文档库 最新最全的文档下载
当前位置:文档库 › 什么是钢结硬质合金

什么是钢结硬质合金

什么是钢结硬质合金
什么是钢结硬质合金

什么是钢结硬质合金

钢结硬质合金是近三十年来才发展起来的一种新型工模具材料,它是在合金钢的基体上均匀分布

30-50%硬质颗粒,经过烧结、锻造而成,因而既具有象硬质合金那样的高硬度、高强度、高耐磨性,又具有合金钢的可冷、热加工性能,如锻、车、铣、刨、磨、热处理等。它作为一种可加工、高耐磨的材料,已经广泛应用于各种拉伸模、冲裁模、挤压模、压型模、整形模、冷热轧辊、耐磨零件,使用寿命均比常用工模具钢提高十倍甚至几十倍以上,取得了非常显著的经济效果。

钢结硬质合金是以钢为粘结相,以碳化物(主要是碳化钛、碳化钨)做硬质相,用粉末冶金方法生产的复合材料。其微观组织是细小的硬质相,弥散均匀分布于钢的基体中(用于模具的钢结硬质合金,基体主要采用含铬、钼、钒的中高碳合金工具钢或高速钢)。

钢结硬质合金是介于钢和硬质合金之间的一种材料,具有以下特点:

工艺性能好具有可加工性和可热处理性,在退火状态下,可以可以采用普通切削加工设备和刀具进行车、铣、刨、磨、钻等机械加工。还可以锻造、焊接。与硬质合金相比,成本低,适用范围更广。良好的物理、力学性能

钢结硬质合金在淬硬状态具有很高的硬度。由于含有大量弥散分布的高硬度硬质相,其耐磨性可以与高钴硬质合金接近。与高合金模具钢相比,具有较高的弹性模量、耐磨性、抗压强度和抗弯强度。与硬质合金相比,具有较好的韧性。

具有良好的自润滑性、较低的摩擦系数、优良的化学稳定性。

钢结硬质合金在拉深模具中的应用

许多钢结硬质合金烧结坯件经退火后可进行普通的切削加工,经淬火、回火后有近似于金属陶瓷硬质合金的硬度和良好的耐磨性,也可以进行焊接和锻造,并具有耐磨、抗氧化等特性。尽管这类材料成本较高,制模难度较大,但使用后可显著提高模具的使用寿命,在大批量生产中具有很好的技术经济效果。因此,在更大范围、更深层次推广它,对模具行业具有非常重要的意义。

1、原生产中存在的问题

矿用自救器下外壳尺寸如图1所示,材料为08A1,料厚0.8mm,生产批量为大批量。成形该制件需两次拉深。原模具中,凹模材料均为Crl2,所用设备为普通双动压力机。生产中,模具使用一段时间后,制件表面就会出现明显的擦伤痕迹,严重影响了外观质量。观察发现:第一道拉深工序结束后,半成品外表面已有少量划痕,二次拉深后擦伤、划痕明显增多,而且凹模工作表面磨损严重,还常常粘附着制件材料。修模后也只能拉深几千个壳体。为解决这一问题,工厂曾尝试提高模具制造精度,降低表面粗糙度值,甚至抛光、镀铬,但仍不能从根本上解决产品表面拉伤、模具寿命短的问题。

2、工艺分析

通过分析可知:原模具结构、模具工作部分结构参数以及拉深过程中的润滑方式基本合理,制件产生擦伤、划痕主要与模具与被加工坯料表面之间摩擦面的接触状况有关。

一方面,拉深过程中坯料与模具表面接触时会产生很大的压力,此时,若干摩擦与边界润滑区得不到润滑剂的补充,就会使该处的摩擦状态急剧恶化另一方面,08A1属软材料,若模具硬度低,则会加剧变形热的产生尽管Cr12的热处理硬度已较高,但对本例大批量连续拉深仍显不够。上述原因导致了模具使用一段时间后,摩擦面的温度急剧升高)在高温下,局部金属熔敷产生摩擦粘结,使半成品首先出现擦伤和细微划痕。此时,若没有及时修模,前道工序中产生的擦伤和细微划痕必然会在下一道工序中加剧模具的磨损进而又增加了拉深力、零件侧壁的拉应力和摩擦阻力,使摩擦面温度进一步升高,从而再一次引起金属熔敷,加剧摩擦粘结的产生,导致恶性循环、熔敷愈严重,划痕愈明显。

根据以上分析,同时考虑到钢结硬质合金GT35具有高硬度(淬火硬度可达69-73HRC),高耐磨性、热处理变形小以及良好的机加性等特点,可以满足本例拉深的使用及加工工艺要求,所以我们将凹模材料Cr12改为钢结硬质合金GT35。

3、模具制造中的注意事项

为充分发挥钢结硬质合金GT35的优良特性,得高樟具寿命.凹樟采用镶套结构如图2所示。

首次拉深时模套要起到压料作用,故选用耐磨性好、热处理硬度较高的Cr12为镶套。二次拉深时,压边部分在合金圈内,故洗用45钢作为镶查材料。

(1)凹模的切削加工钢结硬质合金GT35在良好的退火状态下,硬度一般为39-46HRC。可进行车、铣、刨、鏜、锉、攻螺纹等工作。切削过程中,切削速度不宜过高,进给量不宜过大,背吃刀量不宜过小。实践证明:切削速度过高,进给量过大,背吃刀量过小,则刀刃与工件摩擦大,发热量大,会使刀刃磨损量加大、此外,由于刀刃与工件表面相挤压,加工面发亮并变硬,因而会使继续切削加工更加困难、实际加工中可先试低速,然后逐步提高转速。

切削刀具可以选用YT类硬质合金。刀具的几何角度宜采用前角0或负前角1o-2o,后角6o-7o,刀尖磨成圆弧状(R0.3-0.5mm)。切削时,不用切削液干态切削,以免工件急剧硬化.使切削困难。此外,当表层硬壳层切削困难时,可先用45o偏刀将工件表面切成坡面,然后加大背吃刀量切削较软的部分,使硬壳层随切屑一起剥落。

(2)模套及凹模外表面的磨削加工凹模外套的内孔应加以磨削,表面粗糙度值达到,圆柱度公差应控制在0.015mm以内。钢结硬质合金凹模与模套的结合面也应加以磨削,以保证结合面的紧密。磨削GT35时,磨料硬度要高,在保证加工表面粗糙度的前提下,可选择粒度粗一些的砂轮,以免烧伤工件。砂轮硬度也要适当软一些(可选碳化硅砂轮GC60JV)。磨削时采用乳化液冷却,磨削深度为0.004-0.006mm。

(3)凹模工作部分加工钢结硬质合金凹模机加工后用线切割将内孔切成,留一定的研磨余量。二次拉深模的45斜面用电火花加工成形。

(4)凹模装配模套与凹模采用热压装配,预加应力通过模套内径与合金圈外径的过盈配合获得。模具设计中,应根据装配温度及需要预加应力的大小准确计算模套内径尺寸。模套加热可在热处理箱式电炉中进行。当温度升高到350℃时开始计算时间,保温2h。同时在凹模底部放一磨好的平板与之一起加温,以免出炉后冷却太快,影响装配。

(5)其他注意事项模具导向应平稳可靠。模具上下板的厚度应适当加大,以提高模具的刚性和稳定性,并减小振动。

模具加工完,应使用高硬度的金刚石油石和金刚石研磨膏研磨工作面,以保证表面粗糙度,减小电加工中的变质层,充分发挥钢结硬质合金的高硬度、高耐磨性。

实践证明,使用钢结硬质合金GT35制造的自救器下外壳拉深模,不仅保证了产品的质量,而且极大地提高了模具的使用寿命,取得了良好的经济效益

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

低合金钢中合金元素作的作用

合金元素在钢中的作用 随着现代工业和科学技术的不断发展,在机械制造中,对工件的强度、硬度、韧性、塑性、耐磨性以及其他各种物理化学性能的要求愈来愈高,碳钢已不能完全满足这些要求了。 原因: ①由碳钢制成的零件尺寸不能太大。否则,因淬透性不够而不 能满足对强度与塑性、韧性的要求。加入合金元素可增大淬 透性。 ②用碳钢制成的切削刀具不能满足切削红硬性的要求。用合金 工具钢、高速钢和硬质合金。 ③碳钢不能满足特殊性能的要求,如要求耐热、耐低温、抗腐 蚀、有强烈磁性或无磁性等等,只有特种的合金钢才能具有 这些性能。 合金钢是以碳钢为基础,金相组织和相应的碳钢大体上是相似的。在钢中加入合金元素,钢的机械性能显著提高。弄清楚各种合金元素对钢材的影响对控制产品质量有非常大的作用。 1 合金元素在钢中的存在方式 1.1 合金元素与钢中的碳相互作用,形成碳化物存在于钢中 按合金元素在钢中与碳相互作用的情况,它们可以分为两大类:(1) 不形成碳化物的元素(称为非碳化物形成元素),包括镍、硅、铝、钴、铜等。由于这些元素与碳的结合力比铁小,因此在钢中它们不能与碳化合,它们对钢中碳化物的结构也无明显的影响。

(2) 形成碳化物的元素(称为碳化物形成元素),根据其与碳结合力的强弱,可把碳化物形成元素分成三类。 1)弱碳化物形成元素:锰 锰对碳的结合力仅略强于铁。锰加入钢中,一般不形成特殊碳化物(结构与Fe3C不同的碳化物称为特殊碳化物),而是溶入渗碳体中。 2)中强碳化物形成元素;铬、钼、钨 3)强碳化物形成元素:钒、铌、钛 有极高的稳定性,例如TiC在淬火加热时要到1000℃以上才开始缓慢的溶解,这些碳化物有极高的硬度,例如在高速钢中加人钒,形成V4C,使之有更高的耐磨性。 1.2 合金元素溶解于铁素体(或奥氏体)中,以固溶体形式存在于钢中。 1.3 合金元素与钢中的氮、氧、硫等化合,以氮化物、氧化物、硫化物和硅酸盐等非金属夹杂物的形式存在于钢中。 1.4 游离态,即不溶于铁,也不溶于化合物:铅,铜 2 合金元素对钢的平衡组织的影响 表现在改变铁碳合金状态图。 2.1 合金元素对钢临界温度的影响 锰、镍、铜使A3线降低,钼、钨、硅、钒使A3线升高。同样影响A1,影响程度更大。 2.2 合金元素对钢共析点(S点)位置的影响

低合金钢分类

低合金钢分类 文章来源:钢铁E站通低合金钢分类 根据国家标准GB/T 13304《钢分类》第二部分“钢按主要质量等级和主要性能及使用特性分类”,低合金钢分类如下。 低合金钢按主要质量等级分为普通质量低合金钢、优质低合金钢、特殊质量低合金钢三类: (1)普通质量低合金钢 普通质量低合金钢是指不规定生产过程中需要特别控制质量要求的供作一般用途的低合金钢。应同时满足下列条件: 1)合金含量较低(符合对低合金钢的合金元素规定含量界限值的规定); 2)不规定热处理(退火、正火、消除应力及软化处理不作为热处理对待); 3)如产品标准或技术条件中有规定,其特性值应符合下列条件: 硫或磷含量最高值:≥%; 抗拉强度最低值:≤690MPa; 屈服点或屈服强度最低值:≤360MPa; 伸长率最低值:≤26%; 弯心直径最低值:≥2×试样厚度; 冲击功最低值(20C,V型纵向标准试样):≤27J。 注:①力学性能的规定值指厚度为3~16mm钢材的纵向或横向试样测定的性能。 ②抗拉强度、屈服点或屈服强度特性值只适用于可焊接的低合金高强度结构钢。 4)未规定其他质量要求。 普通质量低合金钢主要包括: ①一般用途低合金结构钢,规定的屈服强度不大于360MPa,如GB/T 1591规定的 Q295A、Q345A;

②低合金钢筋钢,如GB 1499规定的20MnSi、20MnTi、20MnSiV、25MnSi、 20MnNbb; ③铁道用一般低合金钢.如GB 11264规定的低合金轻轨钢45SiMnP、50SiMnP; ④矿用一般低合金钢,如GB/T 3414规定的M510、M540、M565热轧钢。 (2)优质低合金钢 优质低合金钢是指除普通质量低合金钢和特殊质量低合金钢以外的低合金钢,在生产过程中需要特别控制质量(例如降低硫、磷含量,控制晶粒度,改善表面质量,增加工艺控制等),以达到比普通质量低合金钢特殊的质量要求(例如良好的抗脆断性能、良好的冷成形性能等),但这种钢的生产控制和质量要求,不如特殊质量低合金钢严格。 优质低合金钢主要包括: ①可焊接的高强度结构钢,规定的屈服强度大于360MPa而小于420MPa的一般用途低合金结构钢,如GB/T 1591规定的Q295B、Q345B、Q345C、Q345D、Q345E、 Q390A、Q390B、Q390C,Q390D、Q390E; ②锅炉和压力容器用低合金钢,如GB 713规定的16Mng、12Mng、15MnVg; YB/T5139规定的16MnR;GB 6653规定的HP295、HP325、HP345、HP365;GB 6654规定的16MnR、15MnVR、15MnVNR;GB 6479规定的16Mn、15MnV; ③造船用低合金钢,如GB 712规定的AH36、DH36、EH36; ④汽车用低合金钢,如GB/T3273规定的09MnREL、06TiL、08TiL、09SiVL、16MnL、16MnREL: ⑤桥梁用低合金钢,如YB 168规定的12Mnq、12MnVq、16Mnq、15MnVq、 15MnVNq,YB(T)10规定的16Mnq、16MnCuq、15MnVq、15MnVNq; ⑥自行车用低合金钢,如YB/T 5064、YB/T 5066、YB/T 5067、YB/T 5068规定的 12Mn、15Mn、19Mn;

硬质合金模具

什么是硬质合金模具 作者:未知来源:网络点击数: 2507 日期:2008-6-11 在制造冲模时,利用高硬度、高强度、高耐磨、耐腐蚀、耐高温和膨胀系数小的硬质合金材料作为凸、凹模的冲模,称为硬质合金冲模。作为冲模凸、凹模材料的主要是钨钻类硬质合金。 硬质合金冲模的结构基本上与钢制冲模结构相同,可制做成单工序模,也可制成复合模及连续模。但因硬质合金本身有脆性,故冲裁时最好不使硬质合金刃口单边受力,在大批量生产所采用的模具结构,多为连续模结构。 无论采用何种结构形式,硬质合金冲模与一般钢制冲模相比,在结构上应具有如下特点 : 1 、模柄 硬质合金冲模多采用浮动式模柄结构,以避免在冲压时,压力机的精度对冲压工艺的影响。 2 、模架 硬质合金模具所采用的模架应具有足够的刚性。模板应比一般钢制冲模模板厚 5 ~lOmm ,多用 45 号钢制造, HRC38 ~420 3 、导向机构 模具的导向机构动作要平稳可靠、精度要高,一般采用滚珠导柱式模架,并多采用四导柱导向结构。 4 、垫板 为了防止硬质合金在冲压时碎裂,凹模及凸模都应加装淬硬的的垫板。(材料可用 T7 ) 5 、卸料及顶出装置 卸料及顶出装置,应尽量采用固定式卸料板结构,以防止冲压时对凹模的冲击作用。采用弹性卸料板时,要加小导柱对卸料板导向。为避免冲击,卸料板的压料台阶高度 h 应该比导料板厚度 H 小一个料厚,及 h=H-t-0.05 。 6 、凸、凹模间隙 凸、凹模间隙比钢制冲模要大,一般为料厚的 0.15 倍或取普通冲模间隙的 1.5 倍。 7 、导料板、定位销、导向销要进行热处理淬硬。

8 、凹模镶块结构,要保证与固定板组合后相对稳定。 硬质合金自本世纪20年代初由德国科学家发明以来,其"widia"(似金刚石)的名称面市,并首先制作钨丝拉伸模得到工业应用,取代了当时价格昂贵的金刚石拉伸模。我国硬质合金起步虽晚,但发展迅速。目前,硬质合金模具基本上已系列化和标准化。从近几年发展情况来看,我国硬质合金模具的研究和设计的理论已更深入也更科学,应用也更广泛。 一、硬质合金模具的种类 我国硬质合金模具根据用途可分为四类; 第一类为硬质合金拉丝模具,这类模具占硬质合金模具的绝大部分。我国目前拉丝模的主要牌号YG8、YG6、YG3,其次是YG15、YG6X、YG3X,近几年来主要硬质合金生产厂家也研制一些新牌号,如用于高速拉丝的新牌号YL,还有从国外引进的拉丝模牌号CS05(YLO.5),CG20(YL20),CG40(YL30);ZK10、ZK20/ZK30。 第二类模具是冷镦冷冲模、整形模,主要牌号有YC20C、YG20、YG15、CT35以及株洲硬质合金厂的新牌号YJT30和中南工大粉末冶金厂的 MO15。 第三类模具是用于磁性材 料生产的无磁合金模,还有一些厂在研制生产。如YSN系列的YSN(包括20、25、30、35、40)以及钢结无磁模牌号TMF。如自贡硬质合金厂的YWC无磁合金。 第四类为热作模,这类合金暂无标准牌号,市场需要在增加。有些厂家正在研制开发,如YD40及上海材料所的旋锻模用CNW。 上述四类模具由于开发时间不同、材质的适应性有限、推广措施跟不上等原因,市场上的销售量差别很大。 二、硬质合金模具的使用技术现状 同样材质的硬质合金毛坯,在加工制成模具后,其使用寿命有的长,有的则很短。经解剖分析后,发现问题出在设计、加工、组装以及焊接等上。 1、硬质合金模具设计技术状况 拉丝模是一结构较简单的模具。80年代以前我国一直沿用前苏联的"直线型"理论设计,80年代后才有部分厂家引用50年代就提出了的"圆滑过渡"技术理论。近年来,我国学者对拉丝模进行了角度设计和环沟磨损的理论分析,提出了最大、最小拉拔角的概念,分析了金属在拉伸变形过程中对模具产生不均匀磨损的机理。广东工学院的研究人员对冷镦小规格螺钉用硬质合金模具进行了解剖分析,得出国产模具寿命低(200-400万次)而日本模具寿命高(900-1000万次)的秘密所在,其关键技术是在角度的设计上。即日本模在模芯底部与模套内孔底面中心接触部位采用了双凸面设计。它的优点是能使受力最大的中心部位保证紧密压靠,四周留下的空隙又可供过盈配合时,储藏从孔壁挤出的多余金属。沈阳桥梁厂对冷镦M12螺母用的硬质合金凹模,由原来的六角设计改为六瓣编装镶套组合起来使用。其平

元素对合金的影响

元素对合金的影响 元素对合金的影响 主要合金元素 合金钢的主要合金元素有硅、锰、铬、镍、钼、钨、钒、钛、铌、锆、钴、铝、铜、硼、稀土等。其中钒、钛、铌、锆等在钢中是强碳化物形成元素,只要有足够的碳,在适当条件下,就能形成各自的碳化物,当缺碳或在高温条件下,则以原子状态进入固溶体中;锰、铬、钨、钼为碳化物形成元素,其中一部分以原子状态进入固溶体中,另一部分形成置换式合金渗碳体;铝、铜、镍、钴、硅等是不形成碳化物元素,一般以原子状态存在于固溶体中。 [编辑本段]合金钢的分类 一般分类 合金钢种类很多,通常按合金元素含量多少分为低合金钢(含量<5%),中合金钢(含量5%~10%),高合金钢(含量>10%);按质量分为优质合金钢、特质合金钢;按特性和用途又分为合金结构钢、不锈钢、耐酸钢、耐磨钢、耐热钢、合金工具钢、滚动轴承钢、合金弹簧钢和特殊性能钢(如软磁钢、永磁钢、无磁钢)等。在钢中除含铁、碳和少量不可避免的硅、锰、磷、硫元素以外,还含有一定量的合金元素,钢中的合金元素有硅、锰、钼、镍、硌、矾、钛、铌、硼、铅、稀土等其中的一种或几种,这种钢叫合金钢。各国的合金钢系统,随各自的资源情况、生产和使用条件不同而不同,国外以往曾发展镍、硌钢系统,我国则发现以硅、锰、钒、钛、铌、硼、铅、稀土为主的合金钢系统合金钢在钢的总产量中约占百分之十几,一般是在电炉中冶炼的按用途可以把合金钢分为8大类,它们是:合金结构钢、弹簧钢、轴承钢、合金工具钢、高速工具钢、不锈钢、耐热不起皮钢,电工用硅钢。调质钢1.中碳型合金钢,合金元素含量较低;2.强度较高;3.用于高温螺栓、螺母材料等。弹簧钢1含碳量比调质钢高; 2经调质处理,强度较高抗疲劳强度较高;3用于弹簧材料。滚动轴承钢1高碳型合金钢,合金含量较高;2具有高而均匀的硬度和耐磨性;3用于滚动轴承。合金工具钢量具钢1高碳型合金钢,合金元素含量较低;2具有高的硬度和耐磨性,机加工性能好,稳定性好;3用于量具材料。特殊性能钢不锈钢1低碳高合金钢;2抗腐蚀性好;3用于抗腐蚀、部分可做耐热材料。耐热钢1低碳高合金钢;2耐热性能好;3用于耐热材料、部分可做抗腐蚀材料。低温钢1低碳合金钢,根据耐低温程度合金元素有高有低;2抗低温性好;3用于低温材料(专用钢为镍钢)。 根据碳化物的倾向分类

硬质合金与钨钢有什么区别

清河县润鼎硬质合金刀具有限公司 硬质合金与钨钢有什么区别 钨钢:成品中约含钨18%合金钢,钨钢归于硬质合金,又称之为钨钛合金。硬度为维氏10K,仅次于钻石。正因如此,钨钢的商品(多见的有钨钢手表),具有不易被磨损的特性。常用于车床刀具、冲击钻钻头、玻璃刀刀头、瓷砖割刀之上,坚固不怕退火,但质脆。 硬质合金:归于粉末冶金领域硬质合金又名金属陶瓷是以金属碳化物(WC、TaC,TiC、NbC等)或许金属氧化物(如Al2O3,ZrO2等)为首要成份,参加适量的金属粉末(Co、Cr、Mo、Ni、Fe等)通过粉末冶金方法制成,具有金属某些特质的陶瓷。钴(Co)是用来在合金中起粘结效果的,就是在烧结的过程中,它能把碳化钨(WC)粉末包围并紧紧地粘结在一起,冷却后,就成了硬质合金.(效果相当于混凝土中的水泥)。含量通常:3%--30%碳化钨(WC)是决议此硬质合金或金属陶瓷某些金属性质的首要成份,占总成份

清河县润鼎硬质合金刀具有限公司 70%---97%(分量比)广泛用于耐磨,耐高温,耐腐蚀,工作环境恶劣的零件或刀具,工具的刀头上。 钨钢归于硬质合金,但硬质合金纷歧定是钨钢,如今台湾和东南亚国家的客户喜欢用钨钢这个词,假如跟他们仔细谈深入,就会发现,大部分仍是指硬质合金。 钨钢与硬质合金差异在于:又名高速钢或工具钢,钨钢是用炼钢技术在钢水中参加钨铁作钨的质料熔炼而成的,又名高速钢或工具钢,其钨含量通常在15-25%;而硬质合金是用粉末冶金技术以碳化钨为主体与钴或其它粘结金属一起烧结而成的,其钨含量通常在80%以上。简略的说一切硬度超越HRC65的东西只要是合金都可以叫硬质合金,钨钢只是硬质合金的一种硬度在HRC85到92之间,常被用来做刀的。 硬质合金实业有限公司主要生产,研发硬质合金制品。以近20年领域专业技术,产品质量在国内处于领先水平。

《金属材料与热处理》学习提纲(士兵)

《金属材料与热处理》(第五版)课程学习提纲 一、课程性质、目的和任务 金属材料与热处理是一门技术基础课。其主要内容包括:金属的性能、金属学基础知识、钢的热处理、常用金属材料及非金属材料的牌号等。 二、教学基本要求 本课程的任务是使学生掌握金属材料与热处理的基本知识,为学习专业理论,掌握专业技能打好基础。通过本课程的学习,学生应达到下列基本要求: (1)了解金属学的基本知识。 (2)掌握常用金属材料的牌号、性能及用途。 (3)了解金属材料的组织结构与性能之间的关系。 (4)了解热处理的一般原理及其工艺。 (5)了解热处理工艺在实际生产中的应用。 三、学习内容及要求 绪论 ※学习要求: 1、明确学习本课程的目的。 2、了解本课程的基本内容。 ※学习内容: 1、学习金属材料与热处理的目的 2、金属材料与热处理的基本内容 3、金属材料与热处理的发展史 4、金属材料在工农业生产中的应用 ※思考与练习 1、金属材料与热处理是一门怎样的课程。 2、什么是金属与金属材料。 第一章金属的结构与结晶 ※学习要求: 1、了解金属的晶体结构。 2、掌握纯金属的结晶过程。 3、掌握纯铁的同素异构转变。 ※学习内容: §1-1 金属的晶体结构 一、晶体与非晶体 二、晶体结构的概念 三、金属晶格的类型 §1—2纯金属的结晶

一、纯金属的冷却曲线及过冷度 二、纯金属的结晶过程 三、晶粒大小对金属力学性能的影响 四、金属的同素异构转变 ※思考与练习: 1、什么是晶体和非晶体?它们在性能上有什么不同? 2、什么是晶格和晶胞?金属主要有哪三种晶格类型?它们的晶胞各有什么特点? 3、什么是结晶?结晶由哪两个基本过程? 4、金属晶粒大小对金属材料性能有什么影响? 5、什么是同素异构转变?具有同素异构转变的金属有哪些? 第二章金属的性能 ※学习要求: 1、掌握金属的力学性能,包括强度、塑性、硬度、冲击韧性、疲劳等概念及各力学性能的衡量指标。 2、了解金属的工艺性能。 ※学习内容: §2—2 金属的力学性能 一、强度 二、塑性 三、硬度 四、冲击韧性 五、疲劳强度 §2-3金属的工艺性能 一、铸造性能 二、锻造性能 三、焊接性能 四、切削加工性能 ※思考与练习 1、什么是载荷?根据性质不同可分为哪几种? 2、什么是金属的力学性能?金属的力学性能包括哪些内容? 3、什么是强度?强度有哪些衡量指标?这些指标的符号是什么? 4、什么是塑性?塑性有哪些衡量指标?这些指标的符号是什么? 5、什么是硬度?常用的硬度实验法有哪三种?各用什么符号表示? 6、常用的洛式硬度标尺有哪三种?各用什么符号表示?最常用的是哪一种? 7、什么是冲击韧性?什么是冲击韧度?其值有什么符号表示? 8、什么是疲劳断裂?什么是疲劳强度 9、什么是金属的工艺性能?它包括哪些内容?

合金元素在钢中的主要作用

简述几种常见合金元素在钢中的主要作用 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼 过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍%的钢可在-100℃时使用,含镍9%的钢则可在 -196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。 此外,镍加入钢中不仅能耐酸,而且也能抗碱,对大气及盐都有抗蚀能力,镍是不锈耐酸钢中的重要元素之一。 (3)钼(Mo)

硬质合金

硬质合金 由于切削速度不断提高,不少刀具的刃部工作温度已超过700℃,这时一般高速钢已不再适应,就要采用硬质合金了。 硬质合金是将一种或多种难熔金属的碳化物和粘接剂金属,用粉末冶金方法制成的金属材料。即将难熔的高硬度的WC,TiC,TaC(碳化钽)和钴、镍等金属(粘接剂)粉末经混合、压制成形,再在高温下烧结制成。 一、硬质合金的性能特点 1.硬度高、热硬性高、耐磨性好。硬质合金在室温下的硬度可达86HRA~ 93HRA,在900~1000℃温度下仍然有较高的硬度,故硬质合金刀具在 使用时,其切削速度、耐磨性及寿命均比高速钢显著提高。 2.抗压强度比高速钢高,但抗弯强度只有高速钢的1/3~1/2左右,韧性差 (约为淬火钢的30%~50%) 二、常用的硬质合金 按成分与性能特点不同,常用的硬质合金有三类: 1.钨钴类硬质合金 它的主要成分为碳化钨及钴。其代号用“硬”“钴”两字的汉语拼音字母字头“YG”加数字表示,数字表示钴的百分数。例如YG8,表示钨钴类硬质合金,含钴量为8%。 2.钨钴钛类硬质合金 它的主要成分为碳化钨、碳化钛及钴。其代号用“硬”“钛”两字的汉语拼音字母字头“YT”加数字表示,数字表示碳化钛的百分数。例如YT5,表示钨钴钛类硬质合金,含碳化钛5%。 硬质合金中,碳化物含量越多,钴含量越少,则合金的硬度、热硬性及耐磨性越高,合金的强度和韧性越低。含钴量相同时,YT类硬质合金由于碳化钛的加入,合金具有较高的硬度及耐磨性,同时,合金的表面会形成一层氧化薄膜,切削不易粘刀,具有较高的热硬性;但其强度和韧性比YG类硬质合金低。因此YG类硬质合金刀具挞合加工脆性材料(如铸铁),而YT类硬质合金刀具适合加工塑性材料(如钢等)。 3.通用硬质合金 它是以碳化钽或碳化铌取代YT类硬质合金中的一部分碳化钛钛制成的。由于加入碳化钽(碳化铌),显著提高了合金的热硬性,常用来加工不锈钢、耐热钢、高锰钢等难加工的材料。所以也称其为“万能硬质合金”。 万能硬质合金代号用“硬”“万”两字汉语拼音字母字头“YW”加顺序号表示。如YW1,YW2等。 上述硬质合金,硬度高,脆性大,除除磨削外,不能进行切削加工,一般不能制成形状复杂的整体刀具,故一般将硬质合金制成一定规格的刀片,使用前将其紧固(用焊接、粘接或机械紧固)在刀体或模具上。 近年来,又开发了一种钢结硬质合金,它与上述硬质合金的不同点在于其粘接剂为合金粉末(不锈钢或高速钢),从而使其与钢一样可以进行锻造、切削、热处理及焊接,可以制成各种形状复杂的刀具、模具及耐磨零件等。例如高速钢结硬质合金可以制成滚刀、圆锯片等刀具。

什么是钢结硬质合金

什么是钢结硬质合金 钢结硬质合金是近三十年来才发展起来的一种新型工模具材料,它是在合金钢的基体上均匀分布 30-50%硬质颗粒,经过烧结、锻造而成,因而既具有象硬质合金那样的高硬度、高强度、高耐磨性,又具有合金钢的可冷、热加工性能,如锻、车、铣、刨、磨、热处理等。它作为一种可加工、高耐磨的材料,已经广泛应用于各种拉伸模、冲裁模、挤压模、压型模、整形模、冷热轧辊、耐磨零件,使用寿命均比常用工模具钢提高十倍甚至几十倍以上,取得了非常显著的经济效果。 钢结硬质合金是以钢为粘结相,以碳化物(主要是碳化钛、碳化钨)做硬质相,用粉末冶金方法生产的复合材料。其微观组织是细小的硬质相,弥散均匀分布于钢的基体中(用于模具的钢结硬质合金,基体主要采用含铬、钼、钒的中高碳合金工具钢或高速钢)。 钢结硬质合金是介于钢和硬质合金之间的一种材料,具有以下特点: 工艺性能好具有可加工性和可热处理性,在退火状态下,可以可以采用普通切削加工设备和刀具进行车、铣、刨、磨、钻等机械加工。还可以锻造、焊接。与硬质合金相比,成本低,适用范围更广。良好的物理、力学性能 钢结硬质合金在淬硬状态具有很高的硬度。由于含有大量弥散分布的高硬度硬质相,其耐磨性可以与高钴硬质合金接近。与高合金模具钢相比,具有较高的弹性模量、耐磨性、抗压强度和抗弯强度。与硬质合金相比,具有较好的韧性。 具有良好的自润滑性、较低的摩擦系数、优良的化学稳定性。 钢结硬质合金在拉深模具中的应用 许多钢结硬质合金烧结坯件经退火后可进行普通的切削加工,经淬火、回火后有近似于金属陶瓷硬质合金的硬度和良好的耐磨性,也可以进行焊接和锻造,并具有耐磨、抗氧化等特性。尽管这类材料成本较高,制模难度较大,但使用后可显著提高模具的使用寿命,在大批量生产中具有很好的技术经济效果。因此,在更大范围、更深层次推广它,对模具行业具有非常重要的意义。 1、原生产中存在的问题 矿用自救器下外壳尺寸如图1所示,材料为08A1,料厚0.8mm,生产批量为大批量。成形该制件需两次拉深。原模具中,凹模材料均为Crl2,所用设备为普通双动压力机。生产中,模具使用一段时间后,制件表面就会出现明显的擦伤痕迹,严重影响了外观质量。观察发现:第一道拉深工序结束后,半成品外表面已有少量划痕,二次拉深后擦伤、划痕明显增多,而且凹模工作表面磨损严重,还常常粘附着制件材料。修模后也只能拉深几千个壳体。为解决这一问题,工厂曾尝试提高模具制造精度,降低表面粗糙度值,甚至抛光、镀铬,但仍不能从根本上解决产品表面拉伤、模具寿命短的问题。

金属材料及热处理大纲

《金属材料与热处理》课程教学大纲 课程名称:金属材料与热处理 适用专业:数控模具先修课程:机械制图、工程力学 总学时数: 64 总学分数: 2 理论学时: 60 实践学时: 4 主撰人: 一、课程的地位、作用与任务 本课程是机械类各专业的一门重要的专业基础课,承担了培养了解金属的组 织和结构、材料的机械和力学性能以及掌握各种材料热处理方法和工艺的专业技 术人才的重任;是一门融汇了多学科知识于一体,培养能够发展机电一体化技术, 开发、设计机电一体生产的应用型、管理型、复合型人才的必修课。 二、课程教学的目标和基本要求 通过本课程的学习,要了解和掌握常用材料的分类,牌号,性能,用途及一般的选取原则,了解钢、铁及有色金的热处理工艺原理、特点及应用。 培养学生的工程观念和规范意识,要善于观察、思考,勤于实践,培养学生 应用理论联系实际的方法去解决工程实际问题。具有合理选择材料和制造热 处理工艺路线的能力。 学生应在先学完《物理》《工程分子》等课程,并经过金属工艺的生产实训,对材料及热处理方面有一定的感性认识后,再学习本课程,通过本课 程的学习,为《机械制造》等专业课奠定基础,也为学生从事机电一体化专 业方面工作打下坚实的基础。 三、课程教学内容及要求 绪论(1学时) (一)教学目标 通过本章学习了解金属材料的学习方法及本课程的内容 (二)教学重点 深刻理解本课程的内容及学习方法 (三)教学内容: 1.金属的发展过程 2.学习本门课程的方法 3.本课程的内容及重点和难点

第一章金属的性能(5学时) (一)教学目标 掌握金属的力学性能,了解金属的其它性能 (二)教学重点 掌握金属材料的主要力学性能指标,以及各性能的符号、表示方法 (三)教学内容: 1.金属的力学性能 2.金属的工艺性能 第二章金属的晶体结构与结晶(4学时) (一)教学目标 掌握金属的晶体结构和结晶过程,以及金属的同素异构转变,了解本章的其它内容 (二)教学重点 晶格的类型及结构、纯金属的结晶过程、金属的同素异构转变的理解 (三)教学内容 1.金属的晶体结构 2.纯金属的结晶 3.金属的同素异构转变 第三章金属的塑性变形与再结晶(6学时) (一)教学目标: 掌握单晶体和多晶体塑性变形、回复与再结晶概念的理解 (二)教学重点: 单晶体和多晶体的塑性变形、再结晶的过程分析 (三)教学内容: 1.金属的塑性变形 2.冷塑性变形对金属组织和性能的影响 3.回复与再结晶 4.金属的热塑性变形 第四章合金的晶体结构与结晶(6学时) (一)教学目标 掌握合金组织结构的分类及构成特点,二元合金相图的建立及共晶相图的 分析 (二)教学重点 合金晶体结构的分类、共晶相图的结晶过程分析 (三)教学内容:

合金元素在合金钢中的作用

合金元素在合金钢中的作用 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有-%的硅。如果钢中含硅量超过硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入-%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰-%。在碳素钢中加入%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于%,优质钢要求小于%。在钢中加入的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过%塑性显著降低。当铜含量小于%对焊接性无影响。 15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。 16、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度。 17、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。

硬质合金属性

WC硬质合金的属性 常用的硬质合金以WC为主要成分,根据是否加入其它碳化物而分为以下几类: 1、钨钴类(WC+Co)硬质合金(YG) 它由WC和Co组成,具有较高的抗弯强度的韧性,导热性好,但耐热性和耐磨性较差,主要用于加工铸铁和有色金属。细晶粒的YG类硬质合金(如YG3X、YG6X),在含钴量相同时,其硬度耐磨性比YG3、YG6高,强度和韧性稍差,适用于加工硬铸铁、奥氏体不锈钢、耐热合金、硬青铜等。 2、钨钛钴类(WC+TiC+Co)硬质合金(YT) 由于TiC的硬度和熔点均比WC高,所以和YG相比,其硬度、耐磨性、红硬性增大,粘结温度高,抗氧化能力强,而且在高温下会生成TiO 2,可减少粘结。但导热性能较差,抗弯强度低,所以它适用于加工钢材等韧性材料。 3、钨钽钴类(WC+TaC+Co)硬质合金(YA) 在YG类硬质合金的基础上添加TaC(NbC),提高了常温、高温硬度与强度、抗热冲击性和耐磨性,可用于加工铸铁和不锈钢。 4、钨钛钽钴类(WC+TiC+TaC+Co))硬质合金(YW) 在YT类硬质合金的基础上添加TaC(NbC),提高了抗弯强度、冲击韧性、高温硬度、抗氧能力和耐磨性。既可以加工钢,又可加工铸铁及有色金属。因此常称为通用硬质合金(又称为万能硬质合金)。目前主要用于加工耐热钢、高锰钢、不锈钢等难加工材料。 5、WC: 分子量195.86; Tungsten carbide 性质:化学式WC。黑色六方结晶。密度15.63g/cm3(18℃)。熔点(2870±50)℃。沸点6000℃。莫氏硬度约9。不溶于水,溶于硝酸和氢氟酸的混合液和王水。耐酸性强。硬度高。弹性模量大。导电度为金属的40%。化学性质稳定。低于400℃时不与氯气作用。用炭黑与钨粉加热至1400~1500℃制得。大量用作高速切削车刀、窑炉结构材料、喷气发动机部件、金属陶瓷材料、电阻发热元件等制得。 6、TiC: 分子式:TiC 沸点:4820℃ 中文名称:碳化钛 英文名称:Titanium carbide;titanium carbide 性质:灰黑色结晶。熔点约3200℃。不与盐酸作用。可由骨炭与二氧化钛在电炉中加热制得。TiC的热膨胀系数(7.4×10-6℃-1), TiC晶粒有五个滑移系,且在800℃以上呈延性; 是硬质合金的重要成分。用作金属陶瓷,具有高硬度、耐腐蚀、热稳定性好的特点。还可用来制造切削工具。在炼钢工业中用作脱氧剂。

钢结硬质合金基本特点

钢结硬质合金基本特点 硬质合金作为工业的牙齿,钢结硬质合金是在硬质合金的基础上发展的新型工具材料。株洲三鑫硬质合金生产有限公司荣誉产品钢结硬质合金基本特点表现如下: 1.钢结硬质合金的硬质相(WC或碳化钛)一般占合金总质量的30%-50%,其余部分为钢基体。由于钢基体所占比例较大,钢的性质较为明显,因而可进行锻造和热处理等加工。经过粉末混合、压制成型、烧结、锻造、切削加工、特处理等工序后,可得到各种规格、形状的钢结硬质合金制品。其韧性指标较普通硬质合金有较大程度的改善,硬度(HRC)可达到60-70,经过锻造、切削加工和热处理等工艺处理后,可制作各种复杂的模具,其应用范围将更加广泛。 2.钢结硬质合金制品可根据需要进行各种热处理操作,以满足不同模具在使用性能上的要求,特别是经过淬火和回火后,可获得回火马氏体+合金碳化物+均匀分布的硬质相典型组织,保证了模具材料的强度、硬度、韧性等使用性能要求,同时形成了有效的耐磨面,从而大大提高了钢结硬质合金模具的耐磨性。 3.钢结硬质合金的成分可根据模具的使用性能要求和工艺性能要求进行灵活调整。作为钢结硬质合金基体和黏结相的钢种可以根据需要进行大范围的改变,这种改变有利于在满足模具使用要求的前提下,有效地降低生产成本,提高生产效益。 4.钢结硬质合金模具与合金模具相比,虽然价格较高,但模具的使用寿命可提高十几倍到几十倍,可以减少模具用量以及更换模具所需的时间,可以采用镶嵌的方式在模具的关键部位使用,从而降低生产成本,提高产品的加工质量和加工精度。 5.对于有特殊要求的模具和耐磨件,如在要求耐磨的同时又要求耐腐蚀、耐热、导热、抗氧化等性能时,可通过调整黏结相的基本类型,使其具有不锈钢、耐磨钢、高速钢等特性,以满足不同场合的使用要求。 钢结硬质合金的制造工艺与WC-Co硬质合金相似,都需要严格严谨的控制各个工艺流程,以达到最佳使用性能。

碳素钢和低合金钢的定义

碳钢 主要指力学性能取决于钢中的碳含量,而一般不添加大量的合金元素的钢,有时也称为普碳钢或碳素钢。 碳钢也叫碳素钢,指含炭量WC小于2%的铁碳合金。 碳钢除含碳外一般还含有少量的硅、锰、硫、磷。 按用途可以把碳钢分为碳素结构钢、碳素工具钢和易切削结构钢三类,碳素结构钢又分为建筑结构钢和机器制造结构钢两种; 按冶炼方法可分为平炉钢、转炉钢和电炉钢; 按脱氧方法可分为沸腾钢(F)、镇静钢(Z)、半镇静钢(b)和特殊镇静钢(T Z); 按含碳量可以把碳钢分为低碳钢(WC ≤ 0.25%),中碳钢(WC0.25%—0.6%)和高碳钢(WC>0.6%); 按磷、硫含量可以把碳素钢分为普通碳素钢(含磷、硫较高)、优质碳素钢(含磷、硫较低)和高级优质钢(含磷、硫更低)和特级优质钢。 一般碳钢中含碳量较高则硬度越大,强度也越高,但塑性较低。 按国际标准,把钢区分为非合金钢和合金钢两大类,非合金钢是通常叫做碳素钢的一大钢类,钢中除了铁和碳以外,还含有炉料带入的少量合金元素Mn、Si、Al,杂质元素P、S及气体N、H、O等。合金钢则是为了获得某种物理、化学或力学特性而有意添加了一定量的合金元素Cr、Ni、Mo、V,并对杂质和有害元素加以控制的另一类钢。 原则上讲,合金钢分为低合金钢、中合金钢和高合金钢,顾名思义,以含有合金元素的总量来加以区分,总量低于3%称为低合金钢,5~10%为中合金钢,大于10%为高合金钢。在国内习惯上又将特殊质量的碳素钢和合金钢称为特殊钢,全国31家特钢企业专门生产这类钢,如优质碳素结构钢、合金结构钢、碳素工具钢、合金工具钢、高速工具钢、碳素弹簧钢、合金弹簧钢、轴承钢、不锈钢、耐热钢、电工钢,还包括高温合金、耐蚀合金和精密合金等等。在钢的分类上,近年虽努力向国际通用标准靠拢,但还有许多不同之处。 ①随着特钢向“特”、“精”、“高”发展,向深加工方向延伸,特钢的领域越来越窄。美国特钢协会将特钢定位在工模具钢、不锈钢、电工钢、高温合金和镍合金。日本把结构钢和高强度钢归并在特钢范畴。随着我国普钢企业的技术改造和工艺进步,特钢企业的产品领域也在缩小,1999年普钢厂已生产特钢产品总量的34%。 ②国外的低合金钢,实际上是我们所熟悉的低合金高强度钢,属于特殊钢范畴,在美国叫做高强度低合金钢(HSLA—Steel),俄罗斯及东欧各国称为低合金建筑钢,日本命名为高张力钢。而在国内,首先是把低合金钢划入了普钢范围,概念上的区别导致在产品质量上的差异。在名称上也几经变化,如低合金建筑钢、普通低合金钢、低合金结构钢,至1994年叫做低合金高强度结构钢(GB/T1591—94)。到目前为止,从发表的资料文献来看,低合金钢的名称仍然随着国家、企业和作者而异。

合金元素在钢中的作用

第六章合金钢 合金钢的优点:高的强度和淬透性 第一节合金元素在钢中的作用 常用合金元素: 非碳化物形成元素——Co Ni Cu Si Al 碳化物形成元素——Zr Nb V Ti W Mo Cr Mn Fe 强中强弱 一、合金元素对钢中基本相的影响 1、形成合金铁素体 合金元素→溶入A →形成合金铁素体→固溶强化(Cr,Ni较好)2、形成合金碳化物 弱碳化物形成元素形成合金渗碳体(Fe,Mn)3C 中强碳化物形成元素形成合金碳化物(Cr23C6,Fe3W3C) 强碳化物形成元素形成特殊碳化物(VC,TiC) 熔点、硬度和稳定性: 特殊碳化物> 合金碳化物> 合金渗碳体> Fe3C 二、合金元素对Fe-FeC相图的影响 合金元素对A相区影响 扩大A相区元素(Mn)——E、S点左下移 缩小A相区元素(Cr)——E、S点左上移 奥氏体钢:1Cr18Ni9 铁素体钢:1Cr17 莱氏体钢:W18Cr4V

三、合金元素对热处理的影响 1、对加热的影响 多数元素减缓A形成,阻碍晶粒长大 2、对冷却的影响 多数元素溶入A后→过冷A稳定性↑→Vc↑→淬透性↑ →Ms点↓→残余A量↑提高淬透性的意义: ①增加淬硬层深度 ②减少工件变形、开裂倾向3、对回火的影响 ①回火稳定性→抗回火软化的能力 ②产生二次硬化(析出特殊碳化物,产生弥散强化;A残→M或B下) 第二节低合金钢 一、低合金高强度钢 碳素结构钢:Q195,Q215,Q235,Q255,Q275 低合金高强度钢:Q295,Q345,Q390,Q420,Q460 Q235+Me(<3%) →Q345 1、成分:0.1~0.2%C,合金元素2~3% 主加元素:Mn ——固溶强化 辅加元素:Ti,Cr,Nb ——弥散强化 使用状态:热轧或正火(F + P),不需最终热处理 2、性能:较高的σs ,良好的塑性韧性, 焊接性,抗蚀性,冷脆转变温度低

相关文档