文档库 最新最全的文档下载
当前位置:文档库 › 北大版高数第十一章习题解答

北大版高数第十一章习题解答

北大版高数第十一章习题解答
北大版高数第十一章习题解答

高数习题集(附答案)

第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+= x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

§2 初等函数 必作习题 P31-33 1,8,9,10,16,17 必交习题 一、 设)(x f 的定义域是]1,0[,求下列函数的定义域: (1))(x e f ; (2))(ln x f ; (3))(arcsin x f ; (4))(cos x f 。 二、(1)设)1ln()(2x x x f +=,求)(x e f -; (2)设23)1(2+-=+x x x f ,求)(x f ; (3)设x x f -= 11)(,求)]([x f f ,})(1{x f f 。)1,0(≠≠x x

三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。 四、设???>+≤-=0, 20, 2)(x x x x x f ,???>-≤=0, 0,)(2x x x x x g ,求)]([x g f 。

高等数学第一章练习题答案

第一章 练习题 一、 设()0112>++=?? ? ??x x x x f ,求)(x f 。 二、 求极限: 思路与方法: 1、利用极限的运算法则求极限; 2、利用有界变量与无穷小的乘积仍是无穷小这一性质; 3、利用两个重要极限:1sin lim 0=→x x x ,e x x x =??? ??+∞→11lim ; 4、利用极限存在准则; 5、用等价无穷小替换。注意:用等价无穷小代替时被代替的应是分子、分母或其无穷小因子。如果分子或分母是无穷小的和差,必须将和差化为积后方可用等价无穷小代替积中的因子部分。 6、利用函数的连续性求极限,在求极限时如出现∞-∞∞ ∞,,00等类型的未定式时,总是先对函数进行各种恒等变形,消去不定因素后再求极限。 7、利用洛比达法则求极限。 1、()()()35321lim n n n n n +++∞ → 2、???? ? ?---→311311lim x x x 3、122lim +∞ →x x x 4、x x x arctan lim ∞ →

5、x x x x sin 2cos 1lim 0-→ 6、x x x x 30 sin sin tan lim -→ 7、()x x 3cos 2ln lim 9 π → 8、11232lim +∞→??? ??++x x x x 三、 已知(),0112lim =??? ?????+-++∞→b ax x x x 求常数b a ,。 四、 讨论()nx nx n e e x x x f ++=∞→12lim 的连续性。 五、 设()12212lim +++=-∞→n n n x bx ax x x f 为连续函数,试确定a 和b 的值。 六、 求()x x e x f --=111 的连续区间、间断点并判别其类型。 七、 设函数()x f 在闭区间[]a 2,0上连续,且()()a f f 20=,则在[]a ,0上 至少有一点,使()()a x f x f +=。 八、 设()x f 在[]b a ,上连续,b d c a <<<,试证明:对任意正数p 和q , 至少有一点[]b a ,∈ξ,使 ()()()()ξf q p d qf c pf +=+

高等数学1(理工类)第1章答案

高等数学第一章习题 一、填空 1.设)(x f y =的定义域是]1,0(,x x ln 1)(-=?,则复合函数)]([x f y ?=的定义域为),1[e 2. 设)(x f y =的定义域是[1,2],则)1 1 ( +x f 的定义域 [-1/2,0] 。 3.设?? ?≤<-≤≤=2 11 101 )(x x x f , 则)2(x f 的定义域 [0,1] 。 5.设)(x f 的定义域为)1,0(,则)(tan x f 的定义域 Z k k k x ∈+ ∈,)4 ,(π ππ 6. 已知2 1)]([,sin )(x x f x x f -==φ,则)(x φ的定义域为 22≤≤-x 。 7. 设()f x 的定义域是[]0,1,则()x f e 的定义域(,0]-∞ 8.设()f x 的定义域是[]0,1,则(cos )f x 的定义域2,22 2k k π πππ?? -+ ??? ? 9. x x sin lim x ∞→= 0 10.()()()=+-+∞→17 6 1125632lim x x x x 176 5 3。 11.x x x )2 1(lim -∞ →= 2 e - 12.当∞→x 时, x 1 是比3-+x 13.当0→x 时,1132-+ax 与1cos -x 为等价无穷小,则=a 2 3- 14.若数列}{n x 收敛,则数列}{n x 是否有界 有界 。 15.若A x f x x =→)(lim 0 (A 为有限数),而)(lim 0 x g x x →不存在, 则)]()([lim 0 x g x f x x +→ 不存在 。 16.设函数)(x f 在点0x x =处连续,则)(x f 在点0x x =处是否连续。( 不一定 ) 17.函数2 31 22 ++-= x x x y 的间断点是-1、-2 18. 函数)(x f 在0x 处连续是)(x f 在该点处有定义的充分条件;函数)(x f 在0x 处有定义是)(x f 在该点处有极限的无关条件。(填:充要,必要,充分,既不充分也不必要,无关)。 19.函数左右极限都存在且相等是函数极限存在的 充要 条件,是函数连续的 必要 条件。(填:充分、必要、充要、既不充分也不必要)

高等数学第一章测试题

高等数学第一章测试题 一、单项选择题(20分) 1、当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( )不一定是无穷小. (A) ()()x x βα+ (B) ()()x x 22 βα + (C) [])()(1ln x x βα?+ (D) )() (2 x x βα 2、极限a x a x a x -→??? ??1 sin sin lim 的值是( ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3、 ??? ??=≠-+=0 01sin )(2x a x x e x x f ax 在0x =处连续,则a =( ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4、函数 ??? ?? ? ???<+<≤>-+=0,sin 1 0,2tan 1,1) 1ln()(x x x x x x x x x f π 的全体连续点的集合是 ( ) (A) (-∞,+∞) (B) (-∞,1) (1,+ ∞) (C) (-∞,0) (0, +∞) (D) (-∞,0) (0,1) (1,+ ∞) 5、 设 )1 1( lim 2 =--++∞ →b ax x x x ,则常数a ,b 的值所组成的数组(a ,b )为( ) (A ) (1,0) (B ) (0,1) (C ) (1,1) (D ) (1,-1) 6、已知函数 231 )(2 2 +--= x x x x f ,下列说法正确的是( )。 (A) )(x f 有2个无穷间断点 (B) )(x f 有1个可去间断点,1个无穷间断点 (C) )(x f 有2个第一类间断点 (D) )(x f 有1个无穷间断点,1个跳跃间断

北大计算机系考研_历年高等数学真题附答案

北大计算机考研 高等数学真题解答 2008年(5题60分) 1 (12分))(x f 有连续的二阶导数,0)(≠a f ,求) (1 )()(1lim a f a f a x f a x '---→。 2 (12分))(x f 在[]b a ,上连续且0)()(==b f a f ,0)()(>''b f a f ,证明:在()b a ,上必有一点u 使得0)(=u f 。 3 (12分)求不定积分? --dx x x x 2 ) ln (ln 1。 4 (12分)0)0(=f 且0)0(='f ,)(x f 有连续的导数,求dx x t x tf x x ? -→0 4 220) (lim 。 5 (12分))(x f 在0附近可导且导数大于0,证明无穷级数)1 (n f 发散,无穷级 数)1 ()1(n f n -收敛。 2007年(5题60分) 1 (12分)求不定积分?+dx x e x 22)1(tan 。 解:=+?dx x e x 22)1(tan +?xdx e x 22sec =?xdx e x tan 22 +?x d e x tan 2-x e x tan 2=? x d e x tan 2C x e x +tan 2。 2 (12分)求连续函数)(x f ,使它满足0)0(,sin )()(1 0=+=?f x x x f dt tx f 。 解:令,tx u =则0=t 时,0=u ,1=t 时,x u =,xdt du =; ? =1 )(dt tx f ?=x du u f x 0 )(1? +x x x f sin )(? =x du u f 0 )(?+x x x xf sin )(2 ?++'+=x x x x x f x x f x f cos sin 2)()()(2?--='x x x x f cos sin 2)(

高数第一章综合测试题复习过程

第一章综合测试题 一、填空题 1 、函数1()arccos(1) f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )f g x x =-, 则()g x = . 3、已知1tan ,0,()ln(1) , 0ax x e e x f x x a x +?+-≠?=+??=? 在0x =连续,则a = . 4、若lim 25n n n c n c →∞+??= ?-?? ,则c = . 5 、函数y =的连续区间为 . 二、选择题 1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数. (A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x 2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ). (A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛 (C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2, x x f x x x ?+≠±?=-??=±? 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断 (C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续 4、 设lim 0n n n x y →∞ =,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界 (C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ?????? 收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=, 得 2 21ln(1)4 x x x x ≤-+≤,(x 充分小),

高数教案第十章重积分

高数教案第十章重积分 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高等数学教案

第十章 重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =。 当(,)x y D ∈时,(,)f x y 在D 上连续且(,)0f x y ≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V 可以这样来计算: (1) 用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这 些小区域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω。 (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值。)

图10-1-1 从而 1n i i V ==?Ω∑ (将Ω化整为零) (2) 由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω??i i i i i i i f ≈?∈()()( )ξησξησ (以不变之高代替变高, 求i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈=∑()ξησ?1 (4) 为得到V 的精确值,只需让这n 个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n 个小区域直径中的最大者为λ, 则 V f n i i i i =→=∑lim (),λξησ01 ? 2.平面薄片的质量 设有一平面薄片占有xoy 面上的区域D , 它在(),x y 处的面密度为(),x y ρ,这里(),0x y ρ≥,而且(),x y ρ在D 上连续,现计算该平面薄片的质量M 。

七年级数学下册第一章单元测试题及答案

第一章 整式的乘除单元测试 卷(一) 一、精心选一选(每小题3分,共21分) 1.多项式8923 3 4 +-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 6 2.下列计算正确的是 ( ) A. 8 421262x x x =? B. ()() m m m y y y =÷34 C. ()2 2 2 y x y x +=+ D. 342 2 =-a a 3.计算()()b a b a +-+的结果是 ( ) A. 2 2 a b - B. 2 2 b a - C. 222b ab a +-- D. 2 22b ab a ++- 4. 1532 +-a a 与4322 ---a a 的和为 ( ) A.3252--a a B. 382 --a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( ) A. 9 1 312 -=? ? ? ??- B. 0590=? C. ()17530 =-. D. 8 1 23-=- 6. 若 () 682 b a b a n m =,那么n m 22-的值是 ( ) A. 10 B. 52 C. 20 D. 32 7.要使式子2 2259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30± 二、耐心填一填(第1~4题1分,第 5、6题2 分,共28分) 1.在代数式2 3xy , m ,362 +-a a , 12 , 22514xy yz x - , ab 32 中,单项式有 个,多项式有 个。 2.单项式z y x 4 2 5-的系数是 ,次数是 。 3.多项式51 34 +-ab ab 有 项,它们分别 是 。 4. ⑴ =?5 2x x 。 ⑵ () =4 3y 。 ⑶ () =3 22b a 。 ⑷ () =-425 y x 。 ⑸ =÷3 9 a a 。 ⑹ =??-024510 。 5.⑴=?? ? ??-???? ??325631mn mn 。 ⑵()()=+-55x x 。 ⑶ =-2 2)(b a 。 ⑷( )()=-÷-2 3 5312xy y x 。

高数第一章深刻复习资料

第一章 预备知识 一、定义域 1. 已知()f x 的定义域为(,0)-∞ ,求(ln )f x 的定义域。答案:(0,1) 2. 求32233 ()6 x x x f x x x +--=+- 的连续区间。提示:任何初等函数在定义域范围内都是连续的。 答案:()()(),33,22,-∞--+∞ 二、判断两个函数是否相同? 1. 2 ()lg f x x = ,()2lg g x x = 是否表示同一函数?答案:否 2. 下列各题中,()f x 和()g x 是否相同?答案:都不相同 ()2ln 1 (1) (),()1 1 (2) (),()sin arcsin (3) (),()x x f x g x x x f x x g x x f x x g x e -==-+==== 三、奇偶性 1. 判断()2 x x e e f x --= 的奇偶性。答案:奇函数 四、有界性 , 0?∈?>x D K ,使()≤f x K ,则()f x 在D 上有界。 有界函数既有上界,又有下界。 1. ()ln(1)f x x =- 在(1,2) 内是否有界?答案:无界 2. 221x y x =+ 是否有界?答案:有界,因为2 2 11<+x x 五、周期性 1. 下列哪个不是周期函数(C )。 A .sin , 0y x λλ=> B .2y = C .tan y x x = D .sin cos y x x =+ 注意:=y C 是周期函数,但它没有最小正周期。 六、复合函数 1. 已知[]()f x ? ,求()f x 例:已知10)f x x x ??=> ??? ,求()f x 解1:

高等数学第一章测试卷

高等数学第一章测试卷(B ) 一、选择题。(每题4分,共20分) 1.假设对任意的∈x R ,都有)()()(x g x f x ≤≤?,且0)]()([lim =-∞→x x g x ?,则)(lim x f x ∞ →( ) A.存在且等于零 B.存在但不一定为零 C.一定不存在 D.不一定存在 2.设函数n n x x x f 211lim )(++=∞→,讨论函数)(x f 的间断点,其结论为( ) A.不存在间断点 B.存在间断点1=x C.存在间断点0=x D. 存在间断点1-=x 3.函数222111)(x x x x x f +--=的无穷间断点的个数为( ) A. 0 B. 1 C. 2 D. 3 4.设函数)(x f 在),(+∞-∞内单调有界,}{n x 为数列,下列命题正确的是( ) A.若}{n x 收敛,则{)(n x f }收敛 B.若}{n x 单调,则{)(n x f }收敛 C.若{)(n x f }收敛,则}{n x 收敛 D.若{)(n x f }单调,则}{n x 收敛 5.设}{},{},{n n n c b a 均为非负数列,且∞===∞ →∞→∞→n n n n n n c b a lim ,1lim ,0lim ,则( ) A. n n b a <对任意n 成立 B. n n c b <对任意n 成立 C. 极限n n n c a ∞→lim 不存在 D. 极限n n n c b ∞ →lim 不存在 二、填空题(每题4分,共20分) 6.设x x x f x f x 2)1(2)(,2-=-+?,则=)(x f ____________。 7.][x 表示取小于等于x 的最大整数,则=??????→x x x 2lim 0__________。 8.若1])1(1[lim 0=--→x x e a x x ,则实数=a ___________。 9.极限=???? ??+-∞→x x b x a x x ))((lim 2 ___________。 10.设)(x f 在0=x 处可导,b f f ='=)0(,0)0(且,若函数?????=≠+=00sin )()(x A x x x a x f x F 在0=x 处连续,则常数=A ___________。

高等数学-第一章-1-5-作业答案

第49页 习题1-5 1 计算下列极限 (1)225 lim 3 x x x →+- 将2x =代入到25 3x x +-中,由于解析式有意义,因此 222525 lim 9323x x x →++==--- (2 )2231 x x x -+ 将x =223 1 x x -+中,解析式有意义,因此 ()22 2 233 01 1 x x x --= =++ (3)22121 lim 1 x x x x →-+- 将1x =代入到解析式中,分子为0,分母为0,因此该极限为 型,因式分解,可得 ()()()()()2 221111121 0lim lim lim 011112 x x x x x x x x x x x →→→---+====-+-+ (4)322042lim 32x x x x x x →-++ 将0x =代入到解析式中,分子为0,分母为0. 因此该极限为 型,因式分解,可得 ()()()() 22322000421421421lim lim lim 3232322x x x x x x x x x x x x x x x x →→→-+-+-+===+++ (5)()2 2 lim h x h x h →+- 将0h =代入到解析式中,分子为0,分母为0. 因此该极限为 型,因式分解,可得 ()()()2 2 2lim lim lim 22h h h x h x x h h x h x h h →→→+-+==+=

(6)211lim 2x x x →∞ ??- + ??? 由于lim 22x →∞ =,1lim 0x x →∞??- = ???,22lim 0x x →∞?? = ??? 因此由极限四则运算法则可知 221112lim 2lim 2lim lim 2002x x x x x x x x →∞ →∞→∞→∞?????? - +=+-+=++= ? ? ??????? (7)221 lim 21 x x x x →∞--- 当x →∞时,分子→∞,分母→∞,因此该极限为∞ ∞ 型,分子分母同时除以x 的最高次项,也就是2 x ,再利用极限四则运算法则,可知: 2 2 2 2221 1 1lim1lim 1101lim lim 1111 212002 2lim 2lim lim x x x x x x x x x x x x x x x x →∞→∞→∞→∞→∞→∞→∞- ---====-------- (8)242lim 31 x x x x x →∞+-+ 当x →∞时,分子→∞,分母→∞,因此该极限为∞ ∞ 型,分子分母同时除以x 的最高次项,也就是4 x ,再利用极限四则运算法则,可知: 2 2323422424 1111lim lim 00lim lim 0113131100 13lim1lim lim x x x x x x x x x x x x x x x x x x x →∞→∞→∞→∞→∞→∞→∞++++====-+-+-+-+ (9)22468 lim 54 x x x x x →-+-+ 4x =代入到解析式中,分子为0,分母为0. 因此该极限为 型,因式分解,可得 ()()()()2244424682422 lim lim lim 54141413 x x x x x x x x x x x x x →→→---+--====-+---- (10)211lim 12x x x →∞ ???? + - ???????

高数第一章答案

第一章 函数,极限与连续 第一节 函数 一、集合与区间 1.集合 一般地说,所谓集合(或简称集)是指具有特定性质的一些事物的总体,组成这个集合的事物称为该集合的元素。 由有限个元素组成的集合称为有限集。 由无穷多个元素组成的集合称为无限集。 不含任何元素的集合称为空集。 数集合也可以称为(数轴上的)点集。区间是用得较多的一类数集。 设a,b 为实数,且a0。开区间),(δδδ+-a a 称为点a 的δ邻域,记作),(δa U ,即}|{),(δδδ+<<-=a x a x a U 。其中a 叫作这个邻域的中心,δ称为这个邻域的半径。 在点a 的领域中去掉中心后,称为点a 的去心邻域,记作),(),(}||0|{),(),,(0 0δδδδδ+?-=<-<=a a a a a x x a U a U 即 二、函数概念 定义:设x 和y 是两个变量,若对于x 的每一个可能的取值,按照某个法则f 都有一个确定的y 的值与之对应,我们称变量y 是变量x 的函数,记为y =)(x f .这里称x 为自变量,y 为因变量。自变量x 的所以可能取值的集合称为定义域,记为D(f);因变量y 的相

北大版高数答案

习题 1.1 22 22222222222222 22. ,,.3,3.3, ,313 2.961,9124,31.3,93,3,3.,,. ,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p a a a b p a pb b b ====+=+=++=++======为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数为互素自然数,则素证 2.证 1.2222222,, .,..,: (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-?数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2). (2)232,15,1||5,1||(1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ?-<-<<<<<<<=?-+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4. ,| 1.(1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11x x a l x x x x X l X a l a l l x a l X a a n n a b a ++>->+>+<->-<-=-∞-?-+∞>=++∞?-∞-=≠<=-∞+∞-><<>=>-=-=解下列不等式或或若若若若证明其中为自然数若解(1)证5.: 6.1200001)(1)1).(,),(,).1/10.{|}.(,),,{|}, 10 {|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n b b n a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m --+++><-=∈?=?=?=?≥=?≤-∈-≤-Z L 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合 = 若则中有最小数-=证 7.(,),(,).1/10.|}.10n n n n a b a b m n b a A m <-=∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.2

高等数学上册第六版课后习题图文详细答案第一章

高等数学上册第六版课后习题详细答案(图文) 习题1-1 1. 设A =(-, -5)?(5, +), B =[-10, 3), 写出A ?B , A B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +), A B =[-10, -5), A \ B =(-∞, -10)?(5, +), A \(A \ B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A B ) C =A C ?B C . 证明 因为 x (A B )C x ?A B x ?A 或x ?B x A C 或x B C x A C ?B C , 所以 (A B )C =A C ?B C . 3. 设映射f : X →Y , A X , B X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A B )f (A )f (B ). 证明 因为 y f (A ?B )x ∈A ?B , 使f (x )=y (因为x ∈A 或x ∈B ) y f (A )或y f (B ) y f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y f (A B )x ∈A B , 使f (x )=y (因为x ∈A 且x ∈B ) y f (A )且y f (B ) y f (A )f (B ), 所以 f (A B )f (A )f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x X , 有I X x =x ; 对于每一个y Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y Y , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)] x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射. 对于映射g : Y →X , 因为对每个y Y , 有g (y )=x X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射. 5. 设映射f : X →Y , A X . 证明: (1)f -1(f (A ))?A ;

高数教案第十章重积分

高等数学教案

第十章 重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =。

当(,) x y D ∈时,(,) f x y在D上连续且(,)0 f x y≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V可以这样来计算: (1) 用任意一组曲线网将区域D分成n个小区域1σ ?, 2 σ ?,, n σ ?,以这些小区域的边界曲线为准线,作母线平行于z轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n个小曲 顶柱体 1 ?Ω, 2 ?Ω,, n ?Ω。 (假设 i σ ?所对应的小曲顶柱体为 i ?Ω,这里 i σ ?既代表第i个小区域,又表示它的面积值, i ?Ω既代表第i个小曲顶柱体,又代表它的体积值。) 图10-1-1 从而 1 n i i V = =?Ω ∑(将Ω化整为零) (2) 由于(,) f x y连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω?? i i i i i i i f ≈?∈ ()() () ξησξησ (以不变之高代替变高, 求 i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈ = ∑() ξησ ? 1 (4) 为得到V的精确值,只需让这n个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。

《高等数学一》第一章-函数--课后习题(含答案解析)

第一章函数 历年试题模拟试题课后习题(含答案解析)[单选题] 1、 设函数,则f(x)=() A、x(x+1) B、x(x-1) C、(x+1)(x-2) D、(x-1)(x+2) 【正确答案】B 【答案解析】 本题考察函数解析式求解. ,故 [单选题] 2、 已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是(). A、[1,3] B、[-1,5] C、[-1,3] D、[1,5] 【正确答案】A 【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4 即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题] 3、 设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为(). A、[0,2] B、[0,16] C、[-16,16] D、[-2,2] 【正确答案】D 【答案解析】根据f(x)的定义域,可知中应该满足: [单选题] 4、 函数的定义域为(). A、[-1,1] B、[-1,3] C、(-1,1) D、(-1,3) 【正确答案】B 【答案解析】 根据根号函数的性质,应该满足: 即 [单选题]

写出函数的定义域及函数值(). A、 B、 C、 D、 【正确答案】C 【答案解析】 分段函数的定义域为各个分段区间定义域的并集, 故D=(-∞,-1]∪(-1,+∞). [单选题] 6、 设函数,则对所有的x,则f(-x)=(). A、 B、 C、 D、 【正确答案】A 【答案解析】本题考察三角函数公式。 . [单选题] 7、 设则=(). A、 B、

高数 第十章线面积分习题和答案

第十章曲线积分曲面积分练习题 A 组 一.填空题 1. 设L 是 12 2 =+y x 上从)0,1(A 经)1,0(E 到)0,1(-B 的曲线段,则?L y dy e 2 = 2.设? MN 是从M(1,3) 沿圆 2)2()2(22=-+-y x 至点 )1,3(N 的半圆,则积分 ? ? +MN xdy ydx = 3. L 是从)6,1(A 沿6=xy 至点)2,3(B 的曲线段,则 ? ++L y x xdy ydx e )( = 4. 设L 是从)0,1(A 沿12 2 2 =+y x 至点2,0(B )的曲线段, 则 ? +L y x y x dy ye dx xe 2 22 = 5. 设L 是 2x y = 及 1=y 所围成的区域D 的正向边界,则 ?+L dx y x xy )(3 3 + dy y x x )(242+ = 6. 设L 是任意简单闭曲线,b a ,为常数,则? + +L bdy adx )( = 7. 设L 是xoy 平面上沿逆时针方向绕行的简单闭曲线,且9)34()2(=++-? dy y x dx y x L ,则L 所围成的 平面区域D 的面积等于 8. 常数 k = 时, 曲线积分? +L dy x kxydx 2 与路径无关。 9.设是球面 1222=++z y x ,则对面积的曲面积分 ?? ∑ ++ds z y x 222 = 10.设L 为)0,0(o , )0,1(A 和)1,0(B 为顶点的三角形围成的线, 则对弧长的曲线积分? L ds = 11. 设L 是从点)1,1(到)3,2(的一条线,则 ?-++L dy y x dx y x )()(= 12. 设L 是圆周 t a x cos =, t a y sin = )20(π≤≤t ,则 ? +L dS y x 322)(= 13. 设为曲面2 2 2 2 a z y x =++, 则??∑ dS z y x 2 22= 二、选择题 1.设→ → +=j y x Q i y x P A ),(),(,D y x ∈),(且P ,Q 在域D 内具有一阶连续偏导数,又L :? AB 是D 内任一曲线,则以下四个命题中,错误的是( )

高等数学上册第一章测试试卷

理科A 班第一章综合测试题 一、填空题 1 、函数1()arccos(1) f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )f g x x =-, 则()g x = . 3、已知1tan ,0,()ln(1) , 0ax x e e x f x x a x +?+-≠?=+??=? 在0x =连续,则a = . 4、若lim 25n n n c n c →∞+??= ?-?? ,则c = . 5 、函数y =的连续区间为 . 二、选择题 1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数. (A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x 2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ). (A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛 (C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2, x x f x x x ?+≠±?=-??=±? 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断 (C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续 4、 设lim 0n n n x y →∞ =,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界 (C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ?????? 收敛 ,则{}n y 必为无穷

1.1高数(北大版)

习题 1.1
证明 3为无理数. 1. 证 若 3不是无理数,则 3 = p p2 , p, q为互素自然数.3 = 2 , p 2 = 3q 2 .3除尽p 2 , q q
必除尽p, 否则p = 3k + 1或p = 3k + 2. p 2 = 9k 2 + 6k + 1, p 2 = 9k 2 + 12k + 4, 3除 p 2 将余1.故p = 3k , 9k 2 = 3q 2 , q 2 = 3k 2 , 类似得3除尽q.与p, q互素矛盾. 设 2. p是正的素数, 证明 p是无理数. 证 设 p= a a2 , a, b为互素自然数,则p = 2 , a 2 = pb 2 , 素数p除尽a 2 , 故p除尽a, b b 2 2 2 2 2 a = pk . p k = pb , pk = b .类似得p除尽b.此与a, b为互素自然数矛盾.
解下列不等式 : 3. (1) | x | + | x ? 1|< 3.\; (2) | x 2 ? 3 |< 2. 解 (1)若x < 0, 则 ? x + 1 ? x < 3, 2 x > ?2, x > ?1, (?1, 0); 若0 < x < 1, 则x + 1 ? x < 3,1 < 3, (0,1); 若x > 1, 则x + x ? 1 < 3, x < 3 / 2, (1,3 / 2). X = (?1, 0) ∪ (0,1) ∪ (1,3 / 2). (2) ? 2 < x 2 ? 3 < 2,1 < x 2 < 5,1 <| x |2 < 5,1 <| x |< 5, x = (1, 5) ∪ (? 5, ?1). 设 4. a, b为任意实数,(1)证明 | a + b |≥| a | ? | b |;(2)设 | a ? b |< 1, 证明 | a |<| b | +1. 证(1) | a |=| a + b + (?b) |≤| a + b | + | ?b |=| a + b | + | b |,| a + b |≥| a | ? | b | . (2) | a |=| b + (a ? b) |≤| b | + | a ? b |<| b | +1. 解下列不等式 : 5. (1) | x + 6 |> 0.1;(2) | x ? a |> l. 解(1)x + 6 > 0.1或x + 6 < ?0.1.x > ?5.9或x < ?6.1. X = (?∞, ?6.1) ∪ (?5.9, +∞). (2)若l > 0, X = (a + l , +∞) ∪ (?∞, a ? l ); 若l = 0, x ≠ a; 若l < 0, X = (?∞, +∞). 若 6. a > 1, 证明0 < n a ? 1 < a ?1 , 其中n为自然数. n
n
证若a > 1, 显然 n a = b > 1.a ? 1 = n a ? 1 = ( n a ? 1)(b n ?1 + b n ? 2 + L + 1) > n( n a ? 1). 设 7. (a, b)为任意一个开区间, 证明(a, b)中必有有理数. 证取自然数n 满足1/10 n < b ? a.考虑有理数集合 m A=An = { n | m ∈ Z}. 若An ∩ (a, b) = ?, 则A = B ∪ C , B = A ∩ {x | x ≥ b}, 10 C = A ∩ {x | x ≤ a}.B中有最小数m0 /10n , (m0 ? 1) /10n ∈ C , b ? a ≤ m0 /10 n -(m0 ? 1) /10 n =1/10n ,此与n的选取矛盾. 设 8. (a, b)为任意一个开区间, 证明(a, b)中必有无理数. 证取自然数n 满足1/10 n < b ? a.考虑无理数集合An = { 2 + m | m ∈ Z}. 以下仿8题. 10n
1

相关文档
相关文档 最新文档