文档库 最新最全的文档下载
当前位置:文档库 › 规整调料塔上的流体流动CFD模拟与实验研究

规整调料塔上的流体流动CFD模拟与实验研究

规整调料塔上的流体流动CFD模拟与实验研究
规整调料塔上的流体流动CFD模拟与实验研究

规整填料上的流体流动:

CFD模拟与实验研究

文章建立、测试、修正了一种板式规整填料Mellapak 250.Y两相逆流的CFD模型。这种模型用来确定液体和气体流速和流动液体的物理化学性质对规整填料上形成的界面面积的影响。这种CFD模型能让我们确定最低流速,在这种流速下,填料表面可以观测到的一个连续液膜。模拟表明随着湿率的增加,被一层液膜覆盖的填料表面在增加,直到表面被完全覆盖;而气液相界面积的进一步微弱变化均是由液膜表面的波动所致。气体载荷(F因子,气相动能因子)对膜表面的影响在计算误差范围之内。从CFD模拟的结果我们可以预测液体流动中成膜阶段,从而追踪局部速度震荡、膜厚度和相界面速度分布。

1 引言

近年来很多研究中心研究了规整填料塔内有效传质面积的确定。

有了一些用来确定气液系统有效传质面积的实验模型。总体来说,可以区分为化学和物理方法。其中应用最多的是化学方法。

文献中有许多用来预测规整填料上的有效传质面积的理论的,半经验的和经验模型。在这些模型中应用到确定填料上的压降、持液量、有效传质面积等等的关系。这些模型不断发展,然而,对于不同的媒介和非稳态情况,结果则显示的模棱两可。在部分研究当中,一些参数对传质面积的影响被忽略了,假定它相对于其他参数的影响是非常小的,然而一些作者却表示这是一个在整个过程中起着主导影响的参数。

文献中假设界面面积比填料便面积小【1-3】而且只有液相在更大的负载下才会等于或者稍大于填料表面积。但是在一些研究当中,作者表示界面面积可以明显大于填料表面积【4】。

同样对于气相负荷对界面面积的影响也没有明确的观点。一些作者忽略这个参数的影响【3】,一些作者声明这种影响的重要性【5,6】。

最近,文献数次尝试用计算流体动力学(CFD)方法建立界面面积模型【7-10】。

用CFD的手段对通过规整填料的流动中有效传质面积进行建模是一个很困难的任务,因为这种类型的填料上的两相流的水动力学是极其复杂的。液体只在如下槽道中才不会流动,液体供应到这种槽道,但是流进了其他槽道,与邻近的流注混合或者流到最近的板上,等等【11,12】。这种现象的复杂机制导致了至今CFD模型的发展仅限于单相系统的分析【8,9】。

2 目标

研究的主要目的是建立一个CFD模型,这种模型能让我们确定通过规整填料的逆流的气液界面面积。这种CFD模型的目标是确定流动相界面面积的影响以及确定填料被完全覆盖时的最低相流速。

与文献中描述的单向流模型相反,本研究的目的是建立一个两相流模型,它不仅可以确定相界面面积,而且可以分析不同几何结构和微观结构的规整填料上流动中液滴的形成和液膜破裂的机制。

根据有关界面面积的文献的差异和争论,为了校对这种模型,我们设计和实施了自己的规整填料上相流动的实验研究。

3 模型

用Fluent 5.4软件包做了这种分析【13】。建模对象是近年来工业中应用最常用的典型板式规整填料Mellapak 250.Y。对两平板或者波纹板之间的槽道里具有自由液面的非稳态两相流做了大量的模拟。板间距是12mm,他们的长度是198mm,与Mellapak 250Y填料相对应。液体通过一个0.5mm的垂直于湿板的洞供应到模型系统的上部。气体从底部引入与液体逆向流动。假定只有1个湿板。模型系统的几何形状如图1.

数值计算程序如下:首先,假定气体充满整个区域。出口设定恒定液体流速,与要求的液体流速相对应,流动被初始化,在非稳态下进行模拟,直到达到拟稳定态。下一步是将气体供应到整个区域并对媒介的逆流进行建模。为了引导气体与流动液体逆向流动,我们假定气相入口和出口有不同的压力。

与所需的气体流速(由F因子表述)相对应的所需压差值由反复实验法确定。平板的计算网格包括14640个节点,波纹板包括19900个节点。模拟中应用一个结构上的矩形网格。为了精确的确定界面面积,在相接触区域网格更加密集。在两种情况下,在管道顶部液体都是垂直于板来提供的。

研究中建立了一个两相逆流的甲苯-空气和水-空气模型。应用的媒介的物理化学性质实在20℃和1标准大气压下确定。由于模型流动可能的不连续性,即液滴形成和膜破裂,所以计算在非稳态状况下进行。当计算达到拟稳定状态时停止,即系统各点的相流动速度都不再变化或者在一个限定的范围之内震荡。模拟在不同液体流动速度下进行。分析流动速度的范围如表1所示。当水流等于100m3/m2h,甲苯等于30 m3/m2h时,更多模拟在不同F因子(0.6,1.2,2.4Pa0.5)下进行来评估气体流量对规整填料界面面积的影响。

(a ) (b ) 图1.分析的几何形状(a )平板,(b )波纹板。

表1.模型中使用的湿率

4 理论计算样例

从模拟结果我们可以观察膜形成阶段和相流速分布。当液体流下版面初始阶段由于重力作用形成一个液滴然后沿着管道自由流下。这时膜前表面前进,有一液滴形成并分离。为了评估是否达到稳定状态,在液膜上的几个点检测其速度。当液体流速开始在一个确定值附近振动时,状态被视为稳定了,这时计算停止,例如水流速为100 m 3/m 2h 时,实际进行时间为0.8s 。

波纹板上流动的计算得到一个典型的相流速分布如图3显示。从图中可以观察到每个波纹上速度场相近,即气体高流速区(板谷)和气体低流速区(板峰)以近似的方式分布。对每个F因子值可以观察到近似的速度分布。

在建模的集合体内水-空气流动模拟的结果显示在对平板流速为90 m3/m2h,对波纹板流速为100 m3/m2h(假定接触角为45°)时,液体应该完全覆盖填料。然而当接触角为65°时填料表面没有被覆盖,即使流速大于100 m3/m2h。因为一个接触角度是一个很强的函数表面性质,它在这项工作中没有被实验确定,对水的计算只有定量的特征。

图2.在平板上水流动中液膜形成阶段

图3.波纹板上水流动过程中典型的速度场

甲苯流动结果显示液膜分离时更低的流速,即平板为10 m3/m2h,波纹板为20 m3/m2h。

图4显示平板上甲苯液膜厚度的变化时流动方向上距入口距离的函数。湿率为10 m3/m2h (图4a)观察到液膜分离。

(a)

(b)

图4.液膜厚度:(a)湿率为10m3/m2h,(b)湿率为20m3/m2h

当甲苯流速等于15m3/m2h时会形成一个很薄的(大约为0.01mm)但连续的液膜(图4b)。板上膜厚度在流动过程中变化以及表面上的波动很容易观察到。当检测液体流动区域某点的流速时,能报告流动过程中的流速振动。

在CFD模拟中对于甲苯-空气系统,确定了界面面积与板几何面积的比率。在二维计算中界面面积不能直接计算出来。但是假如任意横截面的流动图都是相同的,则液膜和填料可以计算出来。这能够让我们确定液膜和模型板得长度的比例。结果显示自两种几何模型的全部表面都被覆盖时,界面尺寸保持不变。图5显示了理论数据和模拟结果的对比。

5 实验研究

实验的主要目的是对通过CFD方法数值模拟的得到的结果进行定量的修正。

实验在下列板结构类型上进行:

●平板

●带宏观结构波纹填料250.Y的波纹板

应用的板30cm宽,15cm高。

图5.拥有的理论数据和文献数据的比较。

每个被测板垂直安装于10个1升的矩形玻璃水箱中。另一个相同结构的板安装到被测表面上面,为了在薄片之间形成一个30cm的1mm溢出槽,这样可以保证统一的板湿率。水箱放置在一个液体可以自由流动的透明容器中。为了使仪器水平,水箱放置在一个金属升降机上。透明容器装备一个完全浸在液体中的叶轮泵用来再流通水箱中的水。液体流速由一个转自流量计测量。

实验中使用的设备示意图在图6中给出。

图6.测量设备示意图。

6 结果与讨论

在不同形状的板上进行的实验显示在测量的整个范围中不能达到使水完全覆盖板表面。液体成股流动,其数量轻微变化(图7)。这种观察结果与文献【1】和【14,15】中的实验结果一致。

图7.平板上的水流。

实验结果也显示自由表面积的增加是水流速度的函数(图8)。图8展示了在两种不同流速情况下波纹板上的流动。

L=50 m3/m2h L=100 m3/m2h

图8.波纹板上的流速

对甲苯流动的实验中揭示了在填料上这种液体与水所不同的表现。液体完全覆盖填料表面。在平板上流速等于15 m3/m2h和在波纹板上流速等于30 m3/m2h时可观察到表面没有被覆盖,这与理论计算(分别为10 m3/m2h和20 m3/m2h)很好的吻合(图9)。

L=15 m3/m2h L=30 m3/m2h

图9.被测板上的甲苯流动。

理论和实验结果的小差距来自在模拟中假定流动条件理想(例如填料边缘光滑平直,表面理想的光滑和清洁)。

但是这些结果可以让我们声明这种模型可以确定液体可以完全覆盖填料表面的最低流速。

7 结论

已经发展的规整填料塔上的两相逆流CFD模型在文献数据和我们自己的实验的基础上得到修正。

该模型用来确定液体和气体流速与被测液体的物理化学性质对表面尺寸的影响。证实了流动液体类型和其物理化学类型对流动稳定性的重要影响。据报道甲苯能更好的覆盖湿润表面。在被分析的流动区域水是成股流动的。

基于实验结果我们可以说使确定液体完全覆盖表面时的最低流速成为可能。对于甲苯来说,平板上流速时10 m3/m2h,波纹板上是15 m3/m2h。结果接近经验值,小差距是因为两种模型和实验条件都做了简化,例如,实验中填料边缘非理想的湿润。附加的模拟证实了随着湿率的增加,调料表面被液膜更好的覆盖,即界面面积逐渐增加,直到整个表面被液体覆盖,然后由于波得形成是它轻微的增加。

F因子对截面面积尺寸的影响在计算误差范围之内。

结果证明了CFD方法的应用可能成为这种结构类型上的流动模拟的标准方法,它能减少实验和填料单元的建造的费用。

参考文献

[1] P.A.Nawrocki,Z.P.Xu,K.T.Chuang,Can.J.Chem.Eng.1991,69,1336.

[2] E.Brunazzi,G.Nardini,A.Paglianti,L.Petarca,Chem.Eng.Technol.1995,18,248.

[3] Z.Olujic,Trans IChemE 1999,77,505.

[4] M.de Brito,U.Hvon Stocar,A.M.Bangerter,P.Bomio,https://www.wendangku.net/doc/788420056.html,so,Ind.Eng.Chem.Res. 1994, 33, 647.

[5] J.R.Fair,A.R.Seibert,Structured Packing Performance.Experimental Evaluation of SRP and

Delft Models,AIChE Nat.Meeting,Separation Division Topical Conf.,Dallas 1999.

[6] R.H.Weiland,K.R.Ahlgren,M.Evans,Ind.Eng.Chem.Res.1993,32, 1411.

[7] I.M.Parsons,K.E.Porter,Gas Sep.Purif.1992,6,221.

[8] A.M.Ali,P.A.A.Le Haen,Z.Olujic,Fluid Dynamic sand the Performance of Corrugated Sheet

Structured Packing,1998,unpublished work.

[9] E.Y.Kenig,M.Kl?ker,Y u.Egorov,F.Menter,A.Górak,Towards Improvement of Reactive

Separation Performance Using Computa-tional Fluid Dynamic,3rd Eur.Congr.of Chemical Engineering, Nuremberg,June 26±28,2001.

[10] J.M.van Baten,R.Krishna,Liquid-Phase Mass Transfer within KA TAPAK-S Structures

Studied Using CFD Simulations,3rd Eur.Congr. of Chemical Engineering, Nuremberg,June 26±28,2001.

[11] R.Billet,M.Schultes,Chem.Eng.Technol.1993,16,1.

[12] F.Stoter,Z.Olujic,J.de Graauw,Chem.Eng.J.1993,53,55.

[13] Fluent 5,User's Guide,vol.3,1998.

[14] J.L.Bravo,J.A.Rocha,J.R.Fair,Hydrocarbon Proc.1985,64,91.

[15] J.A.Rocha,J.L.Bravo,J.R.Fair,Ind.Eng.Chem.Res.1993,32,641.

第七 章 CFD仿真模拟

第七章CFD仿真模拟 一.初识CFD CFD是英文Computational Fluid Dynamics(计算流体动力学)的简称。它是伴随着计算机技术、数值计算技术的发展而发展的。简单地说,CFD相当于"虚拟"地在计算机做实验,用以模拟仿真实际的流体流动情况。而其基本原理则是数值求解控制流体流动的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动情况。可以认为CFD是现代模拟仿真技术的一种。 1933年,英国人Thom首次用手摇计算机数值求解了二维粘性流体偏微分方程,CFD由此而生。1974年,丹麦的Nielsen首次将CFD用于暖通空调工程领域,对通风房间内的空气流动进行模拟。之后短短的20多年内,CFD技术在暖通空调工程中的研究和应用进行得如火如荼。如今,CFD技术逐渐成为广大空调工程师和建筑师解决分析工程问题的有力工具。 二.为什么用CFD CFD是一种模拟仿真技术,在暖通空调工程中的应用主要在于模拟预测室内外或设备内的空气或其他工质流体的流动情况。以预测室内空气分布为例,目前在暖通空调工程中采用的方法主要有四种:射流公式,Zonal model,CFD以及模型实验。 由于建筑空间越来越向复杂化、多样化和大型化发展,实际空调通风房间的气流组织形式变化多样,而传统的射流理论分析方法采用的是基于某些标准或理想条件理论分析或试验得到的射流公式对空调送风口射流的轴心速度和温度、射流轨迹等进行预测,势必会带来较大的误差。并且,射流分析方法只能给出室内的一些集总参数性的信息,不能给出设计人员所需的详细资料,无法满足设计者详细了解室内空气分布情况的要求; Zonal model是将房间划分为一些有限的宏观区域,认为区域内的相关参数如温度、浓度相等,而区域间存在热质交换,通过建立质量和能量守恒方程并充分考虑了区域间压差和流动的关系来研究房间内的温度分布以及流动情况,因此模拟得到的实际上还只是一种相对"精确"的集总结果,且在机械通风中的应用还存在较多问题; 模型实验虽然能够得到设计人员所需要的各种数据,但需要较长的实验周期和昂贵的实验费用,搭建实验模型耗资很大,有文献指出单个实验通常耗资3000~20000美元,而对于不同的条件,可能还需要多个实验,耗资更多,周期也长达数月以上,难于在工程设计中广泛采用。 另一方面,CFD具有成本低、速度快、资料完备且可模拟各种不同的工况等独特的优点,故其逐渐受到人们的青睐。由表1给出的四种室内空气分布预测方法的对比可见,就目前的三种理论预测室内空气分布的方法而言,CFD方法确实具有不可比拟的优点,且由于当前计算机技术的发展,CFD方法的计算周期和成本完全可以为工程应用所接受。尽管CFD方法还存在可靠性和对实际问题的可算性等问题,但这些问题已经逐步得到发展和解决。因此,CFD方法可应用于对室内空气分布情况进行模拟和预测,从而得到房间内速度、温度、湿度以及有害物浓度等物理量的详细分布情况。 进一步而言,对于室外空气流动以及其它设备内的流体流动的模拟预测,一般只有模型实验或CFD方法适用。表1的比较同样表明了CFD方法比模型实验的优越性。故此,CFD方法可作为解决暖通空调工程的流动和传热传质问题的强有力工具而推广应用。 表1四种暖通空调房间空气分布的预测方法比较 比较项目 1射流公式 2 ZONAL MODEL 3CFD 4模型实验 房间形状复杂程度简单较复杂基本不限基本不限 ?对经验参数的依赖性几乎完全很依赖一些不依赖

维导热物体温度场的数值模拟

传热大作业 二维导热物体温度场的数值模拟(等温边界条件) 姓名: 班级: 学号:

墙角稳态导热数值模拟(等温条件) 一、物理问题 有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。在下列两种情况下试计算: (1)砖墙横截面上的温度分布; (2)垂直于纸面方向的每米长度上通过砖墙的导热量。外矩形长为,宽为;内矩形长为,宽为。 第一种情况:内外壁分别均匀地维持在0℃及30℃; 第二种情况:内外表面均为第三类边界条件,且已知: 外壁:30℃,h1=10W/m2·℃, 内壁:10℃,h2= 4 W/m2·℃ 砖墙的导热系数λ= W/m·℃ 由于对称性,仅研究1/4部分即可。 二、数学描写 对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程

02222=??+??y t x t 这是描写实验情景的控制方程。 三、方程离散 用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。每一个节点都可以看成是以它为中心的一个小区域的代表。由于对称性,仅研究1/4部分即可。依照实验时得点划分网格: 建立节点物理量的代数方程 对于内部节点,由?x=?y ,有 )(411,1,,1,1,-+-++++=n m n m n m n m n m t t t t t 由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。

设立迭代初场,求解代数方程组。图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。以C t 000 为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于,认为已达到迭代收敛。 四、编程及结果 1) 源程序 #include <> #include <> int main() { int k=0,n=0; double t[16][12]={0},s[16][12]={0}; double epsilon=; double lambda=,error=0; double daore_in=0,daore_out=0,daore=0; FILE *fp; fp=fopen("data3","w"); for (int i=0;i<=15;i++) for (int j=0;j<=11;j++) { if ((i==0) || (j==0)) s[i][j]=30; if (i==5) if (j>=5 && j<=11) s[i][j]=0; if (j==5) if (i>=5 && i<=15) s[i][j]=0; } for (int i=0;i<=15;i++)

一维CFD模拟仿真设计

CFD simulation in Laval nozzle SIAE 090441313 Abstract We aim to simulate the quasi one dimension flow in the Laval nozzle based on CFD computation in this paper .We consider the change of the temperature ,the pressure ,the density and the speed of the flow to study the flow.The analytic solution of the flow in the Laval nozzle is provided when the input velocity is supersonic.We use the Mac-Cormack Explicit Difference Scheme to slove the question. Key words :Laval nozzle ,CFD,throat narrow. Contents Abstract .................................................. . (1) Introduction .............................................. .. (2) Simulation of one-dimensional steady flow (3)

Basis equations ................................................. (3) Dimensionless .......................................... . (10) Mac -Cormack Explicit Difference Scheme (11) Boundary conditions ................................................ (13) Reference .............................................. (13) Annex .................................................. .. (14) Introduction Laval nozzle is the most commonly used components of rocket engines and aero-engine, constituted by two tapered tube, one shrink tube, another expansion tube. Laval nozzle is an important part of the thrust chamber. The first half of the nozzle from large to small contraction to a narrow throat to the middle. Narrow throat and then expand

CFD仿真验证及有效性指南

CFD仿真验证及有效性指南 摘要 本文提出评估CFD建模和仿真可信性的指导方法。评估可信度的两个主要原则是:验证和有效。验证,即确定计算模拟是否准确表现概念模型的过程,但不要求仿真和现实世界相关联。有效,即确定计算模拟是否表现真实世界的过程。本文定义一些重要术语,讨论基本概念,并指定进行CFD仿真验证和有效的一般程序。本文目的在于提供验证和有效的重要问题和概念的基础,因为一些尚未解决的重要问题,本文不建议作为该领域的标准。希望该指南通过建立验证和有效的共同术语和方法,以助于CFD仿真的研究、发展和使用。这些术语和方法也可用于其他工程和科学学科。 前言 现在,使用计算机模拟流体的流动过程,用于设计,研究和工程系统的运行,并确定这些系统在不同工况下的性能。CFD模拟也用于提高对流体物理和化学性质的理解,如湍流和燃烧,有助于天气预报和海洋。虽然CFD模拟广泛用于工业、政府和学术界,但目前评估其可信度的方法还很少。这些指导原则基于以下概念,没有适用于所有CFD模拟的固定的可信度和精确度。模拟所需的精确度取决于模拟的目的。 建立可信度的两个主要原则是验证和有效(V&V)。这里定义,验证即确定模型能准确表现设计者概念模型的描述和模型解决方案的过程,有效即确定预期模型对现实世界表现的准确度的过程。该定义表明,V&V的定义还在变动,还没有一个明确的最终定义。通常完成或充分由实际问题决定,如预算限制和模型的预期用途。复合建模和计算模拟没有任何包括准确性的证明,如在数学分析方面的发展。V&V的定义也强调准确度的评价,一般在验证过程中,准确度以对简化模型问题的基准解决方法符合性确定;有效性时,准确度以对实验数据即现实的符合性确定。 通常,不确定性和误差可视为与建模和仿真准确度相关的正常损失。不确定性,即在任一建模过程中由于缺乏知识导致的潜在缺陷。知识缺乏通常是由对物理特性或参数的不完全了解造成的,如对涡轮叶片表面粗糙度分布的不充分描述。知识缺乏的另一个原因是物理过程的复杂性,如湍流燃烧。误差即在建模和

西安交通大学——温度场数值模拟(matlab)

温度场模拟matlab代码: clear,clc,clf L1=8;L2=8;N=9;M=9;% 边长为8cm的正方形划分为8*8的格子 T0=500;Tw=100; % 初始和稳态温度 a=0.05; % 导温系数 tmax=600;dt=0.2; % 时间限10min和时间步长0.2s dx=L1/(M-1);dy=L2/(N-1); M1=a*dt/(dx^2);M2=a*dt/(dy^2); T=T0*ones(M,N); T1=T0*ones(M,N); t=0;l=0;k=0; Tc=zeros(1,600);% 中心点温度,每一秒采集一个点 for i=1:9 for j=1:9 if(i==1|i==9|j==1|j==9) T(i,j)=Tw;% 边界点温度为100℃ else T(i,j)=T0; end end end if(2*M1+2*M2<=1) % 判断是否满足稳定性条件 while(t

end i=1:9;j=1:9; [x,y]=meshgrid(i); figure(1); subplot(1,2,1); mesh(x,y,T(i,j))% 画出10min 后的温度场 axis tight; xlabel('x','FontSize',14);ylabel('y','FontSize',14);zlabel('T/℃','FontSize',14) title('1min 后二维温度场模拟图','FontSize',18) subplot(1,2,2); [C,H]=contour(x,y,T(i,j)); clabel(C,H);axis square; xlabel('x','FontSize',14);ylabel('y','FontSize',14); title('1min 后模拟等温线图','FontSize',18) figure(2); xx=1:600; plot(xx,Tc,'k-','linewidth',2) xlabel('时间/s','FontSize',14);ylabel('温度/℃','FontSize',14);title('中心点的冷却曲线','FontSize',18) else disp('Error!') % 如果不满足稳定性条件,显示“Error !” end 实验结果: 时间/s 温度/℃ 中心点的冷却曲线

车流量仿真分析-Flotran CFD

2006年用户年会论文 基于ANSYS流体动力学的车流量仿真分析1 [刘长虹,郑杰,朱晓华,张海波,黄虎,陈力华] [上海工程技术大学汽车工程学院,上海,201600] [ 摘要 ] 将交通流比拟为管道流体模型并且利用有限元分析软件ANSYS中的FLOTRAN CFD流体分析模块对隧道口交通流进行比拟及仿真,得出相应交通流量模型和车辆流动模拟图。并对不同车速下 交叉道口的通行能力进行模拟,确定出最佳车速比。且对不同入口形状进行车流通畅度的 ANSYA软件比较模拟,通过模拟直观的展示出不同道路入口形状对车流和道路的影响。最后对 高峰路段路口设计提出有关建议。 [ 关键词]交通流,交通流模型,ANSYS,模拟 Simulating to Traffic Flux By the ANSYS Fluid Dynamic Analysis [Liu Changhong, Zheng Jie, Zhu Xiaohua, Zhang Haibo, Huang Hu, Chen Lihua] [Automobile College Shanghai University of Engineering Science, Shanghai 201600] [Abstract ] Firstly, based on the fluid dynamic mechanics of channel, a traffic flow model is built. Secondly, the traffic flow model on cross road is simulated with the finite element method software (ANSYS). Then according to the calculating results, the simulating traffic ability at the entrance of the roadl in different speed and the different entrance figures are calculated directly. Finally, some suggestions of designing the heavy road are given. [ Keyword ] traffic flow, traffic flow simulation, ANSYS, Simulation. 1.前言 当前,社会经济的迅速发展与交通建设的相对滞后,已经构成非常突出的世界性矛盾,在发展中国家尤其突出。在我国许多大城市中,交通堵塞,事故频繁,成了众所周知的“都市顽症”。以上海市为例,上世纪九十年代的资料表明,在交通高峰期,市中心机动车平均车速不到15km/h,最低的车速仅仅为4km/h,即低于正常的步行速度。解决这个矛盾的一个重要办法是大力进行市政交通建设,实现交通的立体化,现代化。同时还要保证建设道路的合理性。交通流理论是解决这类方法的一种理论方法[1,2],其中有根据流体动力学理 1上海市教委基金项目(041NE31)和上海市科委基金项目(04QMX1452)资助

二维导热物体温度场的数值模拟

金属凝固过程计算机模拟题目:二维导热物体温度场的数值模拟 Solidworks十字接头的传热分析 作者:张杰 学号:S2******* 学院:北京有色金属研究总院 专业:材料科学与工程 成绩: 2015 年12 月

二维导热物体温度场的数值模拟 图1 二维均质物体的网格划分 用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x ?与y ?可以是不变的常量,即等步长,也可以是变量(即在区域内的不同处是不同的),即变步长?如果区域内各点处的温度梯度相差很大,则在温度变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些?至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定? 在有限的区域内,将二维不稳定导热方程式应用于节点 ,)i j (可写成: ,2222 ,i j P P p i j T T T C x y ρλτ?????=+ ?????? ,1 , ,()i j P P P i j i j T T T οτττ+-???= +? ????? () , 1 , , 1 ,22 2()i j P P P P i j i j i j T T T T x x x ο+--+??? =+? ????? () , ,1 , ,122 2()i j P P P P i j i j i j T T T T y y y ο+--+???=+? ?????τ?、x ?、y ? 当τ?、x ?、y ?较小时,忽略()οτ?、2()x ο?、2 ()y ο?项。当x y ?=?时, 即x 、y 方向网格划分步长相等?最后得到节点 ,)i j (的差分方程: ()1 , ,0 1 , 1 , ,1 ,1 ,4P P P P P P P i j i j i j i j i j i j i j T T F T T T T T ++-+-=++++- 式中:() 02 p F C x λτ ρ?= ??

基于生死单元的激光熔覆温度场数值模拟

基于生死单元的激光熔覆温度场数值模拟 基于生死单元的激光熔覆温度场数值模拟 摘要:计算了不同激光功率条件下粉末颗粒到达基底前的温升,并以粉末颗粒到达基底前的温度为初始条件。用生死单元法研究了单通道和多通道激光熔覆温度场。利用熔池的大小和形态,验证了模型的可靠性。结果表明,粉末颗粒的温升与激光功率呈线性关系。单个包层的温度变化是锯齿状的。温升过程近似为直线,温降曲线近似为双曲线。在多通道熔覆过程中,温度场呈微椭圆形。节点上的热循环经过一个逐渐增加的峰值。峰值温度最终趋于稳定。0系列 激光熔覆根据送粉工艺不同可分为两种类型,即粉末预置法和同步送粉法。本发明具有易于自动控制、激光能量吸收率高、无内部气孔的优点。特别是对于覆层金属陶瓷,覆层的抗裂性可以显著提高,并且硬质陶瓷相可以均匀地分布在覆层中。有广阔的应用空间。国内学者利用ANSYS [1-4对激光熔覆过程的温度场和应力场进行了大量的研究工作。目前,利用ANSYS模拟激光熔覆温度场的研究没有考虑激光束与粉末的相互作用。事实上,激光束首先作用于粉末。除了损失的能量,部分激光束被包覆粉末吸收。另一部分通过粉末被基质吸收。除了直接吸收激光束能量,基质还吸收从粉末转移到基质的能量。因此,有必要在仿真前弄清激光能量的分布,使所建立的模型更接近实际,仿真结果更有说服力。本文将粉末在到达基体前吸收能量后的温升作为初始温度场加载到基体上。同时,利用有限元分析软件

ANSYS中的生死单元技术模拟了熔覆单元的生长过程。高斯体热源加载基体吸收的能量,模拟送粉激光熔覆的温度场分布。在此基础上,模拟了多道次激光熔覆的温度场,研究了多道次激光熔覆的温度场。当屏蔽激光时, 1粉末到达基体前的温度为 粉末。它还吸收部分激光能量,从而提高其温度。事实上,粒子直接吸收激光辐射能量并发射辐射能量,而不考虑等离子体的影响(能量密度低于105W /cm2)。在空气中,粉末颗粒也因空气对流而耗散能量,并且颗粒也相互加热。这些能量在总能量中的比例非常小。目前,关于粉体颗粒温升的模型很少。此外,有必要在模型[5]中建立假设条件。为了便于计算,模型中假设: (1)气体-粉末射流中粉末颗粒的体积分数很低,并且受到激光反射、折射、颗粒离子间相互加热和束屏蔽等的影响。可以忽略。(2)粉末颗粒是半径为rP的球体。由于粉末颗粒足够小,它们被认为是能量计算中的一个点。颗粒的导热性是无限的,即粉末颗粒的温度被认为是均匀的,并且在光接收表面和背光表面之间没有差异。(3)粉末颗粒仅吸收光接收表面上的能量,但是外部辐射发生在整个球体的表面上。(4)粉末不吸收来自基质的光反射。基于上述假设,粉末颗粒的温升可以根据颗粒的能量方程来计算。这个方程是一个非线性方程。利用Matlab软件,采用迭代法求解方程。当激光功率P=2 kW时,方程的解在1500 ~ 1600k范围内,因此初始值被设置为t = 1500k,并且通过迭代发现方程的一个实根是t = 1570k。改变激光功率,获得了当

CFD案例5-发动机仿真

ANSYS对航空工业解决方案(三)航空发动机仿真方案_2 发表时间:2008-10-23 作者: 安世亚太来源: 安世亚太 关键字: 航空航天 CAE 仿真解决方案 ANSYS 安世亚太 第三章航空发动机仿真方案航空发动机行业概况航空发动机研制中的典型CAE问题航空发动机结构力学计算需求及ANSYS实现航空发动机流体力学和温度场的计算需求及ANSYS实现航空发动机电磁场计算需求及ANSYS实现航空发动机耦合场计算需求及ANSYS实现航空发动机关键零部件的设计分析流程简要说明 4航空发动机流体力学和温度场的计算需求及ANSYS实现 航空燃气涡轮发动机内的流场很复杂,不仅动静流场同时存在,同时还伴有多相流、传热、燃烧等现象,即使从物理上进行很大的简化,模型最后仍然是三维、有粘、非定常的可压流动。航空发动机流场数值计算的发展经历了S2流面法、基于一元管道的流线曲率法、有限差分方法求解非正交曲线坐标系中的S1、S2流面基本方程、有限差分、有限体积和有限差分与流线曲率混合的方法对S1流面跨音速流场的计算,而现在由S1与S2流面相互迭代形成的准三元和全三元计算也发展起来了。现在的采用有限体积法求解NS方程全三维流场计算已经广泛采用,航空发动机的流场数值计算已趋于成熟,可以充分考虑旋转流动、转静干涉问题、多相流、燃烧、亚超跨音速等复杂现象。而且现在求解的规模也不断扩大,利用并行等成熟的CFD技术可以计算达几千万甚至上亿的计算网格。因此结果也更为真实有效。 ANSYSCFX凭借TASCFLOW在叶轮机旋转流动的传统优势,结合更为先进的网格处理技术和高效的求解器,更适合航空发动机流动的复杂性,求解问题的规模和计算精度大大提高,一直处于航空发动机流动模拟的最前沿。

激光焊接温度场数值模拟讲解

第24卷第2期 2OO 焊接学报 v01.24April No.220O3 3年4月TRANSAC’n0NS0FTHECHINA碍砸LDINGINSnTUrnON 激光焊接温度场数值模拟 薛忠明,顾 兰, 张彦华 (北京航空航天大学机械工程及自动化学院。北京100083) 摘要:深入分析了激光焊接小孔传热模型的特点,在此基础上选取合适的热源形式,研究了移动线热源和高斯分布热源作用下,准稳态与瞬态激光焊接温度场。利用MAT-LAB软件及ANsYS有限元分析程序对激光焊接温度场分别进行了计算及模拟,并且将两种分析结果进行了比较。最后还将有限元的模拟值与实测值进行了对比分析,进一步验证了小孔模型与高斯热源在激光焊接温度场模拟中的适用性。关键词:激光焊接;温度场;有限元;ANsYs 中围分类号:1嘶6 O 文献标识码:A文章编号:0253—360x(2003)01—79—04薛忠明 序言 实测值进行了对比分析,验证了小孔模型与高斯热源在激光焊接温度场模拟中的适用性(板厚≤4mm)。 激光焊接是利用高能量密度的激光束作为热源的一种高效精密的焊接方法。激光焊接具有高能量密度、可聚焦、深穿透、高效率、高精度、适应性强等优点,广泛应用于航空航天、汽车、微电子、轻工业、医疗及核工业等要求高精度和高质量的焊接领域。 1 激光焊接中的小孔传热模型 当激光功率密度达到106W,/cm2时,激光能量 由于激光焊接是一巾陕速而不均匀的热循环过 程,焊缝附近出现很大的温度梯度,因此在焊后的结构中也会出现不同程度的残余应力和变形,这些都成为影响焊接结构质量和使用性能的重要因素。准确地认

识焊接热过程,对焊接结构力学分析、显微组织分析以及最终的焊接质量控制具有重要意义。 20世纪70年代以来,国外很多学者对激光焊接机理进行了深入的研究,提出了蒸汽小孔模型。考虑熔池形状以及熔池中金属的流动和热流分布,考虑电子密度、离子化程度、等离子体对入射激光的吸收系数和激光焊接工艺参数对熔深的影响,建立了不同的能量吸收模型”。。这些研究偏向于应用物理和量子力学的研究领域,在实际工程分析中存在一定的局限性。在国内,有关激光焊接机理以及激光焊接温度场与力学场的数值模拟方面的研究正在引起重视。 作者深入分析了激光焊接小孔传热模型,在此基础上选取合适的热源形式,研究了移动线热源和高斯分布热源作用下,准稳态与瞬态激光焊接温度场。利用MAllAB软件及ANSYs有限元程序对激光焊接温度场分别进行了计算及模拟,并且将两种分析结果进行了比较。最后还将有限元的模拟值与 收稿日期:2002—07—12 向工件输入的速率远大于传导、对流、辐射散热的速率,材料表面产生汽化而形成小孔,激光能量是通过小孔而进行转换和传递的。 激光焊接中熔池与小孔的几何特征如图l所示。焊件表面被加热、熔化、蒸发,在蒸汽压力的作用下形成小孔,当小孔产生的蒸汽压力与熔池中液体金属的静应力达到平衡时,小孔是稳定存在的‘“。 固1Hg.1 激光焊接熔池与小孔几何特征囤 G岫etr萱cf嘲ur嚣0fmolten andkeyh0Iein pool J∞erweⅫ咂g 激光焊接中,小孔与工件作相对运动,运动过程 中的动量扩散和热量扩散的相对程度由佩克莱特准 万方数据 80

CFD仿真技术在航空发动机中的应用

CFD仿真技术在航空发动机中的应用 摘要:随着科学技术的发展,航空航天和空间技术有了飞跃的发展,在这些飞 跃的发展技术中主要的技术就是CAE技术。航空工业可以说是CAE技术发展的摇篮,各种CAE技术正是在以航空工业为主的实际工业应用的推动下在不到半个世 纪时间里迅猛发展起来的。以ANSYS、LS-DYNA、Nastran、CFX、Fluent等为代表 的高端CAE软件早已活跃在全球航空工业中。 关键词:CFD仿真技术;航空发动机;应用 1 引言 目前国际知名企业的航空发动机研制周期从过去的10~15年缩短到6~8年 甚至4~5年,试验机也从过去的40~50台减少到10台左右。在发达国家的航 空企业里CAE已经作为产品研发设计与制造流程中不可逾越的一种强制性的工艺 规范加以实施,在生产实践作为必备工具普遍应用。 2、CFD技术国内外使用状况简介 CFD作为CAE技术的一种,已经越来越多的被国内外航空企业广泛的得以应用。第一个商用CFD软件包FLUENT,由与美国空军合作的流体技术服务公司Creare公司于1983年推出的。商业CFD软件的开发及应用,加速了航空工业的 发展,使得基于虚拟样机仿真的现代设计方法成为了可能。以波音公司航空研发 发展历史为例,不难发现,波音公司先后采用了经典的实验测试方法、半经验的 方法、空气动力学的计算、政府内部及企业的CFD代码及广泛的采用CFD商业代码。在波音公司2005年的软件应用报告中明确指明,在1998至2005年内,其 公司每年数值仿真成果的增加量都接近84%左右,采用CAE/CFD的速度超过了工 业的成长速度,CFD技术已经成为其设计的主要手段之一。另外从美国软件公司ANSYS公司的销售业绩报告上显示,航空工业上的应用产值是其公司的主要收益 来源之一。 CFD软件正以其强大的优势在研发中发挥的巨大的作用,例如在NISA的报告 中提到,原本需要7年完成的维吉尼亚级潜水艇的设计,通过CFD技术的应用, 5年就顺利完成;而预计需要11年完成的B-2轰炸机的飞行测试,则在短短的4 年内就通过了测试。 国内在CFD技术上的应用一般,特别是在航空发动方面的使用上,起步与国 外相比较晚,力度上也相差较多。 3、CFD技术的应用 目前在航空发动机的实际应用中是最广泛的一款CFD商业软件是ANSYS旗下 的商业软件FLUENT,其不仅容易使用,而且其准确性及行业的广泛性都是其它商业软件所不能比拟的。CFD软件的使用已经遍及了航空发动机的各个部分的研究,接下来本文通过对其它文献的分析逐一介绍CFD在航空发动机中的使用。 3.1 CFD技术在压缩机、涡轮方面的应用 气动稳定性的设计是当代航空发动机发展研制过程中的重要技术问题之一。 在航空发动机中,对气流最敏感的部件是风扇、压气机和涡轮。在以上3个部件中,CFD的主要应用集中在对压气机和涡轮效率分析上,多级压气机/涡轮最主要 的气动问题就是各级流动是否匹配,总的效率是否达到设计要求。在涡轮方面,CFD不仅可以计算涡轮效率,而且对涡轮叶片的冷却效果分析有着重要的应用。

路基温度场数值模拟及变化规律研究

Open Journal of Transportation Technologies 交通技术, 2018, 7(1), 11-19 Published Online January 2018 in Hans. https://www.wendangku.net/doc/788420056.html,/journal/ojtt https://https://www.wendangku.net/doc/788420056.html,/10.12677/ojtt.2018.71002 Research on the Numerical Simulation and Change Rules of the Subgrade Temperature Field Lei Xu, Yunliang Li, Lun Ji, Yiqiu Tan School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin Heilongjiang Received: Jan. 1st, 2018; accepted: Jan. 15th, 2018; published: Jan. 22nd, 2018 Abstract Numerical analysis model of the subgrade temperature field was established. Based on the pro-gram ANSYS, the distribution and the time-varying properties of the subgrade temperature field were analyzed. Results show that for the vertical subgrade temperature field, the temperature in-creases with the depth increasing, and the subgrade frost depth at the coldest time in January is about 2.0 m. The ambient temperature affects the horizontal subgrade temperature field within a scope of about 2.0 m, which is the same as the subgrade frost depth. Temperature change trend of various positions in the subgrade during a year basically agrees with the ambient temperature change trend. The temperature of the pavement surface is basically the same as the ambient tem-perature, while the ambient temperature affects a little on the subgrade temperature, and soil in the depths of the subgrade keeps permafrost, or seasonal frozen. Keywords Subgrade, The Temperature Field, Numerical Analysis, ANSYS 路基温度场数值模拟及变化规律研究 徐垒,李云良,纪伦,谭忆秋 哈尔滨工业大学,交通科学与工程学院,黑龙江哈尔滨 收稿日期:2018年1月1日;录用日期:2018年1月15日;发布日期:2018年1月22日 摘要 建立了路基温度场的数值分析模型,基于ANSYS软件分析了路基温度场的分布规律及时变特性。研究表

二维导热物体温度场的数值模拟教程文件

二维导热物体温度场的数值模拟

金属凝固过程计算机模拟题目:二维导热物体温度场的数值模拟 Solidworks十字接头的传热分析 作者:张杰 学号: S2******* 学院:北京有色金属研究总院 专业:材料科学与工程 成绩: 2015 年 12 月

二维导热物体温度场的数值模拟 图1 二维均质物体的网格划分 用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x ?与y ?可以是不变的常量,即等步长,也可以是变量(即在区域内的不同处是不同的),即变步长?如果区域内各点处的温度梯度相差很大,则在温度变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些?至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定? 在有限的区域内,将二维不稳定导热方程式应用于节点 ,)i j ( 可写成: ,2222 ,i j P P p i j T T T C x y ρλτ?????=+ ?????? ,1 , ,()i j P P P i j i j T T T οτττ+-???= +? ????? () , 1 , , 1 ,22 2()i j P P P P i j i j i j T T T T x x x ο+--+???=+? ????? () , ,1 , ,122 2()i j P P P P i j i j i j T T T T y y y ο+--+???=+? ?????τ?、x ?、y ? 当τ?、x ?、y ?较小时,忽略()οτ?、2()x ο?、2 ()y ο?项。当x y ?=?时,即x 、y 方向网格划分步长相等?最后得到节点 ,)i j (的差分方程: ()1 , ,0 1 , 1 , ,1 ,1 ,4P P P P P P P i j i j i j i j i j i j i j T T F T T T T T ++-+-=++++- 式中: () 02 p F C x λτ ρ?= ??

振动流化床内温度场和流场的数值模拟

硕士学位论文开题报告及论文工作计划书 课题名称振动流化床内温度场和流场的数值模拟 学号1000614 姓名张 专业机械设计及理论 学院机械工程与自动化 导师张 选题时间2011 年09 月01 日 东北大学研究生院 2011年10月20日

填表说明 1、本表一、二、三、四、五项在导师指导下如实填写。 2、学生在通过开题后一周内将该材料交到所在学院、研究所。 3、学生入学后第三学期应完成论文开题报告,按有关规定,没有完成开题报告的学生不能申请论文答辩。

一、立论依据 课题来源、选题依据和背景情况、课题研究目的、理论意义和实际应用价值 (一)课题来源和背景情况 通常人们把热物理方法去湿的过程称为“干燥”,其特征是采用加热、陷湿、减压或其他能量传递的方式使物料中的湿分产生挥发、冷凝、升华等相交过程与物体分离以达到去湿目的。由于干燥的产品便于加工、运输、贮存和使用,干燥在国民经济的各部门有着广泛的应用。化学工业的产品如肥料、染料、无机盐到医药工业、粮食、食品、饲料的生产过程均离不开干燥,产品经过干燥以后具有良好的扩散性、均性。正确地完成干燥过程有利于保证和改进产品的质量,同时对提高生产效率,促进国民经济的发展有十分重要的作用。现代干燥技术在国民生产中应用的程度与一个国家的综合国力和国民生活质量的水平密切相关,从某种意义上说,它标志着这个国家国民经济和社会文明的发展程度。现在中国的经济处于飞速的发展期,各行业也处于发展的转型期,干燥设备制造业也亟需进行改进和优化,以便适应大环境的发展。 传统的工业生产普遍采用的干燥技术主要有:厢式干燥、隧道干燥、转筒干燥、转鼓干燥、带式干燥、盘式连续干燥、卧式桨叶式干燥、流化床干燥、改型流化床干燥、喷动床干燥、喷雾干燥、气流干燥、真空冷冻干燥、太阳能干燥、微波和高频干燥、红外热辐射干燥等。此外在各个行业,例如谷物、水果和蔬菜、木材、茶叶、乳品、中药材等行业也有适合自身特点的专有干燥技术。这些传统的干燥技术发展历史较长、成熟可取,在我国以及世界已经得到广泛的应用。近些年来,国际上涌现出一批新型的干燥技术,作为代表的有:脉冲燃烧干燥、对撞流干燥、冲击穿透干燥、声波场干燥、超临界流体干操、过热蒸汽干操、接触吸附干燥等等。这些新技术相对于传统干燥技术在机理上有一定的突破,但在工业化应用方面仍有待于完善。 流化床干燥是现代干燥技术的一种,是60年代发展起来的一种干燥技术,目前在化工、轻工、医药、食品以及建材等方面都得到了广泛的应用。由于干燥过程中固体颗粒悬浮在干 燥介质中,因而流体与固体接触面较大,热容量系数可达8000~25000 3 /() KJ m h C? ??(按干 燥器总体积计算),又由于物料剧烈搅动,大大减小了气膜阻力,因而热效率较高,可达60%~80%(干燥结合水时为30%~40%)。流化床干燥装置密封性能好,传动机械又不接触物料,因而不会有杂质混入,这对要求纯度高的制药工业来说也是十分重要。

传热模拟CFD 总结

CFD总结一 CFD是英文computational Fluid Dynamics(计算流体力学)的简称。它是伴随着计算机技术和数值计算技术的发展而发展的。简单地说,CFD相当于虚拟的在计算机内做实验,用它模拟仿真实际流体的流动情况。而其基本的原理是数值求解控制流体的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动的情况。即CFD=流体力学+热学+数值分析+计算机科学。 流体力学就不用多说了,很多专业都要用到,主要的概念有层流和湍流,牛顿流体和非牛顿流体等等。热学包括热力学和传热学。数值分析就是如何用计算机解人工很难完成的计算,如何处理无解析解得方程。计算机科学主要是计算机语言,如c、fortran)还包括一些图形处理技术,如在后处理,为了使用户对结论有一个很直观的认识,就需要若干图表。以下就对经常在CFD使用的软件做简单的介绍。 一、CFD的结构: 1、提出问题——流动性质(内流、外流;层流、湍流;单相流、多项流;可压、不可压……),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 2、分析问题——建模——N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 3、解决问题——差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 4、成果说明——形成文字,提交报告,赚取应得的回报。 二、CFD实现过程: (一)建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下 AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: 1、CATIA: 航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! 2、UG: 软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现在关键是看市场了。 3、Solidworks: Solidworks讲的是实用主义,中端CAD软件它功能最强,Solidedge功能是不比它差,但是Solidworks的合作伙伴可能是SE的十几倍,接口也比SE多很多,相比之下Solidworks是最佳选择。Autodesk Inventor也只能算是中端软件,目前说来,我是处于观望态度,看发展再决定。总之,Solidworks目前的发展如日中天,合作伙伴多如牛毛。用起来极其顺手。这里极力向大家推荐的是ICEM-CFD DCI FOR Solidworks!有了这个东西画个全机网格也很容易了。

相关文档
相关文档 最新文档