文档库 最新最全的文档下载
当前位置:文档库 › MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用

MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用

MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用
MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用

MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用

摘要:凸轮机构可以使从动件准确的实现某种预期的运动规律,它广泛的应用于自动机械、自动控制装置和装配生产线中。本文将从凸轮机构的压力角及其基本尺寸的设计、从动件的运动规律、凸轮廓线的设计等方面介绍matlab在摆动滚子从动件盘形凸轮机构设计中的应用。

关键词:摆动滚子从动件盘形凸轮机构 matlab

the application of matlab in the oscillating roller follower disc cam mechanism design

li hailong, luo fengming

(southwest jiaotong university emei, le shan si chuan province ,614202)

abstract:cam mechanism can make the follower accurately realize some expected movement which is widely used in automatic machinery, automatic control equipment and assembly production line. the article will introduce the application of matlab in the oscillating roller follower disc cam mechanism design from the pressure angle of cam and its basic size design, the motion law of the follower and cam profile design etc.

key words: disk cam mechanism with oscillating roller follower;matlab

基于MATLAB软件的凸轮轮廓曲线设计_

基于MATLAB软件的凸轮轮廓曲线设 计 摘要:以偏置移动从动件盘形凸轮为例,基于MATLAB软件对凸轮轮廓曲线进行了解析法设计.绘制出轮廓曲线。运行结果表明:在从动件运动规律确定的情况下,利用MATLAB软件以很方便、快捷地得到凸轮的轮廓曲线。 关键词:凸轮机构;凸轮轮廓曲线;MATLAB;解析法 前言 凸轮轮廓曲线的设计,一般可分为图解法和解析法.利用图解法能比较方便地绘制出各种平面凸轮的轮廓曲线.但这种方法仅适用于比较简单的结构,用它对复杂结构进行设计则比较困难,而且利用图解法进行结构设计,作图误差较大,对一些精度要求高的结构不能满足设计要求。解析法可以根据设计要求,通过推导机构中各部分之间的几何关系,建立相应的方程,精确地计算出轮廓线上各点的坐标,然后把凸轮的轮廓曲线精确地绘制出来.但是,当从动件运动规律比较复杂时,利用解析法获得凸轮的轮廓曲线的工作量比较大.而MATLAB软件提供了强大的矩阵处理和绘图功能,具有核心函数和工具箱.其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好,且可以方便迅速地用三维图形、图像、声音、动画等表达计算结果、拓展思路[1]。因此,基于MATLAB软件进行凸轮机构的解析法设计,可以解决设计工作量大的问题。 本文基于MATLAB软件进行凸轮轮廓曲线的解析法设计,利用《机械原理》课程的计算机辅助教学,及常用机构的计算机辅助设计.其具体方法为首先精确地计算出轮廓线上各点的坐标,然后运用MATLAB绘制比较精确的凸轮轮廓曲线。

1 设计的意义与已知条件 1.1意义 凸轮机构是由具有曲线轮廓或凹槽的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构,它广泛地应用于各种机械,特别是自动机械、自动控制装置和装配生产线中,是工程实际中用于实现机械化和自动化的一种常用机构。所以,在凸轮的加工中,精确的确定凸轮的轮廓,这对于保证凸轮所带动从动件的运动规律是尤为重要的。 1.2已知条件 偏置移动从动件盘形凸轮设计已知条件(图1): 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动 基圆半径rb = 40 mm,滚子半径rt = 10mm,推杆偏距e = 15 mm, 推程升程h = 50 mm,推程运动角ft = 100度,远休止角fs = 60度 回程运动角fh = 90度,推程许用压力角alp = 35度。

滚子摆动从动件凸轮设计matlab程序

disp ' ******** 滚子摆动从动件凸轮设计 ********' disp '已知条件:' disp ' 凸轮作顺时针方向转动,从动件做摆动' disp ' 从动件在推程作等加速/等减速运动,在回程作等加速等减速运动' rb =52;rt = 10;qm=15;ft = 60;fs = 10;fh = 60;alp = 35;a=140;l=122;q0=asin(rb/a)*180/pi; fprintf (1,' 基圆半径 rb = %3.4f mm \n',rb) fprintf (1,' 滚子半径 rt = %3.4f mm \n',rt) fprintf (1,' 起始角度 q0= %3.4f mm \n',q0) fprintf (1,' 最大摆动角度 qm = %3.4f mm \n',qm) fprintf (1,' 推程运动角 ft = %3.4f 度 \n',ft) fprintf (1,' 远休止角 fs = %3.4f 度 \n',fs) fprintf (1,' 回程运动角 fh = %3.4f 度 \n',fh) fprintf (1,' 推程许用压力角 alp = %3.4f 度 \n',alp) hd= pi / 180;du = 180 / pi; %角度弧度互换 d1 = ft + fs;d2 = ft + fs + fh; disp ' ' disp '计算过程和输出结果:' disp ' 1- 计算凸轮理论轮廓的压力角和曲率半径' disp ' 1-1 推程(等加速/等减速运动)' s = zeros(ft);ds = zeros(ft);d2s = zeros(ft);vt=zeros(ft);st1=zeros(ft);at=zeros(ft); at = zeros(ft);atd = zeros(ft);pt = zeros(ft); for f = 1 : ft if f <= ft / 2 s(f)=2*(qm/ft^2)*f^2;st1(f)=s(f);s = s(f); %推程加速方程式 ds(f)=(qm/ft^2)*f;vt(f)=ds(f);ds = ds(f); d2s(f)=4*qm/ft;at(f)=d2s(f);d2s = d2s(f); else s(f)=qm-2*qm*(ft-f)^2/ft^2;st1(f)=s(f); s = s(f); %推程减速方程式 ds(f)=4*qm*(ft-f)/ft^2;vt(f)=ds(f);ds = ds(f); d2s(f)=-4 *qm/ft^2;at(f)=d2s(f);d2s = d2s(f); end at(f)= atan((-l*(1-ds))/(a*sin((s+q0)*hd))-(-1)*cos((s+q0)*hd)/sin((s+q0)*hd));atd(f) = at(f) * du; %推程压力角的角度和弧度表达式 p1= -a*sin(f*hd)+l*sin((s+q0-f)*hd)*(ds-1); p2= a*cos(f*hd)+l*cos((s+q0-f)*hd)*(ds-1); p3=-a*cos(f*hd)+l*(ds-1)^2*cos((s+q0-f)*hd)+l*d2s*sin((s+q0-f)*hd); p4=-a*sin(f*hd)-l*(ds-1)^2*sin((s+q0-f)*hd)+l*ds*cos((s+q0-f)*hd); pt(f)= (p1^2+p2^2)^1.5/(p1*p4-p2*p3) ;p = pt(f);

直动从动件盘形凸轮机构设计说明书

机械原理大作业二直动从动件盘形凸轮机构设计任务书 课程名称:机械原理 设计题目:盘形凸轮机构设计(20) 院系:机电工程学院 班级:1508104 设计者:关宇珩 学号:1150810423 指导教师:陈明 设计时间:2017.6.15 哈尔滨工业大学机械设计制造

目录 一.凸轮设计要求 (1) 二.凸轮轮廓设计数学模型 (3) 三.计算流程框图 (4) 四.matlab程序 (5) 五.计算结果与分析 (10)

一.凸轮设计要求

二.凸轮轮廓设计数学模型 1.确定凸轮偏心距与基圆半径(mm ) 通过matlab 对已给s 方程求导,通过许用压力角做斜率已知的直线,找出其与线图的切线,并找出切线的y 轴截距。 由于最大截距绝对值为65,则取偏心距3/56e =,基圆半径12/385r 0=,滚子半径 3/28r =。计算2200e -r s =。 2.建立压力角方程 已知方程: ??? ? ? ?+=e -d /ds arctan 0?α分段代入s 方程,计算升程和回程的压力角。 3.建立凸轮轮廓线的坐标方程 已知凸轮轴心在从动件左方。建立方程(理论轮廓线): ()??ecos sin s s x 0++=;()??esin -cos s s y 0+=; 建立方程(外包络实际轮廓线): ()() 2 2 d /dy d /dx d /dy r x X ??? ++=; ()() 2 2 d /dy d /dx d /dx r -y Y ??? +=; 4.建立曲率方程

已知方程: ()() 2 /322 2dx /dy 1dx /y d k += ; ; k /1R =通过参数方程的求导方法建立R ~ψ的方程。 三.计算流程框图 设时间ψ为未知量 对s ,v ,a 方程求导,绘制位移、速度、 加速度和?d /ds ~s 线图 利用许用压力角做已知斜率曲线,寻找与?d /ds ~s 线图相交的y 轴截距绝对值最大的直线为切线,取偏 心距e 、基圆半径r0、滚子半径 建立压力角方程 建立理论轮廓线和实际轮廓线的坐标方 程

滚子摆动从动件凸轮设计matlab程序

} disp ' ******** 滚子摆动从动件凸轮设计 ********' disp '已知条件:' disp ' 凸轮作顺时针方向转动,从动件做摆动' disp ' 从动件在推程作等加速/等减速运动,在回程作等加速等减速运动' rb =52;rt = 10;qm=15;ft = 60;fs = 10;fh = 60;alp = 35;a=140;l=122;q0=asin(rb/a)*180/pi; fprintf (1,' 基圆半径 rb = % mm \n',rb) fprintf (1,' 滚子半径 rt = % mm \n',rt) fprintf (1,' 起始角度 q0= % mm \n',q0) ; fprintf (1,' 最大摆动角度 qm = % mm \n',qm) fprintf (1,' 推程运动角 ft = % 度 \n',ft) fprintf (1,' 远休止角 fs = % 度 \n',fs) fprintf (1,' 回程运动角 fh = % 度 \n',fh) fprintf (1,' 推程许用压力角 alp = % 度 \n',alp) hd= pi / 180;du = 180 / pi; %角度弧度互换 d1 = ft + fs;d2 = ft + fs + fh; disp ' ' . disp '计算过程和输出结果:' disp ' 1- 计算凸轮理论轮廓的压力角和曲率半径' disp ' 1-1 推程(等加速/等减速运动)' s = zeros(ft);ds = zeros(ft);d2s = zeros(ft);vt=zeros(ft);st1=zeros(ft);at=zeros(ft); at = zeros(ft);atd = zeros(ft);pt = zeros(ft); for f = 1 : ft if f <= ft / 2 s(f)=2*(qm/ft^2)*f^2;st1(f)=s(f);s = s(f); %推程加速方程式 ( ds(f)=(qm/ft^2)*f;vt(f)=ds(f);ds = ds(f); d2s(f)=4*qm/ft;at(f)=d2s(f);d2s = d2s(f); else s(f)=qm-2*qm*(ft-f)^2/ft^2;st1(f)=s(f); s = s(f); %推程减速方程式 ds(f)=4*qm*(ft-f)/ft^2;vt(f)=ds(f);ds = ds(f); d2s(f)=-4 *qm/ft^2;at(f)=d2s(f);d2s = d2s(f);

凸轮运动Matlab仿真-Matlab课程设计

Matlab 课程设计 李俊机自091 设计题目一:凸轮机构设计 已知轮廓为圆形的凸轮(圆的半径为100mm、偏心距为20mm),推杆与凸轮运动中心的距离20mm,滚子半径为10mm,请利用matlab仿真出凸轮推杆的运动轨迹和运动特性(速度,加速度),并利用动画演示出相关轨迹和运动特性。 %总程序代码 clc; clf; clear; p=figure('position',[100 100 1200 600]); for i=1:360 %画圆形凸轮 R=100; %圆形凸轮半径 A=0:0.006:2*pi; B=i*pi/180; e=20; %偏心距 a=e*cos(B);

b=e*sin(B); x=R*cos(A)+a; y=R*sin(A)+b; subplot(1,2,1) plot(x,y,'b','LineWidth',3); %填充 fill(x,y,'y') axis([-R-e,R+e,-R-e,R+e+100]); set(gca,'Xlim',[-R-e,R+e]) set(gca,'Ylim',[-R-e,R+e+100]) axis equal; axis manual; axis off; hold on; plot(a,b,'og') plot(e,0,'or') plot(0,0,'or','LineWidth',3)

%画滚子 gcx=0; %滚子中心X坐标r=10; %滚子半径 gcy=sqrt((R+r)^2-a^2)+b; %滚子中心Y坐标 gx=r*cos(A)+gcx; %滚子X坐标 gy=r*sin(A)+gcy; %滚子Y坐标 plot(gx,gy,'b','LineWidth',2); %画其它部分 plot([0 a],[0 b],'k','LineWidth',4) plot([3 3],[170 190],'m','LineWidth',4) plot([-3 -3],[170 190],'m','LineWidth',4) %画顶杆 gc=120; dgx=[0 0]; dgy=[gcy gcy+gc]; plot(dgx,dgy,'LineWidth',4); hold off

偏置直动滚子推杆盘形凸轮matlab编程(程序)

机械原理大作业 学院:机械与电子信息学院 授课老师:曾小慧 姓名:张京 学号:547 日期:2015-5-23

目录 1.求轮廓曲线 ○1推程阶段 ○2远休止阶段 ○3回程阶段 ○4近休止阶段 ○5Matlab程序设计 ○6轮廓图形 2.求工作廓线 ○1推程阶段 ○2远休止阶段 ○3回程阶段 ○4近休止阶段 ○5Matlab程序设计 ○6轮廓图形 3.求解最大压力角 ○1压力角公式 ○2MATLAB程序设计 ○3根据MATLAB程序作图可得出其压力角与角度的关系并分析○4失真情况分析 4.附录 Matlab程序

凸轮轮廓 9-14试设计偏置直动滚子推杆盘形凸轮机构的理论轮廓曲线和工作廓线。已知凸轮轴置于推杆轴线右侧,偏距e=20mm ,基圆半径r。=50mm ,滚子半径rr=10mm 。凸轮以等角速度沿顺时针方向回转,在凸轮转过角d1=120o的过程中,推杆按正弦加速度运动规律上升h=50mm ;凸轮继续转过d2=30o时,推杆保持不动;其后,凸轮再回转角度d3=60o时,推杆又按余弦加速度运动规律下降至起始位置;凸轮转过一周的其余角度时,推杆又静止不动。 解: 1.求理论廓线 对于偏置直动滚子推杆盘形凸轮机构,凸轮理论廓线上B 点(即滚子中心)的直角坐标为 ]cos sin )[(0δδe s s x ++-= δδsin cos )(0e s s y -+= (a ) 式中mm mm e r s 826.4520502222 00=-=-= ① 推程阶段 3212001π δ=?= )] 2/()3sin()2/3[()]2/()/2sin()/[(110110111πδπδπδπδδδ-=-=h h s (?? ????=32, 01πδ) ② 远休止阶段 63002π δ=?= 502=s ?? ????=6,02πδ

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

基于MATLAB的平面盘形凸轮机构参数化设计

基于MATLAB的平面盘形凸轮机构参数化设计 作者:李军, LI Jun 作者单位:九江学院,机械与材料工程学院,江西,九江,332005 刊名: 煤炭技术 英文刊名:COAL TECHNOLOGY 年,卷(期):2011,30(3) 参考文献(4条) 1.孙桓;陈作模;葛文杰机械原理 2009 2.任欣;万新南基于MATLAB的AR及BP模型在矿井涌水量预测中的应用与比较[期刊论文]-煤炭技术 2009(03) 3.曹岩MATLEB R2006a基础篇 2008 4.张明;周志锋基于MATLAB与VBML的凸轮机构虚拟设计研究及实现[期刊论文]-机械传动 2006(01) 本文读者也读过(10条) 1.张小委.王振兵.李颖.ZHANG Xiao-wei.WANG Zhen-bing.LI Ying基于余弦定理和Matlab的气弹簧设计计算[期刊论文]-建筑机械化2011,32(5) 2.王锡霖.李举.许文艺.严日明.WANG Xi-lin.LI Ju.XU Wen-yi.YAN Ri-ming基于Matlab的平面正弦连杆机构动力学分析[期刊论文]-长春工业大学学报(自然科学版)2011,32(1) 3.李立全.王进礼基于MATLAB的导杆机构的概率设计[期刊论文]-黑龙江科技信息2008(20) 4.赵利明.温倩.ZHAO Li-ming.WEN Qian SolidWorks在平面连杆机构设计中的应用[期刊论文]-河南纺织高等专科学校学报2005,17(3) 5.林伟艺.蓝兆辉平面凸轮机构位移反求的杆组方法[期刊论文]-机械设计与研究2003,19(z1) 6.卫江红连杆机构运动分析与仿真系统的开发[期刊论文]-内蒙古科技与经济2009(9) 7.陈文.傅蔡安.CHEN Wen.FU Caian混合驱动冲压机构的运动学分析及参数优化[期刊论文]-机床与液压 2011,39(7) 8.徐梓斌.闵剑青.XU Zi-bin.MIN Jian-qing VB/Matlab在机构动力学分析中的应用[期刊论文]-轻工机械2005,23(2) 9.耿姝芳.李晓亮.刘立.Geng Shufang.Li Xiaoliang.Liu Li基于MATLAB的双滑块机构运动学仿真[期刊论文]-冶金设备2007(3) 10.赵春花.汤文成.郭丽华.ZHAO Chun-hua.TANG Wen-cheng.GUO Li-hua识别平面多杆混合驱动机构的元桁架消去法[期刊论文]-机械设计2009,26(2) 本文链接:https://www.wendangku.net/doc/7910261438.html,/Periodical_mtjs201103010.aspx

虚拟样机Adams作业尖端摆动从动件凸轮机构设计

《产品设计与虚拟样机》 2013-11-26

尖端摆动从动件凸轮机构设计 北京航空航天大学机械工程及自动化学院(北京100191) 摘要 摆动从动件凸轮机构的设计通常采用的方法为反转法。在ADAMS中对凸轮机构的设计,需要对从动件添加运动规律函数,通过从动件与凸轮接触点位移曲线求解出凸轮轮廓曲线,再拉伸得到凸轮;而对于摆动件凸轮,若摆杆采用直杆,在仿真过程中,摆杆会与凸轮相交,因此摆杆设计为曲形,这样保证摆杆与凸轮接触基本是同一点接触且不会存在相交干涉,若依旧采用直杆作为摆杆,由于接触点是变动的,接触点曲线法不能得出凸轮的正确轮廓,应该在从动件上添加一条标志曲线,通过运动过程中标志曲线的包络线来得到凸轮轮廓,然后再获得凸轮。 关键词:摆动从动件凸轮机构;ADAMS;接触点;凸轮轮廓曲线;标志曲线

目录 1 摆动从动件凸轮机构设计要求 (1) 1.1 题目设计要求 (1) 1.2 题目分析........................................................................ 错误!未定义书签。 2 建立虚拟样机模型 (2) 2.1 设置工作空间及网格参数 (2) 2.2 创建摆杆模型 (3) 2.2.1 创建R100mm及R200圆曲线............................ 错误!未定义书签。 2.2.2 Boolean减运算得到摆杆................................. 错误!未定义书签。 2.3 创建凸轮模型............................................................... 错误!未定义书签。 2.4 创建凸轮副及驱动角速度........................................... 错误!未定义书签。 2.4.1 创建Marker点.................................................. 错误!未定义书签。 2.4.2 创建凸轮副........................................................ 错误!未定义书签。 2.4.3 添加驱动角速度................................................ 错误!未定义书签。 2.5 检查模型....................................................................... 错误!未定义书签。 3 仿真与后处理.......................................................................... 错误!未定义书签。 3.1 仿真模型....................................................................... 错误!未定义书签。 3.2 测试与后处理............................................................... 错误!未定义书签。 3.3 结果分析....................................................................... 错误!未定义书签。 4 结束语...................................................................................... 错误!未定义书签。参考文献: .. (12)

第九章凸轮机构及其设计

第九章凸轮机构及其设计 第一节凸轮机构的应用、特点及分类 1.凸轮机构的应用 在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式的凸轮机构。 例1内燃机的配气机构 当凸轮回转时,其轮廓将迫使推杆作往复摆动,从而使气阀开启或关闭(关闭是借弹簧的作用),以控制可燃物质在适当的时间进入气缸或排出废气。至于气阀开启和关闭时间的长短及其速度和加速度的变化规律,则取决于凸轮轮廓曲线的形状。 例2自动机床的进刀机构 当具有凹槽的圆柱凸轮回转时,其凹槽的侧面通过嵌于凹槽中的滚子迫使推杆绕其轴作往复摆动,从而控制刀架的进刀和退刀运动。至于进刀和退刀的运动规律如何,则决定于凹槽曲线的形状。 2.凸轮机构及其特点 (1)凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆动或移动的。推杆是被凸轮直接推动的构件。因为在凸轮机构中推杆多是从动件,故又常称其为从动件。凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。 (2)凸轮机构的特点

1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。 2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 3.凸轮机构的分类 凸轮机构的类型很多,常就凸轮和推杆的形状及其运动形式的不同来分类。 (1)按凸轮的形状分 1)盘形凸轮(移动凸轮) 2)圆柱凸轮 盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转。移动 凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作 出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。盘形凸轮机构和移动凸轮机构为平面凸轮机构,而圆柱凸轮机构是一种 空间凸轮机构。盘形凸轮机构的结构比较简单,应用也最广泛,但其推杆的行程不能太大,否则将使凸轮的尺寸过大。 (2)按推杆的形状分 1)尖顶推杆。这种推杆的构造最简单,但易磨损,所以只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2)滚子推杆。滚子推杆由于滚子与凸轮轮廓之间为滚动摩擦,所以磨损较小,故可用来传递较大的动力,因而应用较广。

凸轮的matlab绘制

附2:习题4-3解答 (1)凸轮的理论廓线方程: 0022 00()sin cos ()cos sin x s s e y s s e s r e ????=++?? =+-?=-式中 (2)从动件在不同阶段的位移方程: 2sin()[0,120]230[120,150][150,300]'0 [300,360] h h s h h π???φπφ???φ??-∈????∈???=? ?-∈????∈???推程阶段远休止阶段回程阶段近休止阶段 (3)求解凸轮的实际廓线: 2222 a r a r 00x =x-r cos y =y-r sin sin cos ()cos sin sin ()sin cos cos dx d dx dy d d dy d dx dy d d dx ds s s e d d dy ds s s e d d θθ ?θ???θ????????????++?? ?? ?=??????? ? ? ?????? ? ?- ?=?????? ? ?? ?????? ?=++-?? ? ?=++-?? 式中而

同样,由于位移s 与从动件所处的运动阶段有关,所以有: 2cos()[0,120]0[120,150]s [150,300]'0 [300,360] h h d h d π??φφφ???φ??-∈????∈???=??∈????∈???推程阶段远休止阶段回程阶段近休止阶段 (4)代入已知条件,并用Matlab 语言编程求解,编程代码如下: disp ' ******** 偏置直动滚子从动件盘形凸轮设计 ********' disp '已知条件:' disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边' disp ' 从动件在推程作摆线运动规律运动,在回程作等速运动规律运动' ro = 50;rr = 10;e = 12;h = 30;ft = 120;fs = 30;fh = 150; fprintf (1,' 基圆半径 ro = %3.4f mm \n',ro) fprintf (1,' 滚子半径 rr = %3.4f mm \n',rr) fprintf (1,' 推杆偏距 e = %3.4f mm \n',e) fprintf (1,' 推程行程 h = %3.4f mm \n',h) fprintf (1,' 推程运动角 ft = %3.4f 度 \n',ft) fprintf (1,' 远休止角 fs = %3.4f 度 \n',fs) fprintf (1,' 回程运动角 fh = %3.4f 度 \n',fh) hd = pi / 180;du = 180 / pi; so = sqrt( ro^2 - e^2 ); d1 = ft + fs;d2 = ft + fs + fh; disp ' ' disp '计算过程和输出结果:' disp ' 1-1 推程(摆线运动规律运动)' s = zeros(ft);ds = zeros(ft);d2s = zeros(ft); for f = 1 : ft s(f) = h * f / ft - h * sin(2 * pi * f / ft) / (2 * pi);s = s(f); ds(f) = h / (ft * hd) - h / (ft * hd) * cos(2 * pi * f / ft);ds = ds(f); d2s(f) = 2 * pi * h / (ft * hd) ^ 2 * sin(2 * pi * f / ft);d2s = d2s(f); end disp ' 1-2 回程(等速运动规律运动)' s = zeros(fh);ds = zeros(fh);d2s = zeros(fh); for f = d1 : d2 s(f) = h - h * (f-150) / fh; s = s(f); ds(f) = - h / (fh * hd);ds = ds(f); d2s(f) = 0;d2s = d2s(f); end disp ' 2- 计算凸轮理论廓线与实际廓线的直角坐标'

移动从动件盘形凸轮机构中

第4章习题 4-1 移动从动件盘形凸轮机构中,凸轮以转速为400r/min等速回转,工作要求从动件的运动规律如图4-6所示;当凸轮转速90°时,从动件在起始位置停歇不动;凸轮再转过90°时,从动件上升38.1mm;当凸轮又转过90°时,从动件停歇不动;当凸轮转过一周中剩余的90°时,从动件返回原处。试设计从动件的运动规律,并写出以坐标原点0为起点的从动件的位置方程式。 4-2 图4-7所示为凸轮机构从动件的速度曲线,它由四段直线组成。要求:在题图上画出推杆的位移曲线、加速度曲线;判断在哪几个益有冲击存在,是刚性冲击还是柔性冲击;在图示的F位置,凸轮与推杆之间有无惯性力作用,有无冲击存在。 ?=π/2,行程h=50mm。 4-3 在直动从动件盘形凸轮机构中,已知推程时凸轮的转角 求当凸轮转速ω1=10rad/s时,等速、等加速等减速、余弦加速度和正弦加速度四种常用的 ?。 基本运动规律的最大速度υmax、最大加速度αmax以及所对应的凸轮转角 0 4-4 在图4-8所示的从动件位置移线图中,AB段为摆线运动,BC段为简谐运动。若 ?要在两段曲线交界处的B点从动件的速度和加速度分别相等,试根据图中所给数据确定 2角的大小。 4-5 图4-9中给出了某直动从动件盘形凸轮机构的从动件的速度线图。要求: (1)画出其加速度和位移线图; (2)说明此种运动规律的名称及特点(υ、α的大小及冲击的性质)。 4-6 试求一个对心平底推杆盘状凸轮的廓线方程。已知推杆的平底与其导路垂直,基圆半径r b=45mm,凸轮顺时针方向匀速转动。要求当凸轮转动120°时,推杆以等加速等减速运动上升15mm;再转过60°时,推杆以正弦加速度运动回到原位置;凸轮转过一周中的其余角度时,推杆静止不动。 4-7 试以图解法设计一摆动滚子从动件盘形凸轮轮廓曲线。已知l OA=55mm,r o=25mm,l AB=50mm,r T=8mm,凸轮逆时针方向匀速转动。要求当凸轮转过180°时,推杆以余弦加速度运动向上摆动φ=25°;转过一周中的其余角度时,推杆以正弦加速度运动摆回到原位置。 4-8 用图解法设计摆动从动件圆柱凸轮。圆柱凸轮以等角速回转一圈时,从运件往复 ?=180°,从动件以等加速等减速摆动一次,其运动规律为:凸轮按图4-10所示方向回转

Matlab编程五次凸轮

附录11、用解析法设计凸轮2的实际轮廓曲线。 1、建立凸轮轮廓的数学模型。 图l 为往复式偏心从动件盘形凸轮的机构运动简图,B 为 理论轮廓线上的任意一点,在图示的直角坐标系中,B 的坐 标,即凸轮理论廓线上的直角坐标参数方程为: X=OE+EF=(S0+S )*Sin (J )+e*Cos (J ) Y=BD – FD=(S0+S )*Cos (J ) – e*Sin (J ) 式中: X ,Y :凸轮理论廓线上的某一点坐标 (mm) e :从动件的偏心距(mm),OC R :凸轮的基圆半径(mm),OA S 0:220E R S -=(mm),CK J :凸轮的转角 S :S =f(J)从动件运动方程,KB BC =CK 十KB =S 0十S 因为工作廓线在法线方向的距离处处相等,且等于滚子半径r ’,故当已知理论廓线上的任意一点B(X,Y)时,只要沿理论廓线在该点的法线的方向取距离为r ’,即得到工作廓线上的相应点B ’(X ’,Y ’).由高等数学可知,理论廓线B 点处的法线n-n 的斜率(与切线斜率互为负倒数)应为 Tan a=-dx/dy=(dx/dJ)/(dx/dJ)/(-dy/dJ)=sina/cosa 注: a 为理论廓线B 点处的法线和X 轴的夹角。 根据(1)(2)两式有 dx/dJ=(ds/dJ-e)sin(J)+(s0+s)cos(J) (3) dy/dJ=(ds/dJ-e)cos(J)-(s0+s)sin(J) (4) 可得 Sin a=(dx/dJ)/((dx/dJ)^2+(dy/dJ)^2)^0.5 (5) Cos a=-(dy/dJ)/((dx/dJ)^2+(dy/dJ)^2)^0.5 (6) 工作廓线上对应的点B ’(x ’,y ’)坐标为: x ’=x-r ’cos a y ’=y- r ’sin a 2、 从动件运行规律:五次多项式运行规律 从动件运动形式为:升—停—降—停型 图1

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限

第6章凸轮--习题及答案(全)

习 题 6-6 在摆动从动件盘形凸轮机构中,从动件行程角max 30o ψ=,0120o Φ=,'0120o Φ=, 从动件推程、回程分别采用等加速等减速和正弦加速度运动规律,试写出摆动从动件在各行程的位移方程式。 解:(1)推程的位移方程式为 ()2 0max 02max 0max 00202 022 2?ψψ?ψψψ?????Φ?=??≤≤ ? Φ???? Φ? =-Φ-≤≤Φ?Φ? 代入数值得 ()2220230 060120240130-120 60120240o o o o o o o o o ??ψ?ψ?????=??=≤≤? ????? ?=?-≤≤?? (2)回程的位移方程式为 ()max 0''0001 21sin 3602o s s T T T πψψ?π ??????=?-+ Φ+Φ≤≤??? ?ΦΦ?????? =-Φ+Φ? 代入数值得: o 2401360360301sin 240120212012024030 30sin 3 24036042o o o o o o o o o o o o ?ψ?π???π ????-=?-+-??? ???? ?-=-+≤≤ 6-7 图中所示为从动件在推程的部分运动曲线,其0o s Φ≠,'0o s Φ≠,试根据s 、v 和a 之 间的关系定性的补全该运动曲线,并指出该凸轮机构工作时,何处有刚性冲击?何处有柔性冲击?

解:如图所示。 (1)AB段的位移线图为一条倾斜直线,因此,在这一段应为等速运动规律,速度线图为一条水平直线,其加速度为零。 (2)BC段的加速度线图为一条水平直线。因此,在这一段应为等加速运动规律,其速度线图为一条倾斜的直线,位移线图为一条下凹的二次曲线。 (3)CD段的速度线图为一条倾斜下降的斜直线。因此,在这一段应为等减速运动规律,其加速度线图为一条水平直线,位移线图为一条上凸的二次曲线。 该凸轮在工作时,在A处有刚性冲击,B、C、D处有柔性冲击。 6-8 对于图中的凸轮机构,要求: 1)写出该凸轮机构的名称; 2)在图上标出凸轮的合理转向; 3)画出凸轮的基圆; 4)画出从升程开始到图示位置时推杆的位移s,相对应的凸轮转角?,B点的压力角α;5)画出推杆的行程H。 解:1)偏置直动滚子推杆盘形凸轮机构。 2)为使推程压力角较小,凸轮应该顺时针转动。

盘形凸轮轮廓设计计算说明书

《机械设计基础》 设计实践设计计算说明书 题目:盘形凸轮轮廓设计 学院:航天学院 班号:0818201班 学号:1081820101 姓名:宋春林 日期:2010年9月26日

《机械设计基础》设计实践任务书 题目:盘形凸轮轮廓设计设计原始数据及要求: 凸轮角速度ω方向:顺时针基圆半径:40mm 偏距:8mm 滚子半径:10mm 推杆运动规律:

目录 设计过程 (1) 1取比例尺并作基圆 (1) 2作反转运动,量取?0、?s、?0′、?s′,,等分?0、?0′ (1) 3计算推杆的预期位移 (1) 4确定理论轮廓线上的点 (1) 5绘制理论轮廓线 (2) 6绘制实际轮廓线 (3) 参考文献: (4)

设计过程 1取比例尺并作基圆 取比例尺为1:1,在图纸上选一个合适的位置作为凸轮回转中心,并以之为圆心,40mm 为半径绘出凸轮基圆。 2作反转运动,量取?0、?s、?0′、?s′,,等分?0、?0′ 在基圆上由起始点位置1出发,沿着?ω1回转方向依次量取?0=150°、?s=30°、?0′=120°、?s′=60°,并将推程运动角?0五等分,回程运动角?0′六等分。作出各等分线。 1 3计算推杆的预期位移 =30φ/150°(φ=0°~150°) ①等速推程时s=hφ ?0 计算结果见下表: ②等速回程时s=h?hφ ?0′ 计算结果见下表 以凸轮回转中心为圆心,8mm长为半径作偏距圆,找到各等分线与偏距圆的交点。过

这些交点分别作偏距圆的切线,这些切线与基圆相交后按照以上两表延长出相应的距离。其端点就是理论轮廓线上的点。 5绘制理论轮廓线 将上面的确定的理论轮廓线上的各点用一条光滑曲线连起来,就可以得到理论轮廓线。

机械原理课程设计matlab程序 凸轮机构

clear h=70;w=2*pi*300/60; %行程h(单位mm),凸轮角转速(rad/s)d1=pi/2; d2=10/180*pi; d3=pi/2; d4=170/180*pi;%算出凸轮的推程角,远休止角,回程角,近休止角(弧度) d=1:1:360; d0=d/180*pi; %定义向量 %推程 for i=1:45 %等加速运动 s(i)=2*h*d0(i)^2/d1^2; v(i)=4*h*w*d0(i)/d1^2; a(i)=4*h*w^2/d1^2; end for i=46:90 %等减速运动 s(i)=h-2*h*(d1-d0(i))^2/d1^2; v(i)=4*h*w*(d1-d0(i))/d1^2; a(i)=-4*h*w^2/d1^2; end for i=91:101 s(i)=s(i-1); v(i)=0; a(i)=0; end %回程 for i=102:146 %等加速运动 s(i)=h-2*h*d0(i-100)^2/d3^2; v(i)=-4*h*w*d0(i-100)/d3^2; a(i)=-4*h*w^2/d3^2; end for i=147:192 %等减速运动 s(i)=2*h*(d3-d0(i-100))^2/d3^2; v(i)=-4*h*w*(d3-d0(i-100))/d3^2; a(i)=4*h*w^2/d3^2; end for i=193:360 s(i)=s(i-1); v(i)=0; a(i)=0; end r0=61;e0=39; s0=sqrt(r0^2-e0^2); for i=1:1:360 x(i)=(s0+s(i))*sin(d0(i))+e0*cos(d0(i));

滚子摆动从动件凸轮设计matlab程序

disp’******** 滚子摆动从动件凸轮设计********'disp '已知条件:’ disp ’凸轮作顺时针方向转动,从动件做摆动’ disp’从动件在推程作等加速/等减速运动,在回程作等加速等减速运动’rb=52;rt= 10;qm=15;ft= 60;fs=10;fh = 60;alp = 35;a=140;l=122;q0=asin(rb/a)*180/pi; fprintf (1,’基圆半径 rb =%3、4f mm\n',rb) fprintf(1,’滚子半径 rt =%3、4fmm \n’,rt) fprintf (1,' 起始角度q0= %3、4f mm \n’,q0) fprintf (1,'最大摆动角度 qm =%3、4fmm \n',qm) fprintf (1,'推程运动角 ft =%3、4f 度\n',ft) fprintf(1,' 远休止角fs = %3、4f 度 \n',fs) fprintf(1,' 回程运动角fh=%3、4f度 \n’,fh) fprintf(1,’推程许用压力角 alp=%3、4f 度\n',alp) hd= pi / 180;du = 180/pi; %角度弧度互换 d1 = ft+fs;d2=ft + fs+fh; disp ' ' disp '计算过程与输出结果:’ disp ’1-计算凸轮理论轮廓得压力角与曲率半径' disp '1-1 推程(等加速/等减速运动)' s=zeros(ft);ds = zeros(ft);d2s =zeros(ft);vt=zeros(ft);st1=zeros(ft);at=zeros(ft); at = zeros(ft);atd=zeros(ft);pt = zeros(ft); for f= 1: ft if f <=ft/ 2 s(f)=2*(qm/ft^2)*f^2;st1(f)=s(f);s=s (f);%推程加速方程式 ds(f)=(qm/ft^2)*f;vt(f)=ds(f);ds= ds(f); d2s(f)=4*qm/ft;at(f)=d2s(f);d2s=d2s(f); else s(f)=qm-2*qm*(ft-f)^2/ft^2;st1(f)=s(f);s=s(f);%推程减速方程式 ds(f)=4*qm*(ft-f)/ft^2;vt(f)=ds(f);ds= ds(f); d2s(f)=-4*qm/ft^2;at(f)=d2s(f);d2s = d2s(f); end at(f)=atan((-l*(1-ds))/(a*sin((s+q0)*hd))—(-1)*cos((s+q0)*hd)/sin((s+q0)*hd));atd(f)= at(f) * du; %推程压力角得角度与弧度表达式

相关文档
相关文档 最新文档