文档库 最新最全的文档下载
当前位置:文档库 › 线性代数习题参考答案

线性代数习题参考答案

线性代数习题参考答案
线性代数习题参考答案

第一章 行列式

§1 行列式的概念

1. 填空

(1) 排列6427531的逆序数为 ,该排列为 排列。 (2) i = ,j = 时, 排列1274i 56j 9为偶排列。

(3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的

n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构

成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。

(4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含

324314516625a a a a a a 的项的符号为 。

2. 用行列式的定义计算下列行列式的值

(1) 11

222332

33

000

a a a a a

解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。

(2)

12,121,21,11,12

,1

0000

00n n n

n n n n n n n n n nn

a a a a a a a a a a -----

-

解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。 3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排

列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2

多,则此行列式为0,为什么?

5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?

(提示:利用3题的结果)

6. 利用对角线法则计算下列三阶行列式

(1)2

011

411

8

3

---

(2)2

2

2

1

11a

b c a b c

§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062

-

(2)

100 110 011 001

a

b

c

d -

-

-

(3)

ab ac ae bd cd de bf cf ef -

-

-

2. 证明下列恒等式

(1) ()33ax by ay bz

az bx x y z D ay bz

az bx ax by a b y

z x az bx ax by ay bz

z

x

y

+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)

(2)

()

()

()

()

()

()

()

()

()

()

()

()

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

1231230123123a a a a b b b b c

c c c

d d d d ++++++=++++++

(3)

11112

2

1

10000

100

0001n n n n n n n x x x a x a x a x a a a a x a ------

=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)

3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余

子式依次是2,10,a ,4,求a 的值。

4. 已知1365,2743,4056,6695,5356能被13整除,证明:11365

22743

340564669555356

被13整除。

(提示:注意观察行列式中第2,3,4,5列元素的特点)

5. 已知512345

22211

27312451112243150

D ==,

求:(1) 1222324252322A A A A A ++++;

(2) 414243A A A ++和4445A A +。

(提示:利用行列式按行(列)展开的性质计算)

6. 设()x a b c

a x

b

c f x a b

x c a b c

x

=

,求()0f x =的根。

解1:首先,行列式展开式中含4

x 项,所以()0f x =有四个根。而通过观察,将

,,x a x b x c ===代入行列式,行列式中均有两行元素相同,此时行列式值为0,

即,,x a x b x c ===为根。然后,把所有列加到第一列上,可发现第四个根,计算如下:

解2:(注意各行元素之和相等,可计算()f x 的值后,求根。)

§3 行列式的计算1.利用三角行列式的结果计算下列n阶行列式

(1)

3111

1311

1131

1113 D

(提示:注意各行(列)元素之和相等)

(2)

00

00

00

000

x y

x y

x y

y x

(提示:可考虑按第一行(列)展开)

(3) 12111

111, (0,1,2,

,)1

1

1n i n

a a D a i n a ++=

≠=+

(提示:可考虑第一行的1-倍加到各行,再化为三角行列式)

2. 用迭代法计算下列行列式

(1) 210

00

01210

000

00001210000012

n D =

解:按第一行(列)展开,得递推公式:n D = 1n D -+ 2n D -。于是

n D - 1n D -= 1n D -- 2n D -2D =

=- 1D = 。

由此得:n D = 1n D -+

= 2n D -+ = = 2D + = 。

(2) 00001

000010

000010

1

n a b ab a b ab a b D a b ab a b

+++=

+

+。

解:按第一行展开,有递推公式n D = 1n D -+ 2n D -,得递推公式:

1n n D aD --= 12()n n D aD ---=

= 21()D aD -= ①

同理可得:1n n D bD --= ② 联立①与②,解方程组得:n D =

3. 利用范德蒙行列式的结果计算下列行列式

(1) 11

1

1(1)()(1)()1111

n n

n n n n n a a a n a a a n D a a a n ---+----=

--,(0,1,2,

,)a n ≠

(提示:利用行列式的性质,先化行列式为标准形式的范德蒙行列式,再利用范德蒙行列式的结果计算行列式)

(2) 122

1

111

11111122

1

2

22

22

22

2

11

22

111111111

n

n n n n

n n n n n n n n n n n

n n n n n n n n a a b a b a b b a a b a b a b b D a a b a b a b b ------+---++++++++=

,)0(≠i

a

解:在i 行中提出n

i a 因子,

4.构造辅助行列式法计算下列行列式

(1) 22224

4

4

4

1

111a b c d D a b c d a b c d =

(缺行的范德蒙行列式)

解:构造辅助范德蒙行列式2

2222333334

44

4

4

1

1111

a

b c d x

D a b c d x a b c d x a b c d x =,D 为D 中元素3x 的余子式,而2

2222333334

4

4

4

4

1

1111a

b c d x D a b c d x a b c d x a b c d x ==

(2) 1212111

222, 0n n n

a a D a a a n

n

n a ++=

≠+

解:构造辅助行列式1

2

111

1011

102

220

n

a D a n

n

n a +=++,

则n D D =,而D =

5. 用数学归纳法证明:

cos 10001

2cos 1

00cos

012cos 0

12cos n D n θθθθθ

=

=

证明:(1)1n =时,等式显然成立;

(2)假定等式对于小于n 阶的行列式成立;

(3)(下证n 阶行列式成立)

由于,n D = 1n D -+ 2n D -(注:按最后一行(列)展开) = = 所以,

6. n x a a

a

a x a

a

D a

a x

a a a a

x

=,(1)0,n a x -+≠求12n n nn A A A +++

(提示:将所有行加到最后一行)

§3 克来姆(Cramer)法则1.用克来姆法则解下列方程组

(1)

123

123

123

24 34211 32411

x x x

x x x

x x x

--=

?

?

+-=?

?-+=?

(2)

123

12

12

30 250

x x x

x x

x x

++=?

?

+=

?

?-=

?

2.当k取何值时,方程组

123

123

123

20

kx x x

x kx x

x x x

++=

?

?

+-=

?

?-+=

?

有非零解?

第二章 矩 阵

§1矩阵的概念及运算

1. 判断正误

(1)设A 为m n ?矩阵,B 为s p ?矩阵,若AB BA =,则 AB 与BA 必为同阶方阵。

( )

(2)A 与B 为n 阶方阵,λ为实数,有()()A B B A A B λλλ==??。

( ) (3)A 与B 为n 阶方阵,()k

k

k

AB A B =

)(N k ∈ 。 ( )

(4)A 与B 为n 阶方阵,()2

2

2

2A B A AB B ±=±+。 ( ) (5)A 为n 阶方阵,()2

2

2A E A A E ±=±+。 ( )

(6)A 与B 为n 阶方阵,22

()()A B A B A B +-=-。 ( ) (7)A 为n 阶方阵,2

()()A E A E A E +-=-。 ( ) (8)A 与B 为n 阶方阵,T T

A B A B +=+ 。 ( ) (9)A 与B 为n 阶方阵,T T A B AB =。 ( ) 2. 选择题

(1) 设,,A B C 均为n 阶方阵,, AB BA AC CA ==,则ABC =( ) (A) ACB (B )CBA (C) BCA (D) CAB (2) 若A 为实对称矩阵,则T

A A 的值( )

(A) 0≤ (B )0≥ (C) 0= (D) 不能确定

(3)设A 为方阵,2

()2f x x x =--,则()f A 为( )

(A) 2

2A A -- (B )2

2A A E -- (C) (2)()A E A E +- (D) 不能确定

3. 设121023A ?? ?=- ? ???,201111B -?? ?

=- ? ?-??

,计算:

(1)1

32

A B -;(2) T AB ;(3) T A B 。

4. 计算101n

n A λ??

= ???

(提示:先计算出23,A A ,以此归纳出n A ,然后用数学归纳法证明结论)

5. 设A 为n 阶方阵,若对任意的n 维列向量z ,均有0Az =,证明:0A =。

(提示:由于n 维列向量z 的任意性,考察n 维列向量12,,,n e e e ,证A 中各元素

为0)

6. 设A 为实对称矩阵,若2

0A =,证明0A =。

(提示:证A 中各元素为0)

7. 若A 为n 阶方阵,且满足T AA E =。 若0A <,求E A +。 (提示:先证明E A E A +=-+)

8. 试证:若A 为奇数阶方阵,且满足T

AA E =,1A =,则0E A -=。 (提示:先证明E A E A -=--)

9. 若A 为奇数阶反对称方阵,证明:0A =。 (提示:由反对称阵的定义证明)

10. 设,A B 都是对称矩阵,证明:AB 为对称矩阵的充要条件是AB BA =。

11. 设n 阶方阵()ij A a =,()ij B b =,且A 与B 的各行元素之和为1,α是1n ?矩阵,

且每个元素都为1,求证: (1) A αα=;

(2) AB 的各行元素之和都等于1;

(3) 若,A B 各行元素之和分别为,k t ,则AB 的各行元素之和都等于什么?

§2 逆矩阵

1. 判断正误(,,A B C 均为n 阶方阵)

(1) 000AB A B =?==或。 ( ) (2) AB AC B C =?=。 ( ) (3) A 为n 阶方阵。则2

A A A E =?=或0A =。 ( ) (4) 1

1

A

A

-=

。 ( ) (5) ()1

11AB B A ---=,()T

T T AB B A =。 ( )

(6) ****()A A A E =。 ( )

2. 填空

(1) 设213012101A ?? ?

= ? ???

,则A = ,*A = ,

1A -= 。

(2) 设A 为3阶方阵,且4A =,则1A -= ,1(4)A -= ,

*

1143

A A --= ,*()T A = 。 (3) 已知*

100212, 020001A BA AB E A ?? ?=-=- ? ???

,则B = 。

(4) 设14311201X ????

=

? ?--????

,则X = 。

3. 设0k A =,证明:1

21()

k E A E A A A ---=+++

+。

(提示:证明2

1()()k E A E A A A E --++++=)

4. 设方阵A 满足2

20A A E --=,证明:A 及2A E +都可逆,并求其逆矩阵。 (提示:利用可逆的定义证明)

5. 设A 是n 阶方阵,证明:(1) 若0A =,则*0A =;(2) 1

*

n A A

-=;(3)

2

**(),(0)n A A

A A -=≠。

(提示:凡是与伴随矩阵有关的结论,可先考虑等式*

AA A E =)

6. 设n 阶非零方阵A 的伴随矩阵为*A ,且*A =T A ,求证:0A ≠。 (提示:可考虑用反证法证明)

7. 设A 是n 阶方阵,如有非零矩阵B 使0AB =,则||0A =。

8. 设1

1

,,,A B A B A B --++均为n 阶可逆方阵,求1

11

()A B ---+。

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αα α α -=___________。 (3) 二阶行列式 2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 , C 1 , D 2 ,

(3)三阶行列式2 31 503 2012985 23 -=()。 A -70; B -63; C 70; D 82。 (4)行列式 000 000 a b a b b a b a =()。 A 4 4 a b -;B () 2 2 2a b -;C 4 4 b a -;D 44 a b 。 (5)n 阶行列式0100 0020 0001000 n n - =()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号:

线性代数练习册习题及答案本

第四章 线性方程组 §4-1 克拉默法则 一、选择题 1.下列说法正确的是( C ) A.n 元齐次线性方程组必有n 组解; B.n 元齐次线性方程组必有1n -组解; C.n 元齐次线性方程组至少有一组解,即零解; D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B ) A.当0D ≠时,非齐次线性方程组只有唯一解; B.当0D ≠时,非齐次线性方程组有无穷多解; C.若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题 1.已知齐次线性方程组1231231 230020 x x x x x x x x x λμμ++=?? ++=??++=?有非零解, 则λ= 1 ,μ= 0 . 2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠, 则方程组有唯一解i x = i D D . 三、用克拉默法则求解下列方程组 1.832623x y x y +=??+=? 解: 8320 62 D = =-≠ 1235 32 D = =-, 28212 63 D = =- 所以,125,62D D x y D D = ===-

2.123123123 222310x x x x x x x x x -+=-?? +-=??-+-=? 解: 2131 12112122 130 3550111 01 r r D r r ---=--=-≠+--- 11222 10051 1321135 011011D r r ---=-+-=---, 2121215 052 1322 1310 10 1 101 D r r --=-+-=-----, 3121225 002 1122 115 1 1 110 D r r --=+=--- 所以, 3121231,2,1D D D x x x D D D = ===== 3.21 241832x z x y z x y z -=?? +-=??-++=? 解: 13201 0012 412041200 183 583 D c c --=-+-=≠- 13110110014114020 283285D c c -=-+=, 2322 11 2 102 112100 123 125 D c c -=-+=--, 313201 01 2 4120 4120 182 582 D c c =-=-- 所以, 3121,0,1D D D x y z D D D = =====

线性代数考试练习题带答案(6)

线性代数考试练习题带答案 说明:本卷中,A -1 表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式33 32 31 2322 21131211a a a a a a a a a =4,则行列式33 3231232221 13 1211 333222a a a a a a a a a =( ) A.12 B.24 C.36 D.48 2.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1 CB -1 B.CA -1B -1 C.B -1A -1C D.CB -1A -1 3.已知A 2 +A -E =0,则矩阵A -1 =( ) A.A -E B.-A -E C.A +E D.-A +E 4.设54321,,,,ααααα是四维向量,则( ) A.54321,,,,ααααα一定线性无关 B.54321,,,,ααααα一定线性相关 C.5α一定可以由4321,,,αααα线性表示 D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=n D.0

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数习题及答案(复旦版)1

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512312 123122x x x D x x x = 的展开式中包含3x 和4 x 的项. 解: 设 123412341234 () 41234(1)i i i i i i i i i i i i D a a a a τ = -∑ ,其中1234,,,i i i i 分别为不同列中对应元素 的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 001030000004 ; (2)1230 0020 30450001 . 【解】(1) D =(1)τ(2314)4!=24; (2) D =12. 6. 计算下列各行列式.

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项.

线性代数复习题及答案

《 线性代数复习提纲及复习题 》 理解或掌握如下内容: 第一章 n 阶行列式 .行列式的定义,排列的逆系数,行列式性质,代数余子式, 行列式的计算,三角化法及降阶法,克莱姆法则。 第二章 矩阵及其运算 矩阵的线性运算,初等变换与初等矩阵的定义,方阵的逆矩阵定义及性质 方阵的逆矩阵存在的充要条件,用初等变换求逆矩阵,矩阵方程的解法,矩阵的秩的定义及求法;齐次线性方程组只有零解、有非零解的充要条件,;非齐次线性方程组有解的充要条件,解的判定。 第三章 线性方程组 n维向量的线性运算,向量组线性相关性的定义及证明,向量空间,向量组的极大线性无关组、秩; 齐次线性方程组的基础解系,解的结构,方程组求解;非齐次线性方程组解的结构,用初等变换解方程组,增广矩阵含有字母元素的方程组的求解。 复习题: 一、填空 (1)五阶行列式的项5441352213a a a a a 前的符号为 负 ; (2)设)3,3,2(2),3,3,1(-=+-=-βαβα,则α= (1,0,0) ; (3)设向量组γβα,,线性无关,则向量组γβαβα2,,+-线性 无关 ; (4)设* A 为四阶方阵A 的伴随矩阵,且*A =8,则12)(2-A = 4 ; (5)线性方程组054321=++++x x x x x 的解空间的维数是 4 ; (6)设???? ? ??=k k A 4702031,且0=T A 则k = 0或6 ; (7)n 元齐次线性方程组0=Ax 的系数矩阵A 的秩r(A)秩是r,则其解空间的维数是 n-r ; (8)的解的情况是:方程组b Ax b A R A R 2),,()3(== 有解 ; (9)方阵A 的行向量组线性无关是A 可逆的 充要 条件;

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

8线性代数练习题(带解题过程)

8线性代数练习题(带解题过程)

0 线性代数试题 一 填空题 ◆1. 设 A 为3阶方阵且 2 =A ,则 = -*-A A 231 ; 【分析】只要与* A 有关的题,首先要想到公式, E A A A AA ==**,从中推 你要的结论。这里1 1* 2--==A A A A 代入 A A A A A 1)1(231311-= -=-=---*- 注意: 为什么是3 )1(- ◆2. 设1 33322211 ,,α+α=βα+α=βα+α=β, 如 3 21,,ααα线性相关,则3 21,,βββ线性 ______(相关) 如 3 21,,ααα线性无关,则 3 21,,βββ线性 ______(无关) 【分析】对于此类题,最根本的方法是把一个向量组由另一个向量表示的问题转化为矩阵乘

1 法的关系,然后用矩阵的秩加以判明。 ?? ?? ? ?????=110011101],,[],,[321321αααβββ,记此为AK B = 这里)()()(A r AK r B r ==, 切不可两边取行列式!!因为矩阵不一定 是方阵!! ◆3. 设非齐次线性方程b x A m =?4 ,2)(=A r ,3 2 1 ,,ηη η是 它的三个解,且 T T T )5,4,3,2(,)4,3,2,1(,)7,6,4,3(133221=+=+=+ηηηηηη 求该方程组的通解。(答案: T T T k k x )2,2,1,1()1,1,1,1()6,5,3,2(2 1 21++= ,形式不 唯一) 【分析】对于此类题,首先要知道齐次方程组基础解系中向量的个数(也是解空间的维数) 是多少,通解是如何构造的。其次要知 道解得性质(齐次线性方程组的任意两解的线性

线性代数习题及答案(复旦版)

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13 (2) 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512 312 1 23 122x x x D x x x = 的展开式中包含3 x 和4 x 的项. 解: 设 123412341234() 4 1234(1)i i i i i i i i i i i i D a a a a τ = -∑ , 其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 0010 30000004 ; (2) 1230 002030450001 . 【解】(1) D =(1)τ(2314) 4!=24; (2) D =12. 6. 计算下列各行列式.

线性代数(经济数学2)-习题集(含答案)

《线性代数(经济数学2)》课程习 题集 西南科技大学成人、网络教育学院 版权所有 习题 【说明】:本课程《线性代数(经济数学2)》(编号为01007)共有计算题1,计算题2,计算题3,计算题4,计算题5等多种试题类型,其中,本习题集中有[计算题5]等试题类型未进入。 一、计算题1 1. 设三阶行列式为2 310211 01--=D 求余子式M 11,M 12,M 13及代数余子式A 11,A 12,A 13. 2. 用范德蒙行列式计算4阶行列式 125 34327641549916 573 4 1111 4--=D 3. 求解下列线性方程组: ???????=++++=++++=++++---11113221 12132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x ΛΛΛΛΛΛ 其中 ),,2,1,,(n j i j i a a j i Λ=≠≠

4. 问λ, μ取何值时, 齐次线性方程组1231231 230020x x x x x x x x x λμμ++=??++=??++=?有非零解? 5. 问λ取何值时, 齐次线性方程组12312312 3(1)2402(3)0(1)0x x x x x x x x x λλλ--+=??+-+=??++-=?有非零解? 二、计算题2 6. 计算61 4230 21510 3212 1----=D 的值。 7. 计算行列式5241 421 3183 2052 1------=D 的值。 8. 计算01111 0111 1011 110=D 的值。 9. 计算行列式199119921993 199419951996199719981999 的值。 10. 计算4124 1202 10520 0117的值。 11. 求满足下列等式的矩阵X 。 2114332X 311113---????-= ? ?----????

线性代数习题集带答案

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A ) 24315 (B ) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C) k n -2 ! (D )k n n --2)1( 3。 n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4.=0001001001001 000( ). (A ) 0 (B)1- (C) 1 (D ) 2 5. =0 001100000100100( )。 (A ) 0 (B)1- (C) 1 (D ) 2 6.在函数1 00 323211112)(x x x x x f ----=中3x 项的系数是( )。 (A ) 0 (B)1- (C ) 1 (D) 2

7。 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A ) 4 (B) 4- (C) 2 (D ) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A )ka (B )ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ) 。 (A) 0 (B )3- (C) 3 (D ) 2 10. 若5 73 41111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( )。 (A)1- (B )2- (C )3- (D)0 11. 若2 235001011 11 0403--= D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C )3- (D )0 12。 k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B )2- (C )3- (D )0 二、填空题

线性代数习题集(带答案)

第一部分专项同步练习 第一章行列式 一、单项选择题 1.下列排列是 5 阶偶排列的是( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ). n! (A) k (B) n k (C) k 2 n(n 1) (D) k 2 3. n 阶行列式的展开式中含a11a12 的项共有( )项. (A) 0 (B) n 2 (C) (n 2)! (D) (n 1)! 0 0 0 1 4. 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 0 0 1 0 5.0 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 2x x 1 1 6.在函数 1 x 1 2 f (x) 中 3 2 x 3 3 x 项的系数是( ). 0 0 0 1 (A) 0 (B) 1 (C) 1 (D) 2 1

7. 若 a a a 11 12 13 1 D a a a ,则 21 22 23 2 a a a 31 32 33 2a a 13 a 33 a 11 a 31 2a 12 2a 32 11 D 2a a a 2a ( ). 1 21 23 21 22 2a 31 (A) 4 (B) 4 (C) 2 (D) 2 a a 11 ,则 12 8.若 a a a 21 22 a 12 a 11 ka 22 ka 21 ( ). 2 (D) k2a (A) ka (B) ka (C) k a 9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ). (A) 0 (B) 3 (C) 3 (D) 2 8 7 4 3 10. 若 6 2 3 1 D ,则D 中第一行元的代数余子式的和为( ). 1 1 1 1

线性代数练习题及答案精编

线性代数练习题 一 选择题 1B A ,都是n 阶矩阵,且0=AB , 则必有:( ) (A) 0A =或0=B . (B) 0A B == . (C) 0=A 或.0=B (D) 0A B == 2设1011,1101a b c d -??????= ??? ?-?????? 则a b c d ?? = ???( ) (A)01. 11?? ?-?? (B)11. 10-?? ??? (C)11. 11-?? ??? (D)11. 01?? ?-?? 3若 A 为n m ?矩阵,且n m r A R <<=)(则( )必成立. (A )A 中每一个阶数大于r 的子式全为零。 (B )A 是满秩矩阵。 (C )A 经初等变换可化为??? ? ??000r E (D )A 中r 阶子式不全为零。 4 向量组 s ααα ,,21,线性无关的充分条件是( ) (A ) s ααα ,,21均不是零向量. (B ) s ααα ,,21中任一部分组线性无关. (C ) s ααα ,,21中任意两个向量的对应分量都不成比例. (D ) s ααα ,,21中任一向量均不能由其余S-1个向量线性表示. 5 齐次线性方程组0AX =是非齐次线性方程组AX B =的导出组,则( )必定成立. (A )0AX =只有零解时, AX B =有唯一解. (B )0AX =有非零解时, AX B =有无穷多解. (C )α是θ=AX 的任意解,0γ 是AX B =的特解时,0γα+是AX B =的全部解. (D )12γγ,是AX B =的解时, 21γγ+ 是0AX =的解. 6若θ≠B ,方程组B AX =中, 方程个数少于未知量个数,则有( )

线性代数习题及解答

线性代数习题一 说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设行列式111213212223313233a a a a a a a a a =2,则111213 313233213122322333 333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3 D .6 2.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1 B .E -A C .E +A D . E -A -1 3.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( ) A .?? ???A B 可逆,且其逆为-1-1? ? ???A B B .?? ??? A B 不可逆 C .?? ???A B 可逆,且其逆为 -1-1?? ???B A D .? ? ???A B 可逆,且其逆为 -1-1?? ??? A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是 ( ) A .向量组α1,α2,…,αk 中任意两个向量线性无关 B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0 C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示 D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)T D .(2,-6,-5,-1)T 6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1 B .2

线性代数练习题及答案

线性代数期中练习 一、单项选择题。 1. 12 021 k k -≠-的充分必要条件是( )。 (A) 1k ≠- (B) 3k ≠ (C) 1k ≠- 且3k ≠ (D) 1k ≠-或3k ≠ 2.若AB =AC ,当( )时,有B =C 。 (A) A 为n 阶方阵 (B) A 为可逆矩阵 (C) A 为任意矩阵 (D) A 为对称矩阵 3.若三阶行列式M a a a a a a a a a =3332 31 232221 13 1211 ,则=---------33 32 312322 2113 1211222222222a a a a a a a a a ( ) 。 (A) -6M (B) 6M (C) 8M (D) -8M 4.齐次线性方程组123123123 000ax x x x ax x x x x ++=?? ++=??++=?有非零解,则a 应满足( )。 (A) 0a ≠; (B) 0a =; (C) 1a ≠; (D) 1a =. 5.设12,ββ是Ax b =的两个不同的解,12,αα是0=Ax 的基础解系,则Ax b = 的通解是( )。 (A) 11212121()()2c c αααββ+-+ + (B) 11212121 ()()2 c c αααββ+++- (C) 11212121()()2c c αββββ+++- (D) 11212121 ()()2 c c αββββ+-++ 二.填空题。 6.A = (1, 2, 3, 4),B = (1, -1, 3, 5),则A ·B T = 。 7.已知A 、B 为4阶方阵,且A =-2,B =3,则| 5AB | = 。 | ( AB )-1 |= 。 8. 在分块矩阵A=B O O C ?? ??? 中,已知1-B 、1 -C 存在,而O 是零矩阵,则 =-1A 。

线性代数题库

线性代数

12级物联网班 李沛华 一、填空 1. ??? ? ??-=???? ??-=0112,1101B A ,则=AB . 2. 设D 为一个三阶行列式,第三列元素分别为-2,3,1,其余子式分别为9,6, 24,则D = _______. 3. n 阶矩阵A 可逆的充要条件是 _____,设A *为A 的伴随矩阵,则1A -= ______. 4. 若n 阶矩阵满足2240A A E --=,则1A -= __________. 5. ()121,2,3,4_______,34?? ? ?= ? ???()121,2,3,4_______34?? ? ?= ? ??? . 6. 已知,A B 为n 阶矩阵, 2A =, 3B =-, 则1T A B -= . 7. 设向量组123,,ααα线性相关,则向量组112233,,,,,αβαβαβ一定线性 . 8. 8. 设A 三阶矩阵,若A =3,则1A -= , A * = . 9. n 阶可逆矩阵A 的列向量组为12,,,n αααL ,则{}12,,,n r ααα=L .

10.行列式41000 3100 0210 001的值为 . 11.设,a b 为实数,则当a = 且b = 时,1 0100 --a b b a =0. 12.1 0111111)(-=x x f 中,x 的一次项系数是 . 13.已知向量组()T 13,2,1=α,()()T 3T 25,4,3,4,3,2==αα,则该向量组的秩()123,,r ααα= . 14.A 为n 阶方阵,且d A =,则k A ?= . 15.设A 是三阶可逆矩阵,且1121021003A --?? ?= ? ??? ,则*__________A =. 16.已知向量T T ?? ? ??-=??? ??=0,31,31,0,21,21βα,则βα,的夹角是 . 17. 已知()1,0,2,2T α=,则α的模||||_______α=.

线性代数习题及答案

高数选讲线性代数部分作业 1.已知n阶方阵满足A2+2A-3I=O,则(A+4I)-1为 . 2.设n阶方阵满足 的代数余子式,则为()。 3.已知n阶方阵 ,则A中所有元素的代数余子式之和为()。 4.设有通解k[1,-2,1,3]T+[2,1,1,4]T,其中k是任意常数,则方程组必有一个特解是() 5.设A与B是n阶方阵,齐次线性方程组=0与=0有相同的基础解系,则在下列方程组中以为基础解系的是() (A) (B) (C) (D) 6.设A、B为四阶方阵,( ) (A)1.(B)2. (C)3. (D)4 7.设n阶矩阵A与B等价,则()成立。 (A)detA=detB (B) detAdetB (C)若detA0,则必有detB0(D) detA=-detB 8.设是四维非零向量组,是的伴随矩阵,已知方程组 的基础解系为k(1,0,2,0)T,则方程组的基础解系为() (A) (B) (C) (D) 9.设A是矩阵,则下列命题正确的是:() (A)若R(A)=m,则齐次方程组Ax=0只有零解。 (B)若R(A)=n,则齐次方程组Ax=0只有零解。 (C)若m

11.四元非齐次线性方程组的通解为 x=(1,-1,0,1)T+k(2,-1,1,0)T,k为任意常数,记 则以下命题错误的是 (A) (B) (C) (D) 12.知线性方程有无穷多解,求的取值并求通解。 13.设A是阶方阵,是A的两个不同的特征值,是A的对应于的线性无关特征向量,是A的对应于的线性无关特征向量,证明线性无关。14.已知矩阵的秩为1,且是的一个特征向量,(1)求参数; (2)求可逆矩阵和对角矩阵,使得 15.设5阶实对称矩阵满足,其中是5阶单位矩阵,已知的秩为2,(1)求行列式的值;(2)判断是否为正定矩阵?证明你的结论。 (2)的特征值全为正数,所以是正定矩阵。 16.. 17. 18.

相关文档
相关文档 最新文档