文档库 最新最全的文档下载
当前位置:文档库 › 9.解析几何 专题卷(乙卷文科) word版(含参考答案)2011年—2017年新课标全国卷1文科数学分类汇编

9.解析几何 专题卷(乙卷文科) word版(含参考答案)2011年—2017年新课标全国卷1文科数学分类汇编

9.解析几何 专题卷(乙卷文科) word版(含参考答案)2011年—2017年新课标全国卷1文科数学分类汇编
9.解析几何 专题卷(乙卷文科) word版(含参考答案)2011年—2017年新课标全国卷1文科数学分类汇编

新课标全国卷Ⅰ文科数学分类汇编

9.解析几何(含解析)

一、选择题

【2017,5】已知F 是双曲线2

2

:13

y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ?的面积为( )

A .

13 B .12 C .23 D .32

【解法】选D .由2

2

2

4c a b =+=得2c =,所以(2,0)F ,将2x =代入2

2

13

y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为13

3(21)22

??-=,选D .

【2017,12】设A 、B 是椭圆C :22

13x y m

+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°

,则m 的取值范围是( )

A .(0,1][9,)+∞

B .[9,)+∞

C .(0,1][4,)+∞

D .[4,)+∞

【解法】选A .

图 1 图 2

解法一:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AM B ∠最大,依题意只需使0120AEB ∠≥.

1.当03m <<时,如图1,0tan

tan 602AEB a b ∠==≥=1m ≤,故01m <≤;

2. 当3m >时,如图2,0tan

tan 602AEB a b ∠==≥=9m ≥. 综上可知,m 的取值范围是(0,1][9,)+∞ ,故选A .

解法二:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AM B ∠最大,依题意只需使0120AEB ∠≥.

1.当03m <<时,如图1,01

cos ,cos1202EA EB ≤=- ,即12EA EB EA EB

?≤-

带入向量坐标,解得1m ≤,故01m <≤;

2. 当3m >时,如图2,01

cos ,cos1202EA EB ≤=- ,即12EA EB EA EB

?≤-

带入向量坐标,解得9m ≥.

综上可知,m 的取值范围是(0,1][9,)+∞ ,故选A .

【2016,5】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1

4

,则该椭圆的离心率为( )

A .13

B .

12 C .23

D .

3

4

解析:选B . 由等面积法可得

1112224bc a b ?=???,故1

2

c a =,从而12c e a ==.故选B . 【2015,5】已知椭圆E 的中心为坐标原点,离心率为

1

2

,E 的右焦点与抛物线C : y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )

A .3

B .6

C .9

D .12

解:选B .抛物线的焦点为(2,0),准线为x =-2,所以c=2,从而a=4,所以b 2=12,所以椭圆方程为

22

11612

x y +=,将x =-2代入解得y=±3,所以|AB |=6,故选B 【2014,10】10.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=

05

4

x ,则x 0=( )A A .1 B .2 C .4 D .8 解:根据抛物线的定义可知|AF |=0015

44

x x +

=,解之得x 0=1. 故选A 【2014,4】4.已知双曲线)0(13

2

22>=-

a y a x 的离心率为2,则a=( ) D A .2 B .

26 C .2

5 D .1

解:2c e a ====,解得a=1,故选D

【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2

,则C 的渐近线方程为( ).

A .y =14x ±

B .y =13x ±

C .y =1

2

x ± D .y =±x

解析:选C .∵e =c a =2254c a =.∵c 2=a 2+b 2

,∴2214b a =.∴12b a =.

∵双曲线的渐近线方程为b y x a =±,∴渐近线方程为1

2

y x =±.故选C .

【2013,8】O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=POF

的面积为( ).

A .2

B .

C .

D .4 答案:C

解析:利用|PF |=P x =x P =y P =±S △POF =1

2

|OF |·|y P |= 故选C .

【2012,4】4.设1F 、2F 是椭圆E :2222x y a b

+(0a b >>)的左、右焦点,P 为直线32a

x =上一点,

21F PF ?是底角为30°

的等腰三角形,则E 的离心率为( ) A .

12 B .2

3 C .3

4 D .45

【解析】如图所示,21F PF ?是等腰三角形,

212130F F P F PF ∠=∠=?,212||||2F P F F c ==,260PF Q ∠=?,230F PQ ∠=?,2||F Q c =,

又23||2a F Q c =

-,所以32a c c -=,解得34c a =,因此3

4

c e a ==,故选择C . 【2012,10】10.等轴双曲线C 的中心在原点,焦点在x 轴上,

C 与抛物线2

16y x =的准线交于A ,B 两点,

||AB =,则C 的实轴长为( )

A B .

C .4

D .8

【解析】设等轴双曲线C 的方程为22221x y a a

-=,即222

x y a -=(0a >),

抛物线2

16y x =的准线方程为4x =-,联立方程222

4

x y a x ?-=?=-?,解得22

16y a =-,

因为||AB =,所以222||(2||)448AB y y ===,从而212y =,所以21612a -=,2

4a =,

2a =,因此C 的实轴长为24a =,故选择C .

【2011,4】椭圆

22

1168

x y +=的离心率为( )

A .

13 B .12 C

.3 D

.2

【解析】选D .因为221168x y +=中,2216,8a b ==,所以2228c a b =-=

,所以42

c e a ===. 【2011,9】已知直线l 过抛物线的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,12AB =,P 为

C 的准线上一点,则ABP △的面积为( ).

A .18

B .24

C .36

D .48

【解析】不妨设抛物线的标准方程为()2

20y px p =>,由于l 垂直于对称轴且过焦点,故直线l 的方程为

2

p

x =

.代入22y px =得y p =±,即2AB p =,又12AB =,故6p =,所以抛物线的准线方程为3x =-,故1

612362ABP S =??=△.故选C .

二、填空题

【2016,15】设直线2y x a =+与圆22:220C x y ay +--=相交于,A B

两点,若AB =C 的面积为 .

解析:4π.由题意直线即为20x y a -+=,圆的标准方程为()2

22

2x y a a +-=+,

所以圆心到直线的距离d =,所以

AB

=

==, 故2

2

24a r +==,所以2

4S r =π=π.故填4π.

【2015,16】已知F 是双曲线C :2

2

1

8

y x -=的右焦点,P 是C 左支上一点,A ,当ΔAPF 周长最小时,该三角形的面积为

解: a =1,b 2=8,? c =3,∴F (3,0).设双曲线的的左焦点为F 1,由双曲线定义知|PF |=2+|PF 1|,∴ΔAPF 的周长为|P A |+|PF |+|AF |=|P A |+|AF |+|PF 1|+2,由于|AF |是定值,只要|P A |+|PF

1|最小,即A ,P ,F 1共线,∵A

,F 1 (-3,0),∴直线AF 1的方程为

13x +=-,

联立8x 2

-y 2=8消去x 整理得y 2

+y -96=0,解得y

=y =-(舍去),此时

S ΔAPF =S Δ

AFF 1-S ΔPFF

13=?=

三、解答题

【2017,20】设A ,B 为曲线C :4

2

x y =上两点,A 与B 的横坐标之和为4.

(1)求直线AB 的斜率;

(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且BM AM ⊥,求直线AB 的方程. 解析:第一问:【解法1】设 1122(,),(,)A x y B x y ,AB 直线的斜率为k ,又因为A,B 都在曲线C 上,所以 4

/2

11x y = ①

4

/2

22x y = ②

②-①得2221122121()()44

x x x x x x y y -+--==

由已知条件124x x += 所以,2121

1y y

x x -=-即直线AB 的斜率k=1.

【解法2】设 ),(),,(2

211y x B y x A ,AB 直线的方程为y=kx+b,所以???=+=4/2x y b kx y

整理得:

,

4,044212k x x b kx x =+∴=--且42

1=+x x 所以k=1

第二问:设 00(,)M x y 所以200/4y x =① 又12y x =

所以0001

1,2,12

k x x y ==∴== 所以M (2,1),11(2,1)MA x y =--,22(2,1)MB x y =--,且AM BM ⊥,0AM BM =

即05)()(22

1212121=++-++-y y y y x x x x ②,设AB 直线的方程为y x b =+,

,4/2

?

??=+=x y b

x y

化简得0442=--b x x ,所以

2212121,24,4b y y b y y b x x =+=+-= 由②得0772=--b b 所以b=7或者b=-1(舍去) 所以AB 直线的方程为y=x+7

【2016,20】在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .

(1)求

OH ON

;(2)除H 以外,直线MH 与C 是否有其他公共点?请说明理由.

解析 (1)如图,由题意不妨设0t >,可知点,,M P N 的坐标分别为()0,M t ,2,2t P t p ?? ???,2,N t t p ??

???

从而可得直线ON 的方程为y x p t =,联立方程22p x t

y px y ?==?

???

,解得22x t p =,2y t =. 即点H 的坐标为22,2t t p ?? ???,从而由三角形相似可知22H N OH y t

ON y t ===.

(2)由于()0,M t ,22,2t H t p ??

???

,可得直线MH 的方程为22t

y t x t p

-=, 整理得2220ty px t --=,联立方程2

22202ty y px t px

--==?????,整理得22

440ty y t -+=,

则22

16160t t ?=-=,从而可知MH 和C 只有一个公共点H .

【2015,20】已知过点A (0, 1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (Ⅰ)求k 的取值范围; (Ⅱ)

OM ON ?=12,其中O 为坐标原点,求|MN |. 解:(Ⅰ)依题可设直线l 的方程为y=kx +1,则圆心C (2,3)到的l 距离

1d =<.

k <. 所以k

的取值范围是. (Ⅱ)将y=kx +1代入圆C 的方程整理得 (k 2+1)x 2-4(k +1)x +7=0.

设M (x 1, y 1),N (x 2, y 2),则12122

24(1)7

,.11

k x x x x k k ++==++ 所以

OM ON ?=x 1x 2+y 1y 2=x 1x 2+(kx 1+1)(kx 2+1)=(1+k 2)x 1x 2+k (x 1+x 2)+1

24(+1)8+1

k k k =+=12,解得k =1=1k ,所以l 的方程为y=x +1.

故圆心在直线l 上,所以|MN |=2.

【2013,21】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .

(1)求C 的方程;

(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .

(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.

由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2

(左顶点

除外),其方程为22

=143

x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,

所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |

=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1

||||QP R

QM r =,可求得

Q (-4,0),所以可设l :y =k (x +4).

由l 与圆M

=1,解得k

=4

±

当k

=4

时,将4y x =22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2

47

-±, 所以|AB |

|x 2-x 1|=18

7

.

当k

=4

-|AB |=187.

综上,|AB |

=|AB |=18

7

.

【2012,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。

(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;

(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,

求坐标原点到m ,n 距离的比值。 【解析】

(1)若∠BFD =90°,则△BFD 为等腰直角三角形,

且|BD|=2p ,圆F

的半径||r FA ==, 又根据抛物线的定义可得点A 到准线l 的距离

||d FA ==。

因为△ABD 的面积为24,

所以

1||2BD d ??=

1

22

p ?= 所以2

4p =,由0>p ,解得2p =。 从而抛物线C 的方程为2

4x y =,

圆F 的圆心F (0,1)

,半径||r FA == 因此圆F 的方程为2

2

(1)8x y +-=。 (2)若A ,B ,F 三点在同一直线m 上, 则AB 为圆F 的直径,∠ADB=90°,

根据抛物线的定义,得

1

||||||

2

AD FA AB

==,所以30

ABD

∠=?,从而直线m

的斜率为

3

3

-。

当直线m的斜率

3

时,直线m的方程

32

p

y x

=+,原点O到直线m的距

离1

p

d=。

依题意设直线n

的方程为y x b

=+

,联立

2

3

2

y x b

x py

?

=+

?

?

?=

?

,得220

x px pb

-=,因为直线n与C只有一个公共点,所以

2

4

80

3

p

pb

?=+=,从而

6

p

b=-。

所以直线n

的方程为

6

p

y x

=-,原点O到直线n

的距离

2

p

d=。

因此坐标原点到m,n距离的比值为1

2

23

6

p

d

p

d

==。

当直线m

的斜率为m,n距离的比值也为3。【2011,20】在平面直角坐标系xOy中,曲线261

y x x

=-+与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线0

x y a

-+=交于A,B两点,且OA OB

⊥,求a的值.【解析】(1)曲线261

y x x

=-+与y轴的交点为(0,1),与x轴的交点为

()

3,

+()

3-.故可设C的圆心为()

3,t,则有(

)(2

2

22

31

t t

+-=+,解得1

t=.则圆C

3

=,所以圆C的方程为()()2

2

319

x y

-+-=.

(2)设()

11

,

A x y,()

22

,

B x y,其坐标满足方程组

()()2

2

0,

319.

x y a

x y

-+=

??

?

-+-=

??

消去y,得方程()

22

228210

x a x a a

+-+-+=.

2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 2 x —2?y 2 =2上,贝U △ ABP 面积的取值范围是 和d 2,且d 1 d 2 =6,则双曲线的方程为 2 2 x ■丄=1 4 12 2 x D — 9 、选择题 1.【2018全国一卷 4】 已知椭圆C : 第九篇:解析几何 X 2 V 2 評廿1的一个焦点为(2 ,0),则C 的离心率为 1 A.- 3 2.【2018全国二卷 6】 1 B.- 2 2 x 2 双曲线 2-爲=1(a 0,b 0)的离心率为,3,则其渐近线方程为 a b A . y 二 2x B . y = 3x D . y 3 x 2 3.【2018全国 11】已知F , F 2是椭圆C 的两个焦点,P 是C 上的一点,若PR_ PF 2 , 且.乙PF 2F 1 =60,则C 的离心率为 A . J 2 B . 2-3 C. D . .3-1 4.【2018全国 三卷 8】直线x y *2=0分别与x 轴,y 轴交于A , B 两点,点P 在圆 A . 2,61 B . 4,8〕 D . 5.【2018全国三卷10】已知双曲线 C : 三卷 =1(a 0 , b 0)的离心率为 .2 ,则点(4,0) 到C 的渐近线的距离为 B . 2 C. 2 D . 2,2 2 x 6.【2018天津卷7】已知双曲线 — a =1(a 0, b 0)的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于 A , B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为 d 1 12 4 =1

8. 4 2 7. 【 2018 浙江卷2 】双曲线「宀的焦点坐标是 之和为() D.4魂 二、填空题 【2018全国一卷15】直线y =x ? 1与圆x 2 y 2 2^^0交于A ,B 两点,则 A ? (- 2 , 0), ( .2 , 0) B ? (-2, 0), (2, 0) C . (0, - . 2 ), (0 , ,2) D . (0, -2), (0, 2) 8.【2018上海卷13】设P 是椭圆 呂+以=1 5 3 上的动点,贝U P 到该椭圆的两个焦点的距离 1. 2. 【2018北京卷10】已知直线I 过点(1,0)且垂直于 轴,若 I 被抛物线 y 2 = 4ax 截得的线 3. 段长为4,则抛物线的焦点坐标为 2 2 【2018北京卷12】若双曲线 笃-丿 1(a 0)的离心率为 a 4 -1,则 2 4.【2018天津卷12】在平面直角坐标系中,经过三点( 0,0) 1),( 2,0)的圆 的方程为 5. 2 x 【2018江苏卷8】在平面直角坐标系 xOy 中,若双曲线 2 与=1(a 0,b 0)的右焦点 b 6. F (c,0)到一条渐近线的距离为乜 2 12】在平面直角坐标系 则其离心率的值是 【2018江苏卷 xOy 中,A 为直线I: y = 2x 上在第一象限内的点, B(5,0),以 AB 为直径的圆C 与直线 l 交于另一点D .若AB CD =0,则点A 的横坐标 7. 【2018浙江卷 17】已知点P (0,1),椭圆^+y 2=m (m>1)上两点A ,B 满足AP =2"P B ,则 4 当m= 时,点B 横坐标的绝对值最大.

(word完整版)2019高考全国各地数学卷文科解答题分类汇编-解析几何,推荐文档

2019高考全国各地数学卷文科解答题分类汇编-解析几何 1.〔天津文〕18、〔本小题总分值13分〕 设椭圆2 2 22 1(0)x y a b a b +=>>的左、右焦点分别为F 1,F 2。点(,)P a b 满足212||||.PF F F = 〔Ⅰ〕求椭圆的离心率e ; 〔Ⅱ〕设直线PF 2与椭圆相交于A ,B 两点,假设直线PF 2 与圆 22(1)(16x y ++-=相 交于M ,N 两点,且 5 |||| 8 MN AB =,求椭圆的方程。 【解析】〔18〕本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公 式、点到直线的距离公式、直线与圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力,总分值13分。 〔Ⅰ〕解:设12(,0),(,0)(0)F c F c c ->,因为212||||PF F F =, 2c =,整理得 2 210,1 c c c a a a ?? +-==- ???得〔舍〕 或11,.22 c e a ==所以 〔Ⅱ〕解:由〔Ⅰ〕知 2,a c b ==,可得椭圆方程为2223412x y c +=,直线FF 2的方 程为).y x c =- A ,B 两点的坐标满足方程组 222 3412,). x y c y x c ?+=??=-??消去y 并整理,得2580x cx -=。解 得 1280,5x x c == ,得方程组的解21128,0,5,.5x c x y y ?=?=??? ??=??? =?? 不妨设 85A c ?? ? ??? , (0,)B , 所以 16||.5AB c ==

2013-2018全国新课标1.2卷文科数学解析几何题(附答案)

2013-2018高考解析几何题文科数学(Ⅰ) (2013年): (4)已知双曲线22 22:1x y C a b -=(0,0)a b >>的离心率为错误!未找到引用源。, 则C 的渐近线方程为( ) (A )14 y x =± (B )13y x =± (C )12 y x =± (D )y x =± (8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若 ||PF =POF ?的面积为( ) (A )2 (B ) (C ) (D )4 (21)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C 。 (Ⅰ)求C 的方程; (Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB . (2014年): (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1

(10) 已知抛物线C :x y =2的焦点为F ,() y x A 00,是C 上一点,x F A 0 4 5 = ,则=x 0 A. 4 B. 2 C. 1 D. 8 (20)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点. (I )求M 的轨迹方程; (II )当OM OP =时,求l 的方程及POM ?的面积. (2015年): 5、已知椭圆E 的中心为坐标原点,离心率为1 2 ,E 的右焦点与抛物线 2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12 16、已知F 是双曲线2 2 :18 y C x -=的右焦点,P 是C 左支上一点,(A , 当APF ?周长最小时,该三角形的面积为 . 20.(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C : ()() 22 231x y -+-=交于M ,N 两点. (I )求k 的取值范围; (II )12OM ON ?=,其中O 为坐标原点,求MN .

2013年全国各地高考文科数学试题分类汇编10:平面解析几何

2013年全国各地高考文科数学试题分类汇编10:平面解析几何 一、选择题 1 .(2013年高考重庆卷(文))设P 是圆2 2 (3)(1)4x y -++=上的动点,Q 是直线3 x =-上的动点,则PQ 的最小值为( ) A .6 B .4 C .3 D .2 【答案】B 2 .(2013年高考江西卷(文))如图.已知l 1⊥l 2,圆心在l 1上、半径为1m 的圆O 在t=0 时与l 2相切于点A,圆O 沿l 1以1m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧 长记为x,令y=cosx,则y 与时间t(0≤x≤1,单位:s)的函数y=f(t)的图像大致为 【答案】B 3 .(2013年高考天津卷(文))已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与 直线10ax y -+=垂直, 则a =( ) A .1 2 - B .1 C .2 D . 12 【答案】C

4 .(2013年高考陕西卷(文))已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1 与圆O 的位置关系是( ) A .相切 B .相交 C .相离 D .不确定 【答案】B 5 .(2013年高考广东卷(文))垂直于直线1y x =+且与圆2 2 1x y +=相切于第一象限的 直线方程是( ) A .0x y += B .10x y ++= C .10x y +-= D .0x y ++= 【答案】A 二、填空题 6 .(2013年高考湖北卷(文))已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π 02 θ<< ).设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.【答案】4 7 .(2013年高考四川卷(文))在平面直角坐标系内,到点 (1,2A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是__________ 【答案】(2,4) 8 .(2013年高考江西卷(文))若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆 C 的方程是_________. 【答案】2 2325 (2) ()24 x y -++= 9 .(2013年高考湖北卷(文))在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数, 则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是__________; (Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边 形对应的71N =,18L =, 则S =__________(用数值作答).

2014年高考文科数学分类汇编练习题---分解几何含答案分解

2014高考文科数学分类汇编 解析几何 H1 直线的倾斜角与斜率、直线的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y =2=0 C .x +y -3=0 D .x -y +3=0 6.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D. 20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2. (2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-1 3, 故l 的方程为y =-13x +8 3. 又|OM |=|OP |=2 2,O 到直线l 的距离为410 5, 故|PM |=4105,所以△POM 的面积为16 5. 21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分 别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为2 2 . (1)求该椭圆的标准方程. (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.

人教版2018最新高考文科数学解析几何练习题Word版

解析几何单元易错题练习 (附参考答案) 一.考试内容: 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求: 掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 掌握双曲线的定义、标准方程和双曲线的简单几何性质. 掌握抛物线的定义、标准方程和抛物线的简单几何性质. 了解圆锥曲线的初步应用. 【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识: 椭圆及其标准方程 椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F . 2.椭圆的标准方程:12222=+b y a x (a >b >0),122 22=+b x a y (a >b >0). 3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2 x 项的分母大于2 y 项的分母, 则椭圆的焦点在x 轴上,反之,焦点在y 轴上. 4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 椭圆的简单几何性质 椭圆的几何性质:设椭圆方程为122 2 2=+b y a x (a >b >0). ⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. ⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ). 线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. ⑷ 离心率:椭圆的焦距与长轴长的比 a c e = 叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接 近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义

2020年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 第九篇:解析几何 一、选择题 1.【2018全国一卷4】已知椭圆C :22 214 x y a +=的一个焦点为(20), ,则C 的离心率为 A .1 3 B .12 C D 2.【2018全国二卷6】双曲线22 221(0,0)x y a b a b -=>> A .y = B .y = C .y = D .y = 3.【2018全国二11】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥, 且2160PF F ∠=?,则C 的离心率为 A .1 B .2 C D 1 4.【2018全国三卷8】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆 () 2 222x y -+=上,则ABP △面积的取值范围是 A .[]26, B .[]48, C . D .?? 5.【2018全国三卷10】已知双曲线22 221(00)x y C a b a b -=>>:,,则点(4,0) 到C 的渐近线的距离为 A B .2 C . 2 D . 6.【2018天津卷7】已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1 d

和2d ,且126d d +=,则双曲线的方程为 A 22 1412 x y -= B 22 1124 x y -= C 22 139 x y -= D 22 193 x y -= 7.【2018浙江卷2】双曲线2 21 3=x y -的焦点坐标是 A .(?2,0),(2,0) B .(?2,0),(2,0) C .(0,?2),(0,2) D .(0,?2),(0,2) 8.【2018上海卷13】设P 是椭圆 25x + 23 y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A.2 B.2 C.2 D.4 二、填空题 1.【2018全国一卷15】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则 AB =________. 2.【2018北京卷10】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线 段长为4,则抛物线的焦点坐标为_________. 3.【2018北京卷12】若双曲线2221(0)4x y a a -=>的离心率为 5 2 ,则a =_________. 4.【2018天津卷12】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 5.【2018江苏卷8】在平面直角坐标系xOy 中,若双曲线22 221(0,0)x y a b a b -=>>的右焦点

全国高考文科数学试题解析几何

高考文科数学真题分类汇编:解析几何 H1 直线的倾斜角与斜率、直线的方程 6.[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y =2=0 C .x +y -3=0 D .x -y +3=0 20.[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 21.[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22 . (1)求该椭圆的标准方程. (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由. 图1-5 H2 两直线的位置关系与点到直线的距离 18.[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43 . (1)求新桥BC 的长. (2)当OM 多长时,圆形保护区的面积最大? 图1-6

20112017高考全国卷文科数学解析几何汇编

新课标全国卷Ⅰ文科数学汇编 解 析 几 何 一、选择题 【2017,5】已知F 是双曲线2 2 :13 y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ?的面积为( ) A . 13 B .12 C .23 D .32 【解法】选D .由2 2 2 4c a b =+=得2c =,所以(2,0)F ,将2x =代入2 2 13 y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为13 3(21)22 ??-=,选D . 【2017,12】设A 、B 是椭圆C :22 13x y m +=长轴的两个端点,若C 上存在点M 满足∠AMB =120° ,则m 的取值范围是( ) A .(0,1][9,)+∞U B .(0,3][9,)+∞U C .(0,1][4,)+∞U D .(0,3][4,)+∞U 【解法】选A . 图 1 图 2 解法一:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AMB ∠最大,依题意只 需使0120AEB ∠≥. 1.当03m <<时,如图1,03 tan tan 6032AEB a b m ∠=≥=,解得1m ≤,故01m <≤; 2. 当3m >时,如图2,0tan tan 60323 AEB a m b ∠==≥9m ≥. 综上可知,m 的取值范围是(0,1][9,)+∞U ,故选A . 解法二:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AMB ∠最大,依题意只

需使0120AEB ∠≥. 1.当03m <<时,如图1,01 cos ,cos1202EA EB ≤=-u u u r u u u r ,即12EA EB EA EB ?≤-u u u r u u u r u u u r u u u r , 带入向量坐标,解得1m ≤,故01m <≤; 2. 当3m >时,如图2,01 cos ,cos1202EA EB ≤=-u u u r u u u r ,即12EA EB EA EB ?≤-u u u r u u u r u u u r u u u r , 带入向量坐标,解得9m ≥. 综上可知,m 的取值范围是(0,1][9,)+∞U ,故选A . 【2016,5】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1 4 ,则该椭圆的离心率为( ) A .13 B . 12 C .23 D . 3 4 解析:选B . 由等面积法可得 1112224bc a b ?=???,故1 2 c a =,从而12c e a ==.故选B . 【2015,5】已知椭圆E 的中心为坐标原点,离心率为 1 2 ,E 的右焦点与抛物线C : y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A .3 B .6 C .9 D .12 解:选B .抛物线的焦点为(2,0),准线为x =-2,所以c=2,从而a=4,所以b 2=12,所以椭圆方程为 22 11612 x y +=,将x =-2代入解得y=±3,所以|AB |=6,故选B 【2014,10】10.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |= 05 4 x ,则x 0=( )A A .1 B .2 C .4 D .8 解:根据抛物线的定义可知|AF |=0015 44 x x + =,解之得x 0=1. 故选A 【2014,4】4.已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则a=( ) D A .2 B . 26 C .2 5 D .1 解:2c e a ====,解得a=1,故选D 【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).

高三文科数学解析几何专题

高三文科数学解析几何专题 一、选择题:(本大题12个小题,每小题5分,共60分)在每小题给出的四个备选项中,只有一项是符合题目要求的. 1直线1:1+=mx y l ,直线2l 的方向向量为)2,1(=a ,且21l l ⊥,则=m ( ) A . 2 1 B .2 1 - C .2 D .-2 2双曲线12 102 2=-y x 离心率为 ( ) A . 5 6 B . 5 5 2 C . 5 4 D . 5 30 3直线x 3+1=0的倾斜角是( ) A .30° B .60° C .120° D .150° 4抛物线22(0)y px p =>的准线经过等轴双曲线221x y -=的左焦点,则p =( ) A . 2 2 B 2 C .22 D .425已知点)0,1(M ,直线1:-=x l ,点B 是l 上的动点, 过点B 垂直于y 轴的直线与线段 BM 的垂直平分线交于点P ,则点P 的轨迹是 ( ) (A )抛物线 (B )椭圆 (C )双曲线的一支 (D )直线 6已知倾斜角0≠α的直线l 过椭圆122 22=+b y a x )0(>>b a 的右焦点F交椭圆于A、B两 点,P为右准线上任意一点,则APB ∠为 ( ) A .钝角 B .直角 C .锐角 D .都有可能 7经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为 ( ) A .30x y -+= B .30x y --= C .10x y +-= D .30x y ++= 8直线1:20l kx y -+=到直线2:230l x y +-=的角为45 ,则k =( )

高三文科数学解析几何专题

高三文科数学解析几何专题 一、选择题:(本大题12个小题,每小题5分,共60分)在每小题给出的四个备选项中,只有一项是符合题目要求的. 1直线1:1+=mx y l ,直线2l 的方向向量为)2,1(=a ,且21l l ⊥,则=m ( ) A . 2 1 B .2 1 - C .2 D .-2 2双曲线12 102 2=-y x 离心率为 ( ) A . 5 6 B . 5 5 2 C . 5 4 D . 5 30 3直线x 3+1=0的倾斜角是( ) A .30° B .60° C .120° D .150° 4抛物线22(0)y px p =>的准线经过等轴双曲线221x y -=的左焦点,则p =( ) A . 2 2 B 2 C .22 D .42 ~ 5已知点)0,1(M ,直线1:-=x l ,点B 是l 上的动点, 过点B 垂直于y 轴的直线与线段 BM 的垂直平分线交于点P ,则点P 的轨迹是 ( ) (A )抛物线 (B )椭圆 (C )双曲线的一支 (D )直线 6已知倾斜角0≠α的直线l 过椭圆122 22=+b y a x )0(>>b a 的右焦点F交椭圆于A、B两 点,P为右准线上任意一点,则APB ∠为 ( ) A .钝角 B .直角 C .锐角 D .都有可能 7经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为 ( ) A .30x y -+= B .30x y --= C .10x y +-= D .30x y ++= 8直线1:20l kx y -+=到直线2:230l x y +-=的角为45 ,则k =( )

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1, F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则 C 的离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .2=± y x D .2 =±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和 2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

高三文科数学解析几何专题

2008届高三文科数学第二轮复习资料 ——《解析几何》专题 1.已知动圆过定点()1,0,且与直线1x =-相切. (1) 求动圆的圆心轨迹C 的方程; (2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ?=?若存在,求出直线l 的方程;若不存在,说明理由. 2.如图,设1F 、2F 分别为椭圆 C :22 221x y a b += (0a b >>)的左、右焦点. (Ⅰ)设椭圆C 上的点3 (1,)2 A 到F 1、F 2两点距离之和等于4,写出椭圆C 的方程和离心率; (Ⅱ)设点K 是(Ⅰ)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 3.已知圆C: x 2+y 2-2x+4y-4=0,是否存在斜率为1的 直线L,使以L 被圆C 截得弦AB 为直径的圆 经过原点?若存在,写出直线的方程;若不存在,说 明理由 4.已知圆C :224x y +=. (1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程; (2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+, 求动点Q 的轨迹方程,并说明此轨迹是什么曲线. 5.如图,已知圆A 的半径是2,圆外一定点N 与圆A 上的点的最短距离为6,过动点P 作A 的切线PM (M 为切点),连结PN 使得PM : ,试建立适当 的坐标系,求动点P 的轨迹 6.已知三点P (5,2)、1F (-6,0)、2F (6,0).

(Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程; (Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程. 7.某运输公司接受了向抗洪抢险地区每天至少运送180吨支援物资的任务,该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B 型卡车,有10名驾驶员,每辆卡车每天往返次数为A 型卡车4次,B 型卡车3次,每辆卡车每天往返的成本费用为A 型卡车320元,B 型卡车504元,请你给该公司调配车辆,使公司所花的成本费用最低. 8.曲线03622=+-++y x y x 上两点P 、Q 满足:①关于直线04=+-y kx 对称;②OQ OP ⊥.求直线PQ 的方程. 9 情况下的两类药片怎样搭配价格最低?

高考文科数学解析几何练习题

解析几何单元易错题练习含答案 一.考试内容: 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求: 掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 掌握双曲线的定义、标准方程和双曲线的简单几何性质. 掌握抛物线的定义、标准方程和抛物线的简单几何性质. 了解圆锥曲线的初步应用. 【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识: 椭圆及其标准方程 椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F . 2.椭圆的标准方程:12222=+b y a x (a >b >0),122 2 2=+b x a y (a >b >0). 3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2 x 项的分母大于2 y 项的分母, 则椭圆的焦点在x 轴上,反之,焦点在y 轴上. 4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 椭圆的简单几何性质 椭圆的几何性质:设椭圆方程为122 2 2=+b y a x (a >b >0). ⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. ⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ). 线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. ⑷ 离心率:椭圆的焦距与长轴长的比 a c e = 叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接 近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义 ⑴ 定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数 a c e = (e <1=时,这个

2019年全国高考文科数学分类汇编---解析几何

2019年全国高考文科数学分类汇编---解析几何 1.(2019北京文科)已知双曲线2 221x y a -=(a >0则a = A. B. 4 C. 2 D. 12 【答案】D 【解析】 【分析】 本题根据根据双曲线的离心率的定义,列关于a 的方程求解. 【详解】 ∵双曲线的离心率c e a = =,c =, =, 解得12 a = , 故选D. 【点睛】本题主要考查双曲线的离心率的定义,双曲线中a,b,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力. 2.(2019北京文科)设抛物线y 2 =4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2 =4. 【解析】 【分析】 由抛物线方程可得焦点坐标,即圆心,焦点到准线距离即半径,进而求得结果. 【详解】抛物线y 2 =4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心, 且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2 =4. 【点睛】本题主要考查抛物线的焦点坐标,抛物线的准线方程,直线与圆相切的充分必要条件等知识,意在考查学生的转化能力和计算求解能力. 3.(2019北京文科)已知椭圆22 22 : 1x y C a b +=的右焦点为(1,0),且经过点(0,1)A .

(Ⅰ)求椭圆C 的方程; (Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点. 【答案】(Ⅰ)2 212 x y +=; (Ⅱ)见解析. 【解析】 【分析】 (Ⅰ)由题意确定a ,b 的值即可确定椭圆方程; (Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM ,ON 的表达式,结合韦达定理确定t 的值即可证明直线恒过定点. 【详解】(Ⅰ)因为椭圆的右焦点为(1,0),所以 12 25 ; 因为椭圆经过点(0,1)A ,所以1b =,所以2 2 2 2a b c =+=,故椭圆的方程为2 212 x y +=. (Ⅱ)设1122(,),(,)P x y Q x y 联立2 212(1)x y y kx t t ?+=???=+≠? 得222 (12k )4220x ktx t +++-=, 2121222 422 0,,1212kt t x x x x k k -?>+=-=++,121222()212t y y k x x t k +=++=+,22 2 2 1212122 2()12t k y y k x x kt x x t k -=+++=+. 直线111:1y AP y x x --= ,令0y =得111x x y -=-,即1 11 x OM y -=-; 同理可得2 21 x ON y -= -. 因为2OM ON =,所以 1212 121212211()1 x x x x y y y y y y --==---++;

文科数学解析几何小专题

文科数学解析几何小综合专题练习 一、选择题 1.若抛物线2 2y px =的焦点与双曲线22 122 x y -=的右焦点重合,则p 的值为() A .2- B .2 C .4- D .4 2.若焦点在x 轴上的椭圆1222=+m y x 的离心率为2 1 ,则=m A .3 B . 3 2 C .83 D .23 3.经过圆2 2 20x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 A.10x y ++= B.10x y +-= C.10x y -+= D.10x y --= 4.设圆C 与圆2 2 (3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为 A.抛物线 B.双曲线 C.椭圆 D.圆 5.已知双曲线的顶点与焦点分别是椭圆的22 221y x a b +=(0a b >>)焦点与顶点,若双曲线 的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为 A . 13 B .1 2 C .33 D .22 二、填空题 6.在平面直角坐标系xoy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 . 7.巳知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为3 2 ,且G 上一点到G 的两个焦点的距离之和 为12,则椭圆G 的方程为 . 8.已知双曲线22221x y a b -=的离心率为2,焦点与椭圆 22 1259 x y -=的焦点相同,那么双曲线

的焦点坐标为 ;渐近线方程为 。 9.已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x+y=0相切,则圆O 的方程是 10.已知以F 为焦点的抛物线2 4y x =上的两点A 、B 满足3AF FB =,则弦AB 的中点到准线的距离为______. 三、解答题 11.已知圆C :224x y +=. (1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||23AB =,求直线l 的方程; (2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量 OQ OM ON =+,求动点Q 的轨迹方程,并说明此轨迹是什么曲线. 12.过点C (0,1)的椭圆22 221(0)x y a b a b +=>>的离心率为32,椭圆与x 轴交于两点(,0)A a 、 (,0)A a -,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q . (1)当直线l 过椭圆右焦点时,求线段CD 的长; (2)当点P 异于点B 时,求证:OP OQ ?为定值. 13.已知平面上两定点M (0,-2)、N (0,2),P 为平面上一动点,满足

2019年高考数学文科分类汇编:解析几何

数 学 H 单元 解析几何 H1 直线的倾斜角与斜率、直线的方程 6.,,[2019·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y =2=0 C .x +y -3=0 D .x -y +3=0 6.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D. 20.、、[2019·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2. (2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-1 3, 故l 的方程为y =-13x +8 3 . 又|OM |=|OP |=2 2,O 到直线l 的距离为410 5 , 故|PM |=4105,所以△POM 的面积为16 5 . 21.、、、[2019·重庆卷] 如图1-5,设椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1, F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为2 2 . (1)求该椭圆的标准方程. (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由. 21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2 =a 2-b 2.

相关文档
相关文档 最新文档