -b n ≥22n -2n +1.

数学竞赛题精讲复杂的因式分解问题

数学竞赛题精讲复杂的因 式分解问题 Prepared on 21 November 2021

轮换对称式的因式分解问题 林达 多元高次轮换对称式的因式分解问题往往是因式分解中的难点,很多初中学生感到棘手。但笔者却认为,这类问题往往是有迹可循的。我们今天就通过几个例子讲一讲把“求根”和“待定系数”相结合进行因式分解的方法。 例1分解因式: 【分析与解答】首先观察发现,当时,原式的值为0。即,如果将原式看作a的函数,将b看作常数,则是函数的一个根。故是原式的因式,同理及也是原式的因式。 故是原式的因式,观察发现原式是的三次式,也是三次式,故两式必然只差一个常数。 用待定系数法,设 代入,得到,故原式的因式分解结果是 例2分解因式: 【分析与解答】和例1类似,首先观察发现,当时,原式的值为0。故是原式的因式,同理及也是原式的因式。 故是原式的因式,观察发现原式是的五次式,是三次式。两者都是的轮换对称式,故原式一定可以表示成如下结果: 代入,得到 代入,得到 解得故原式的因式分解结果是 例3化简: 【分析与解答】这里虽然是化简而非因式分解,但我们发现分别展开以上四个式子太过复杂,耗时且易错,所以我们仿照例1和例2的方法首先用观察法“求根”以发现因式。 观察发现,当时,原式为 故,是原式的一个因式,同理也是原式的因式。 故是原式的因式。观察发现原式是的三次式,也是三次式,两式必然只差一个常数。 用待定系数法,设 代入,得到,故原式的化简结果是 配方法及其应用 林达 复杂的因式分解不仅可以是轮换对称式的因式分解,很多难以直接提出因式的高次多项式也难以分解。对于这类多项式,配方法往往能出奇效。相对于更一般的待定系数法,配方法的计算要简单很多。 配方法,顾名思义,就是将多项式或其中的某些项配成平方式或更高次方式(一般配成平方式,有时也可能直接配成三次方式,但更高次的配方很少出现)。下面我们看几道例题。 例1 分解因式:

八年级数学上册《因式分解》练习题

因式分解巩固与提高 一、本节课的知识要点: 1、平方差公式分解因式的公式:a 2-b 2= ; 平方差结构特点: (1)多项式的项数有 项; (2)多项式的两项的符号 ; (3) 多项式的两项能写成 的形式。 2、完全平方公式法分解因式的公式:(1)a 2+2ab+b 2= ; (2) a 2-2ab+b 2= . 完全平方式的特点: (1)、必须是 项式; (2)、有两个 的“项”; (3)、有这两平方“项”底数积的 或 。 二、本节课的课堂练习: (一)选择题: 1.下列多项式,能用平分差公式分解的是( ) A .-x 2-4y 2 B .9 x 2+4y 2 C .-x 2+4y 2 D .x 2+(-2y )2 2、化简33)(x x -?的结果是( ) A 、6x - B 、6x C 、5x D 、5x - 3、下列运算正确的是( ) A 、a b a b a 2)(222++=+ B 、222)(b a b a -=- C 、6)2)(3(2+=++x x x D 、22))((n m n m n m +-=+-+ 4、2 3616x kx ++是一个完全平方式,则k 的值为( ) A .48 B .24 C .-48 D .±48 5、已知a 、b 是△ABC 的的两边,且a 2+b 2=2ab ,则△ABC 的形状是( ) A 、等腰三角形 B 、等边三角形 C 、锐角三角形 D 、不确定 6、下列四个多项式是完全平方式的是( ) A 、22y xy x ++ B 、222y xy x -- C 、22424n mn m ++ D 、224 1b ab a ++ 7、把(a+b )2 +4(a+b)+4分解因式得( ) A 、(a+b+1)2 B 、(a+b-1)2 C 、(a+b+2)2 D 、(a+b-2)2

相关文档
相关文档 最新文档