文档库 最新最全的文档下载
当前位置:文档库 › 锂电池基本术语

锂电池基本术语

锂电池基本术语
锂电池基本术语

1、电池的定义:

按照学者们的命名“电池”即是“化学电源”,它是一个由化学能直接转换成电能的装置。称“化学电源”显得更科学一些,称“电池”则更贴近百姓一些。

2、何为“一次电池”和“二次电池”?

“一次电池”也被称为“原电池”,它是不可以充电的,当设计的容量用完后要更换新电池,它的优点是使用方便,它的缺点是大量的废弃电池对环境造成一定影响。“二次电池”也称“蓄电池”,是可充电电池,当电池的电量用到一定程度时可以用规定的充电器充电以恢复电量。还有一种介于二者之间的“可充电一次电池”,它是一次电池的原理,经改良后也可充电,但充放电深度和循环寿命都不能和“二次电池”同日而语。

3、“公称电压”是怎样确定的?规定它有什么作用?

“公称电压”顾名思义是大家公认的电压体系,就像220V是我们国家规定的家用交流电的“公称电压”一样,电池的“公称电压”其值规定在:当电池较小电流放电时的电压平台附近。所以它低于电池的开路电压,又高于较大电流工作时的负载电压。它的作用是为用电器的设计提供参考,也为电池使用者更换电池时提供依据。有关标准规定“每个电池必须标明公称电压和正负极性”。使用者也应注意:“大小形状即使相同,如公称电压不同的电池不能互换。”

目前市场流行的电池体系及公称电压是:

“锌锰”/“碱锰” 1.5V

“镍镉”/“镍氢” 1.2V

“铅酸”2.0V

“锂锰”3.0V

“锂硫”2.7V

“锂氯”3.6V

“锂钴” 3.8V

(从资料上看,也有标注3.6V和3.7V的,那是因为随着电池材料的改进,充电电压有所提高,电压平台也有所提高。规定3.8V是比较合理的。)

4、何为“额定容量”?“额定容量”是电池的设计电容量,有关标准规定:电池的实际容量应大于或等于额定容量,因此只要是负责任的厂家出品的电池,绝大多数电池个体容量均不低于额定容量。但容量的测定条件在标准中规定得非常严格,一般用户不一定具备,所以通常只是在室温下对电池进行定电流(或定电阻)放电,计算其容量基本附合就可以了。

5、何为“自放电率”?电池在存放期间,其正、负极反应物质会有一定的消耗,结果是使电池的实际容量有所下降。这种现象称为自放电,自放电率即是对这种现象的描述,以单位时段额定容量减少的百分数来表示。如3% /年。或是3% /月

6、何为“记忆效应”?

到目前为止,只是“镍镉”电池有此现象。当蓄电池在放电(使用时的状态)时如果没有将容量用完即行充电,那么电池以后的充放电容量只能达到那次放电的水平,任何方法也不可能恢复其额定容量了。如1000mAh的电池,如果有一次只放电100mAh就进行了充电,那么这只电池今后只能作为100mAh电池来使用。这就是所谓的“记忆效应”。“记忆效应”给用户带来很大的困难,所以后来研发的二次电池往往特意加注“无记忆效应”。铅酸电池就不注,因为铅酸流行的时候人们还不知道有“记忆效应”这会事儿。

7、“锂电池”是什么概念?

“锂电池”是以金属锂为负极材料的一次电池的总称,依据其正极材料的不同,构成许多电池体系。如“锂锰”;“锂硫”;“锂氯”;“锂碘”;“锂铜”等等。

8、“锂离子电池”是什么概念?

“锂离子电池”是负极材料为锂元素的二次电池的总称,依据正极材料的不同,构成许多体系。

如“锂钴”;“锂镍”;“锂锰”········等。不过锂离子电池是当今最新的电池体系,还有很多新体系正在研制和开发中。

9、放电率“nC”是什么概念?

电池的放电电流也是用户选配电池所关心的数据,有些样本直接给出允许持续电流及脉冲电流,但有些样本或文章则以“nC”来表述放电电流。其中“C”是额定容量,n是有单位的系数,其单位是“1/小时”,“nC”即是放电率。(n=1也不能省略)。例如:额定容量为“1000mAh”的电池,以“0.1C”放电,就是0.1 /h×1000mAh=100mA。放电电流是100mA。

10、锂/锰电池有那些特点?

锂/锰电池的显著特点是“比能量高”及“贮存期长”。它的比能量是碱锰电池的4倍,也就是说相同规格的电池。其容量和电压都是碱锰电池的2倍。其贮存性能就更显优越,电化学体系几乎不存在锂的自溶,贮存容降几乎为零,所以敢于承诺贮存期8年。

11、什么是电池的容量?

电池的容量有额定容量和实际容量之分。电池的额定量是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。Li-ion规定电池在常温、恒流(1C)恒压(4.2V)控制的充电条件下充电3h,电池的实际容量是指电池在一定的放电条件下所放出的实际电量,主要受放电倍率和温度的影响(故严格来讲,电池容量应指明充放电条件)。容量常见单位有:mAh、Ah=1000mAh)。

12、什么是电池内阻?

是指电池在工作时,电流流过电池内部所受到的阻力。有欧姆内阻与极化内阻两部分组成。电池内阻大,会导致电池放电工作电压降低,放电时间缩短。内阻大小主要受电池的材料、制造工艺、电池结构等因素的影响。是衡量电池性能的一个重要参数。注:一般以充电态内阻为标准。测量电池的内阻需用专用内阻仪测量,而不能用万用表欧姆档测量。

13、什么是开路电压?

是指电池在非工作状态下即电路无电流流过时,电池正负极之间的电势差。一般情况下,Li-ion 充满电后开路电压为4.1-4.2V左右,放电后开压为3.0V左右,通过电池的开路电压,可以判断电池的荷电状态。

14、什么是工作电压?

又称端电压,是指电池在工作状态下即电路中有电流过时电池正负极之间电势差。在电池放电工作状态下,当电流流过电池内部时,不需克服电池的内阻所造成阻力,故工作电压总是低于开路电池,充电时则与之相反。Li-ion的放电工作电压在3.6V左右。

15、什么是放电平台?

放电平台是恒压充到电压为4.2V并且电电流小于0.01C时停充电,然后搁置10分钟,在任何们率的放电电流下下放电至3.6V时的放电时间。是衡量电池好坏的重要标准。

16、什么是(充放电)倍率?时率?

是指电池在规定的时间内放出其额定容量时所需要的电流值,它在数据值上等于电池额定容量的倍数,通常以字母C表示。如电池的标称额定容量为600mAh为1C(1倍率),300mAh则为0.5C,6A(600mAh)为10C.以此类推.

时率又称小时率,时指电池以一定的电流放完其额定容量所需要的小时数.如电池的额定容量为600mAh,以600mAh的电流放完其额定容量需1小时,故称600mAh的电流为1小时率,以此类推.

17、什么是自放电率?

又称荷电保持能力,是指电池在开路状态下,电池所储存的电量在一定条件下的保持能力。主要受电池制造工艺、材料、储存条件等因素影响。是衡量电池性能的重要参数。

注:电池100%充电开路搁置后,一定程度的自放电正常现象。在GB标准规定LI-ion后在20±2℃条件下开条件下开路搁置28天。可允许电池有容量损失。

18、什么是内压?指电池的内部气压,是密封电池在充放电过程中产生的气体所致,主要受电池材料、制造工艺、电池结构等因素影响。其产生原因主要是由于电池内部水分及有机溶液分解产生的气体于电池内聚集所致。高倍率的连续过充,会导致电池温度升高、内压增大,严重时对电池的性能及外观产生破坏性影响,如漏液、鼓底,电池内阻增大,放电时间及循环寿命变短等。Li-ion任何形式的过以都会导致电池性能受到严重破坏,甚至爆炸。帮Li-ion在充电过程中需采用恒流恒压充电方式,避免对电池产生过充。

19、为什么电池要储存一段时间后才能包装出货?电池的储存性能是衡量电池综合性能稳定程度的一个重要参数。电池经过一定时间储存后,允许电池的容量及内阻有一定程度的变化。经过了一段时间的储存,可以让内部各成分的电化学性能稳定下来,可以了解该电池的自放电性能的大小,以便保证电池的品质。

20、为什么要化成?电池制造后,通过一定的充放电方式将其内部正负极物质激活,改善电池的充放电性能及自放电、储存等综合性能的过程称为化成,电池粉有经过化成后才能体现真实性能。

A、充电率(C-rate)

C是Capacity的第一个字母,用来表示电池充放电时电流的大小数值。

例如:充电电池的额定容量为1100mAh时,即表示以1100mAh(1C)放电时间可持续1小时,如以200mA(0.2C)放电时间可持续5小时,充电也可按此对照计算。

B、终止电压(Cut-off discharge voltage)

指电池放电时,电压下降到电池不宜再继续放电的最低工作电压值。

根据不同的电池类型及不同的放电条件,对电池的容量和寿命的要求也不同,因此规定的电池放电的终止电压也不相同。

C、开路电压(Open circuit voltage OCV)

电池不放电时,电池两极之间的电位差被称为开路电压。

电池的开路电压,会依电池正、负极与电解液的材料而异,如果电池正、负极的材料完全一样,那么不管电池的体积有多大,几何结构如何变化,起开路电压都一样的。

D、放电深度(Depth of discharge DOD)

在电池使用过程中,电池放出的容量占其额定容量的百分比称为放电深度。

放电深度的高低和二次电池的充电寿命有很深的关系,当二次电池的放电深度越深,其充电寿命就越短,因此在使用时应尽量避免深度放电。

E、过放电(Over discharge)

电池若是在放电过程中,超过电池放电的终止电压值,还继续放电时就可能会造成电池内压升高,正、负极活性物质的可逆性遭到损坏,使电池的容量产生明显减少。

F、过充电(Over charge)

电池在充电时,在达到充满状态后,若还继续充电,可能导致电池内压升高、电池变形、漏夜等情况发生,电池的性能也会显著降低和损坏。

G、能量密度(Energy density)

电池的平均单位体积或质量所释放出的电能。

一般在相同体积下,锂离子电池的能量密度是镍镉电池的2.5倍,是镍氢电池的1.8倍,因此在电池容量相等的情况下,锂离子电池就会比镍镉、镍氢电池的体积更小,重量更轻。

H、自我放电(Self discharge)

电池不管在有无被使用的状态下,由于各种原因,都会引起其电量损失的现象。

若是以一个月为单位来计算的话,锂离子电池自我放电约是1%-2%、镍氢电池自我放电约3%-5%。

I、充电循环寿命(Cycle life)

充电电池在反复充放电使用下,电池容量回逐渐下降到初期容量的60-80%。

J、记忆效应(Memory effect)

在电池充放电过程中,会在电池极板上产生许多小气泡,时间一久,这些气泡会减少电池极板的面积,也间接影响电池的容量

放电速率简称放电率,常用时率和倍率表示

时率:是以放电时间表示的放电速率,即以某电流放至规定终止电压所经历的时间,例如某电池额定容量是 20小时率时为12AH即以C 20 为 60AH表示,则电池应以12/20=0.6A的电流放电,连续达到20H者即为合格。

倍率:是指电池放电电流的数值为额定数值的倍数,如放电电流表示为 0.1C 20 ,对于一个12AH(C 20 )的电池,即以0.1×12=12A的电流放电,3C 20 是指 36A的电流放电,C的下脚标表示放电时率。

终止电压:是指电池放电时电压下降到不宜再继续放电时的最低工作电压,一般高倍率、低

1C,2C,0.2C是电池放电速率:表示放电快慢的一种量度。所用的容量1小时放电完毕,称为1C 放电;5小时放电完毕,则成为1/5=0.2C放电。

锂电池的充放电系统

本科毕业论文(设计、创作) 题目:锂电池的充放电系统 学生姓名:学号:1002149 所在院系:专业:电气工程及其自动化入学时间:2010 年9 月导师姓名:职称/学位:副教授/硕士导师所在单位: 完成时间:2014 年 5 月安徽三联学院教务处制

锂电池的充放电系统 摘要:随着时代的发展,便携化设备应用的越来越广泛,而锂电池则成为便携化设备的主要的电源支持。锂电池与其他二次电池不同的是更需更安全高效的充电控制要求,因为这些特点让锂电池在实际的使用中有很多不便。因此,基于特征的锂离子电池的充电和放电特性,锂离子电池充电的充电过程和控制单元的的发展趋势,本文设计出了一款智能充放电系统。本文设计的控制单元大部分是由基于MAX1898的充电电路和AT89C51的控制单元构造而成。以LM7805 为MAX1898与AT89C51提供电源支持。本文还提供了用于锂离子电池的充电和放电控制系统的程序框图和功能。 锂离子充电电池和锂离子电池,微控制器,发电,转换和电压隔离光耦部分,放电特性充电芯片,锂离子电池充电电路设计,锂离子电池的程序设计充电作为主要内容本文。 关键词:单片机、MAX1898、AT89C51

Li-ion battery charge and discharge system Abstract:With the progress of the times, portable device applications more widely, and lithium battery becomes more portable equipment's main power supply support. Lithium secondary batteries with other difference is safer and more efficient charging needs control requirements , because these features make lithium batteries have a lot of inconvenience in actual use . Therefore, The body on the characteristics of lithium ion rechargeable electric discharge pool,the development trend of lithium-ion battery charging process and control unit , the paper designed an intelligent charging and discharging system . This design of the control unit is constructed from long MAX1898 -based charging circuit and a control unit from AT89C51 . Provide power supply support for LM7805 MAX1898 with AT89C51. This article also provides a block diagram and function for lithium-ion battery charge and discharge control system. Lithium- ion battery characteristics , charge and discharge characteristics of lithium -ion batteries , the introduction of lithium-ion battery charging circuit design, rechargeable lithium-ion battery is designed to generate part of the program the microcontroller parts, power supply , voltage conversion and opto-isolated part of the charging chip , etc. as the main content of the paper . Key words: SCM,STC89c51, MAX1898

锂电池结构与原理

锂电池原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。 2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。 4、电池的基本性能 (1)电池的开路电压 (2)电池的内阻 (3)电池的工作电压 (4)充电电压 充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。

废干电池与环保综合实践活动方案

综合实践活动方案 “废干电池与环保”活动设计 一、活动背景 干电池是我们的日常生活用品,用完后随手抛弃,已经是司空见惯了。你可知道干电池含有铅、锰、汞等多种重金属元素。一节1号电池若任其腐烂,可以毁掉一平方米土地,这意味着有更多的土地被污染;大量的重金属元素沉积在人体内还会引发多种疾病。人类只有一个地球,然而大量的污染物侵蚀着地球,威胁着人类的生存环境。让我们积极行动起来,保护地球,保护人类的唯一栖息地。让我们一起来研究、认识废干电池。 二、活动目标 1、情感目标 通过围绕“废干电池与环保”这一主题研究,激发学生探究的欲望和兴趣。培养环境保护意识;激发学生积极参与保护环境的活动,提高他们解决实际问题的能力,树立可持续发展的意识。同时在研究实践中培养良好的科学态度和坚韧的科学精神。 2、能力目标 通过调查访问、资料查询等实践活动培养学生收集、分析、处理信息的能力;通过对比实验培养学生观察和动手操作的能力,掌握科学研究的一般方法;并在实践中增强团队合作能力和人际交往能力。 3、认知目标:了解干电池的主要成分及其对环境的危害性。 三、活动内容 引导学生提出主题,合理分组,讨论制定活动方案 调查消费者如何处理废干电池以及对其危害性的认识 废干电池污染物对动物、植物生长的影响 回收废干电池 展示、评价研究成果 四、活动准备 在每次活动之前,要向学生介绍相应的方法,例如:怎样进行调查、访问、实验?以及在开展这些活动时,应注意的一些问题(特别是安全问题)。 五、活动过程 活动设计一:了解电池与人类的密切关系 一、了解电池消费情况 1、学生出示实物:手电、手表、计算器、玩具。 提问:这些物品的心脏是什么吗? 2、学生讨论回答:电池 3、大致统计电池的消费量。 (1)了解自己家庭中电池的年消费情况。

智能型锂电池管理系统(BMS)

智能型锂电池管理系统(BMS) 产品简介 【系统功能与技术参数】 晖谱智能型电池管理系统(BMS),用于检测所有电池的电压、电池的环境温度、电池组总电流、电池的无损均衡控制、充电机的管理及各种告警信息的输出。特性功能如下: 1.自主研发的电池主动无损均衡专利技术 电池主动无损均衡模块与每个单体电芯之间均有连线,任何工作或静止状态均在对电池组进行主动均衡。均衡方式是通过一个均衡电源对单只电芯进行补充电,当某串联电池组中某一只单体电芯出现不平衡时对其进行单独充电,充电电流可达到5A,使其电压保持和其它电芯一致,从而弥补了电芯的不一致性缺陷,延长了电池组的使用时间和电芯的使用寿命,使电池组的能源利用率达到最优化。 2.模块化设计 整个系统采用了完全的模块化设计,每个模块管理16只电池和1路温度,且与主控制器间通过RS485进行连接。每个模块管理的电池数量可以从1~N(N≤16)只灵活设置,接线方式采用N+1根;温度可根据需要设置成有或无。 3.触摸屏显示终端 中央主控制器与显示终端模块共同构成了控制与人机交互系统。显示终端使了带触摸按键的超大真彩色LCD屏,包括中文和英文两种操作菜单。实时显示和查看电池总电压、电池总电流、储备能量、单体电池最高电压、单体电池最低电压、电池组最高温度,电池工作的环境温度,均衡状态等。 4.报警功能 具有单只电芯低电压和总电池组低电压报警延时功能,客户可以根据自己的需求,在显示界面中选择0S~20S间的任意时间报警或亮灯。 5.完善的告警处理机制 在任何界面下告警信息都能以弹出式进行滚动显示。同时,还可以进入告警信息查询界面进行详细查询处理。 6.管理系统的设置 电池电压上限、下限报警设置,温度上限报警设置,电流上限报警设置,电压互差最大上限报警设置,SOC初始值设置,额定容量,电池自放电系数、充电机控制等。 7.超大的历史数据信息保存空间 自动按时间保存系统中出现的各类告警信息,包括电池的均衡记录。 8.外接信息输出 系统对外提供工业的CANBUS和RS485接口,同时向外提供各类告警信息的开关信号输出。 9.软件应用 根据需要整个系统可以提供PC管理软件,可以将管理系统的各类数据信息上载到电脑,进行报表的生成、图表的打印等。 10.参数标准 电压检测精度:0.5% 电流检测精度:1% 能量估算精度:5%

三/四节串联锂电池保护系统设计

三/四节串联锂电池保护系统设计 1 系统概述 该保护系统采用精工电子三/四节串联锂离子可充电电池专用充、放电保护IC S-8254构建一级保护。S-8254系列内置高精度电压检测电路和延迟电路,针对各节电池进行高精度电压检测,实现单节过充电保护和单节过放电保护,并具备三段过电流检测功能,通过外接电容可设置过充电检测延迟时间、过放电检测延迟时间和过电流检测延迟时间1(过电流检测延迟时间2和过电流检测延迟时间3在芯片内部被固定)。该系统采用精工电子S-8244系列内置高精度电压检测电路和延迟电路的锂离子可充电电池二级保护专用IC实现电池的单节二级充电保护,其保护延迟时间可通过外接电容的容值来设置。 图1为四节电池串联使用时的保护系统原理图。 S-8254通过SEL端子可以实现电池三节串联用或四节串联用的切换;S-8244则通过电阻R22短路第四节电池电压检测端子VCC3和VSS即可用作三节电池串联使用时的二级保护。 2 各保护功能的实现 S-8254系列充、放电保护电压和过电流检测电压以50 mV为进阶单位,S-8244系列过充电检测电压以5 mV为进阶单位,系统根据不同场合的使用需求,可以选择相应适合的型号。现以图1保护系统为例,采用S-8254AAVFT和S-8244AAPFN作为保护IC,具体说明各保护功能的实现过程。 2.1 过放电保护 通常状态下,S-8254放电控制用端子DOP为VSS(电池4的负电压)电位,放电MOS管QDISl,QDIS2处于导通状态,系统可正常进行放电工作。当检测到某节电池电压低于2.7 V(VDLn),且这种状态保持在TDL(TDL时间由过放电检测延迟端子CDT外接电容CS决定)以上时,DOP端子的电压变为VDD(电池1的正电压)电位,放电MOS管关闭,停止放电,这种状态称为过放电状态。进入过放电状态后,VMP端子电压经电阻R3由负载下拉至VDD/2以下,S-8254转为休眠状态;断开负载后,VMP端子电压经电阻R9、充电MOS管QCHRl和QCHR2由VDD上拉至VDD /2以上且低于VDD,S-8254退出休眠状态。当所有电池电压都在3.0 V(VDUn)以上时,过放电状态被解除,系统恢复正常放电工作。 2.2 过电流、短路保护 该系统采用2个并联的20 mΩ功率电阻RS1,RS2用于过电流检测。当放电电流大于20 A时,过电流1,2检测端子VINI和VSS之间的电压差大于过电流检测电位1 VI0V1(O.2 V),且这种状态保持在TIOVl(TIOVl时间由过电流1检测延迟端子CDT外接电容C3决定)以上时,DOP端子的电压变为VDD电位,放电MOS管关闭,停止放电,进入过电流1保护状态。在过电流状态下,VMP端子电压经电阻R3由负载下拉至VSS;断开负载后,VMP端子电压经IC内部RVMD电阻被上拉至过电流检测电位3 VIOV3(电池1的正电压VC1~1.2 V)以上,过电流状态解除,系统恢复正常放 电。当放电电流大于50 A时,VINI和VSS之间的电压差大于过电流检测电位2 VIOV2(0.5 V),且这种状态保持在TIOV2(1 ms)以上时,进入过电流2保护状态。当负载出现短路时,过电流3检测端子VMP的电压被瞬间拉至VIOV3以下(检测延迟时间TI0V3为300μs),系统进入短路保护(过电流3保护)状态。

废电池和保护环境的调查报告

废电池和食品污染的调查报告 随着科技的不多的进步,社会的不断发展。电池已经成为当今世界必不可少的东西。电池在带来便利的同时,也带来了一些环境问题。近期,我搜集了一些资料,现整理如下: 一、废电池的危害 科学调查表明,一颗钮扣电池弃入大自然后,可以污染60万升水,相当于一个人一生的用水量。而中国每年要消耗这样的电池70亿只…… 目前我国电池生产企业有1400多家,1999年已达到150亿节。我国约有3.66亿个家庭每年大约需要电池近44亿节。,而且多数在国内消耗。与世界不少国家相比,我国废电池回收率极低。据了解,我国生产的电池有96%为锌锰电池和碱锰电池,其主要成分为锰、汞、锌、铬等重金属。废电池无论埋在大气中还是深埋在地下,其重金属成分都会随渗液溢出,造成地下水和土壤的污染,日积月累,会严重危害人类健康。 二、废电池的回收 据环保专家介绍,在废电池中每回收1000克金属,其中就有82克汞、88克镉,可以说,回收处置废电池不仅处理了污染源,而且也实现了资源的回收再利用。国外发达国家对废电池的回收与利用极为重视。西欧许多国家不仅在商店,而且直接在大街 上都设有专门的废电池回收箱,废电池中95%的物质均可以回收,尤其是重金属回收价值很高。如国外再生铅业发展迅速,现有铅生产量的55%均来自于再生铅。而再生铅业中,废铅蓄电池的再生处理占据了很大比例。100千克废铅蓄电池可以回收50-60千克铅。对于含镉废电池的再生处理,国外已有较为成熟的技术,处理100千克含镉废电池可回收20千克左右的金属镉对于含汞电池则主要采用环境无害化处理手段防止其污染环境。据悉,联合国环境署正在全世界推广“生活周期经济”的新概念。它是将一个商品“从摇篮到坟墓”分为多个阶段,即:原料获得、制造工艺、运输、销售、使用、维修、回收利用、最后处置等,在每个阶段,都必须加强环境管理。生产厂家和消费者都应对自己的行为负责,生产厂家在制定生产计划、开发新产品和回收废弃产品时必须考虑环境保护的要求,消费者在购买、使用和丢弃商品时也不能对环境造成危害。我国目前在废电池的环境管理方面相当薄弱。按照巴塞尔公约中关于危险废物的控制规定, 许多种类的废电池如铅酸电池、含汞电池、镉镍电池等属于危险废物,应该按照危险废物来管理,但是目前在我国,对于任何种类的废电池都没有按照危险废物来管理,而是当作普通垃圾来对待。此外,对于废电池的回收、处理和处置,国家也没有制定具体的政策和法规。1995年颁布的《固体废弃物污染环境防治法》对于废电池的回收处理未作任何规定。 最近有人提出废电池回收程序: 1.放置(BCB)费电池回收桶 2.定期专人上门收集 3.电池分类(普通电池、纽扣电池) 4.市内库房分类储存

锂电池管理系统功能介绍

1.ABMS-EV系列电池管理系统 概述: ABMS-EV系列锂电池管理系统应用于纯电动大巴、混合动力大巴、纯电动汽车、混合动力汽车。采用层级设计,严格执行汽车相关标准,硬件平台全部采用汽车等级零部件,软件符合汽车编程规范。 2、ABMS-EV01电池管理系统: 2.1)概述: ABMS-EV01系列锂电池管理系统主要用于低速电动车,物流车,环卫车等,采用一体化设计,集电池电压温度检测,SOC估算,绝缘检测,均衡管理,保护,整车通信,充电机通信,及交流充电桩接口检测为一体,结构紧凑,功能完善。 2.2) 选型号说明: 2.3)技术参数: 2.4)产品外观:

3、ABMS-EV02电池管理系统: 3.1)概述: ABMS-EV02系列锂电池管理系统主要用于电动叉车,电动搬运车等快速充放电场合,采用一体化设计,集电池电压温度检测与保护,SOC估算,均衡管理,通信等功能。 3.2) 选型号说明: 3.3)技术参数:

3.4)产品外观:

4、ABMS-EV03电池管理系统: 4.1)概述: ABMS-EV03系列锂电池管理系统主要用于电动叉车,电动搬运车等需要快速充放电场合,采用一体化设计,集电池电压温度检测,SOC估算,均衡管理,保护,通信,LED电量指示,制热,制冷管理,双电源回路设计,充电机,车载电源独立供电。 4.2) 选型号说明:

4.3)技术参数: 4.4)产品外观: 5、ABMS-EK01电池管理系统:

5.1)概述: ABMS-EK01系列锂电池管理系统主要用于电动自行车,电动摩托车等,采用软硬件多重冗余保护等,充电MOS控制,放电继电器控制,实现慢充快放,一体化设计,集电池检测,SOC估算,保护,通信为一体。 5.2)选型说明: 5.3)技术参数:

锂离子电池 习题汇总

高考必考题锂离子电池习题汇总 材料:锂离子电池实际上是一种锂离子浓差二次电池(充电电池),正负电极由两种不同的锂离子嵌入化合物组成。它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态 在充放电过程中,负极材料的化学结构基本不变。因此,从充放电反应的可逆性看,锂离子电池反应是一种理想的可逆反应。目前,用作锂离子电池的正极材料是过渡金属和锰的离子嵌入化合物,负极材料是锂离子嵌入碳化合物,常用的碳材料有石油焦和石墨等。国内外已商品化的锂电池正极是LiCoO2,LiNiO2,LiMn2O2,负极是层状石墨 锂离子电池:锂系电池分为锂电池和锂离子电池。手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为锂电池,而真正的锂电池由于危险性大,很少应用于日常电子产品1、某可充电的锂离子电池以LiMn2O4为正极,嵌入锂的碳材料为负极,含Li+导电固体为电解质。放电时的电池反应为:Li+LiMn2O4=Li2Mn2O4。下列说法正确的是() A.放电时,LiMn2O4发生氧化反应B.放电时,正极反应为:Li++LiMn2O4+e-=Li2Mn2O4 C.充电时,LiMn2O4发生氧化反应D.充电时,阳极反应为:Li++e-=Li 2、(2014天津6)已知:锂离子电池的总反应为:LixC+Li(1-x)CoO2=C+LiCoO2锂硫电池的总反应为:2Li+S=Li2S 有关上述两种电池说法正确的是( ) A.锂离子电池放电时,Li+向负极迁移 B.锂硫电池充电时,锂电极发生还原反应 C.理论上两种电池的比能量相同 D.右图表示用锂离子电池给锂硫电池充电 3、天津是我国研发和生产锂离子电池的重要基地。锂离子电池正极材料是含锂的二氧化钻(LiCoO2),充电时LiCoO2中Li被氧化,Li+迁移并以原子形式嵌入电池负极材料碳(C6)中,以LiC6表示。电池反应为,下列说法正确的是()A.充电时,电池的负极反应为LiC6-e-Li+C6 B.放电时,电池的正极反应为CoO2+Li++e-LiCoO2 C.羧酸、醇等含活泼氢气的有机物可用作锂离子电池的电解质 D.锂离子电池的比能量(单位质量释放的能量)低

十大锂电池排名

锂电池生产厂商的厂家非常之多,随着新能源汽车与UPS电源储能行业的快速发展,极大的刺激了锂电池的需求,各企业开始纷纷布局进入锂电池厂商行业。但是,做锂电池的厂商这么多,产品质量都过关吗?答案并不是的,总有一些喜欢浑水摸鱼的厂家,锂电产品参差不齐,没有认证等等。今天汇总了国内前十名的锂电池厂商排名,供你们选择与参考。 1、排名第一锂电池厂商—宁德时代CATL 宁德时代新能源科技股份有限公司(CATL)成立于2011年,公司总部位于福建宁德。公司专注于通过电池技术,为全球绿色能源应用,提供能源存储解决方案。 公司研发生产电动汽车及储能系统的锂电池,电动汽车电池模组,电动汽车电池系统,动力总成,大型电网储能系统,智能电网储能系统,分布式家庭储能系统,及电池管理系统(BMS)。公司建立了动力和储能电池领域完整的研发、制造能力,拥有材料、电芯、锂电池系统、电池回收的全产业链核心技术。在储能

领域,公司承接了部分关键客户的大型储能项目,年项目总量已超过40兆瓦时。 2、排名第二锂电池厂商—比亚迪 比亚迪股份有限公司创立于1995年,横跨IT、汽车和新能源三大产业,分别在香港(H股)和深圳(A 股)上市。全球较大的充电电池生产商,镍镉电池/手机锂电池畅销,具有强大的研发实力的高新技术企业。主要产品为磷酸铁锂动力电池。 在新能源领域,比亚迪成功推出了太阳能电站、储能电站、电动车、LED和电动叉车等新能源产品,并在全球多个国家和地区推广应用。凭借全球领先的铁锂电池技术,比亚迪正积极引领全球新能源产业变革。目前的有效产能为4.5Gwh,其中惠州1Gwh、深圳坑梓3.5Gwh,预计到2015年底,整体产能将达到6Gwh,2016年将扩张到10Gwh。比亚迪的动力电池仅供比亚迪自用。2015年上半年,比亚迪动力电池业务收入约30亿元。 3、排名第三锂电池厂商—国轩

锂离子电池绿色环保电池

锂离子电池绿色环保电池 锂离子电池是依靠锂离子在正极及负极间移动工作的,锂离子电池在充放电过程里,Li+在两电极之间来回嵌入与脱嵌:它在充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。 一、锂离子电池的安全特性 锂离子电池已非常广泛的应用于人们的日常生活中,所以它的安全性能绝对应该是锂离子电池的第一项考核指标。对于锂离子电池安全性能的考核指标,国际上规定了非常严格的标准,一只合格的锂离子电池在安全性能上应该满足以下条件。 (1)短路:不起火,不爆炸 (2)过充电:不起火,不爆炸 (3)热箱试验:不起火,不爆炸(150℃恒温10min) (4)针剌:不爆炸(用Ф3mm钉穿透电池) (5)平板冲击:不起火,不爆炸(10kg重物自1M高处砸向电池) (6)焚烧:不爆炸(煤气火焰烧烤电池) 二、锂离子电池安全特性是如何实现的? 为了确保锂离子电池安全可*的使用,专家们进行了非常严格、周密的电池安全设计,以达到电池安全考核指标。 (1)隔膜135℃自动关断保护 采用国际先进的Celgard2300PE-PP-PE三层复合膜。在电池升温达到120℃的情况下,复合膜两侧的PE膜孔闭合,电池内阻增大,电池内部升温减缓,电池升温达到135℃时,PP膜孔闭合,电池内部断路,电池不再升温,确保电池安全可*。 (2)向电液中加入添加剂 在电池过充,电池电压高于4.2v的条件下,电液添加剂与电液中其他物质聚合,电池内阻大副增加,电池内部形成大面积断路,电池不再升温。 (3)电池盖复合结构 电池盖采用刻痕防爆结构,电池升温时,电池内部活化过程中所产生的部分气体膨胀,电池内压加大,压力达到一定程度刻痕破裂、放气。 (4)各种环境滥用试验 进行各项滥用试验,如外部短路、过充、针刺、平板冲击、焚烧等,考察电池的安全性能。同时对电池进行温度冲击试验和振动、跌落、冲击等力学性能试验,考察电池在实际使用环境下的性能情况。 三、锂离子电池是一种新型绿色环保电池 作为电池消费者,应该购买、使用新型绿色环保电池;作为电池制造商,应该生产新型绿色环保电池。只有经过大家的共同努力,才能创建、保护我们美丽和谐的自然环境。 新型绿色环保电池是指近年来已投入使用或正在研制开发的一类高性能、无污染的电池。目前已经大量使用的锂离子电池、金属氢化物镍电池和正在推广使用的无汞碱性锌锰电池以及正在研制开发的锂或锂离子塑料电池、燃料电池、电化学贮能超级电容器都属于新型绿色环保电池的范畴。此外,目前已广泛应用的利用太阳能进行光电转换的太阳电池(又称光伏发电),也属于这一范畴。 (本文来自:天能能源科技)

南大强芯锂电池保护系统(PCM)

产品特点: ●使用自主设计的电源管理芯片,确保整个系统运行稳定,同时为客户提供自由度更大的选择空间●可灵活对应5串到26串范围内,任意锂离子电池保护板(完全覆盖锂电池电动车的全部电压范围)●高精度电压检测,检测精度为±25mV ●芯片内置均衡管理,均衡电流最大可达100mA ●低功耗设计,通常工作消耗电流<0.3mA;休眠模式消耗电流<0.1mA ●能够灵活对应充放电回路分开,同一的要求 ●完备的保护功能,包括充放电电压,充放电电流,短路,高低温的保护 ●提供自主开发的监测软件,便于客户搜集数据以及故障解析 ●使用库仑计法计算电量,提高了电量计算精度 ●记录充电次数,为售后服务提供依据 ●保护芯片内置温度传感器,同时可控制两路外部温度传感器,保证电池包工作在安全的温度范围内 80V高耐压工艺,提高了系统耐压可靠性 ●芯片采用 南大强芯自主研发电源管理芯片 监控软件:BMSXX System Monitor

护功能: 电池M )的关键在对各项目的细节保护:强芯锂电池保护系统,可以根据客户要求,为您可选项目 要求 可选范围 保保护系统(PC 量身打造完善的保护系统功能。包含但不限于以下参数: 过充保护电压(V) 3.80 ±25(mV) 过充保护延时(mS) 1400 ±100(mS) 过充保护 V) 过充保护解除电压( 3.50 ±25(mV) 过放保护电压(V) 2.10 ±25(mV) 过放保护延时(mS) 500 ±100(mS) 过放保护 V) 过放保护解除电压( 2.30 ±25(mV) 过流保护闸值(A) 20 ±2(A) 过流保护延时(mS) S) 400±100(m 过放电流保护 负载 过流保护恢复条件 断开 充电过流保护值(A) 8 ±1(A) 过充电流保护 S) 400 S) 过充电流保护延时(m ±100(m 短路保护值(A) 40 ±4(A) 短路保护延时(uS) S) 300±100(u 短路保护 负载 短路保护恢复条件 断开 温度检测通道 1 高温放电保护值 55℃ ℃ ±3高温充电保护值 50℃ ±3℃ 高温保护解除值 45℃ ±3℃ 低温充电保护值 0℃ ±3℃ 低温充电保护解除温度保护 值 5℃ ±3℃ 低温放电保护值 -20℃ ±3℃ 低温放电保护解除值 -10℃ ±3℃ 温度保护延迟(s) 5 ±1(s) 南大强芯为客户提供的锂电池保护系统(PCM ),目标在于: 选择时: 自 由 自 在 应用时:“芯”安“锂”得

电池与环保

电池与环保 一、电池的类型 电池,做为提供直流电的能源,已广泛用于航天、科学实验和日常生活中,电池的种类也从最早的原电池----伏打电堆发展到铅蓄电池、镉镍电池,直至新型的氢镍电池,锂电池。现在我就为大家介绍一下庞大的电池家族。 (一)原电池--- 一次电池 所谓一次电池,就是指放电后不能充电使其复原的电池。通常由正极、负极、电解质和容器、隔膜组成,历史上第一个原电池是由伏打在18世纪末发明的。当时这个电池是由一些金属(铜、银、锌)片和湿的硬纸片组成。伏打是这样描述他的电池的;用水(盐水更好)把这些硬圆纸片浸湿,先在桌上放一块银片,再放上一块锌片,然后在它的上面放一个湿润的硬纸片,再在上面放一块银片和锌片及硬纸片,如此循环放置,直至一定高度,就组成了电堆。这是历史上最原始的电池,也称作原电池,现在所用的一次电池主要有两种: 1.锌锰电池 该种电池表达式为:Zn|NH4Cl,ZnCl2|MnO2(C)生活中常用的1号或5号干电池就多是该种电池,实际制造时,锌皮做负极同时兼作容器外皮,正极氧化锰为粉末,依靠碳棒导电。两层隔膜中的电解液制成糊状以限制其流电又可让离子发生迁移。此种电池适用于间歇式放电场合,如手电筒、收音机等。其工作电压为1.5~1.6V。由于外皮由锌组成,所以电池用完时,锌皮易被蚀穿而使电解液(NH4Cl)渗出,所以电池用完后应取出以免腐蚀电器。 2.碱性锌锰电池 这种电池性能优于传统干电池,它于1912年开发,直到1949年投产问世,该电池电解液为碱性,有良好的导电性能,负极为锌池,反应面积增大,所以可以连续大容量放电,外壳为铁皮封闭,可防电解液渗漏。所以该电池是良好的传统干电池的替代产品,但价格略高于传统干电池。 3.锌银扣式电池 该电池表达式为:Zn|KOH|Ag2O 这种电池体积小,但有优越的大电池放电性能,放电电压平稳,被广泛用于电子表、石英钟、计算机CMOS电池等。 (二)蓄电池----二次电池 二次电池,就是利用化学反应的可逆性,在电池中化学能转化为电能后,用外加电能使电池中化学体系复原,重新利用的电池。该类电池主要有: 1.铅蓄电池 该电池表达式为:Pb|H2SO4|PbO2 这是最常用的二次电池,硫酸在电池中不仅可传达电流,且参加电池反应,随放电进行,硫酸逐渐减少,且有水生成,所以硫酸浓度不断下降;充电时,硫酸不断生成,硫酸浓度不断增加,所以可用电池中硫酸浓度估计蓄电池荷电状态,该种电池单体正常工作电压为2.0V,必要时可串联多个使用以提高供电电压。 2.碱式镍镉电池 该电池表达式为:Cd|KOH(或NaOH)|NiOOH 这种电池使用寿命长,可循环充放电数4次,机械性能好,耐冲击,耐振动,自放电小,额定电压为 1.2V,所以广泛用于日常生活中。例如我们用的随身听等小电器均可用该种充电电池。 3.氢镍电池 该种电池反应复杂,有正常工作,过充电和过额电时有不同的电化学反应。氢镍电池的电解液为ρ≈1.3g/cm3的氢氧化钾水溶液。这种电池的突出优点是循环使用寿命长,可达10年,缺点是成本较高,自放电速度较大,且由于内部有4MPa气压,所以有爆炸的可能性,但其前景很乐观。现已逐步在航天领域取代镉镍电池。现在的笔记本电池也有部分使用氢镍电池。

专题6 锂离子电池的化学原理

专题6 锂离子电池的化学原理 学号姓名 1.【2018全国Ⅲ卷5题】一种可充电锂–空气电池如图所示。当电池放电时,O2与Li+在多孔碳材料电极处生成Li2O2-x(x = 0或1)。下列说法正确的是( ) A.放电时,多孔碳材料电极为负极 B.放电时,外电路电子由多孔碳材料电极流向锂电极 C.充电时,电解质溶液中Li+向多孔碳材料区迁移 D.充电时,电池总反应为Li2O2-x= 2Li + (1–x/2) O2 2.【2017全国Ⅲ卷11题】全固态锂硫电池能量密度高、成本低,其工作原理如图所示,其中电极a常用掺有石墨烯的S8材料,电池反应为:16Li + x S8 = 8Li2S x(2≤x≤8)。下列说法错误的是( ) A.电池工作时,正极可发生反应:2Li2S6 + 2Li+ + 2eˉ = 3Li2S4 B.电池工作时,外电路中流过0.02 mol电子,负极材料减重0.14 g C.石墨烯的作用主要是提高电极a的导电性 D.电池充电时间越长,电池中Li2S2的量越多 3.【2018浙江17题】锂(Li)–空气电池的工作原理如图所示。下列说法不正 ..确.的是( )

A .金属锂作负极,发生氧化反应 B .Li +通过有机电解质向水溶液处移动 C .正极的电极反应:O 2 + 4e ˉ = 2O 2ˉ D .电池总反应:4Li + O 2 + 2H 2O = 4LiOH 4.【2016四川卷5题】某电动汽车配载一种可充放电的锂离子电池。放电时电池的总反应为: Li 1-x CoO 2 + Li x C 6 = LiCoO 2 + C 6 (x<1)。下列关于该电池的说法不正确的是( ) A .放电时,Li +在电解质中由负极向正极迁移 B .放电时,负极的电极反应式为Li x C 6 – xe ˉ = xLi + + C 6 C .充电时,若转移1 mol e ˉ,石墨C 6电极将增重7x g D .充电时,阳极的电极反应式为LiCoO 2 – xe ˉ = Li 1-x CoO 2 + Li + 5.【2014全国II 卷12题】2013年3月我国科学家报道了如图所示的水溶液锂离子电池体系。下列叙述错误的是( ) A .a 为电池的正极 B .电池充电反应为LiMn 2O 4 = Li 1-x Mn 2O 4 + x Li C .放电时,a 极锂的化合价发生变化 D .放电时,溶液中Li +从b 向a 迁移 6.【2014天津6题】已知:锂离子电池的总反应为:Li x C + Li 1-x CoO 2放电 C + LiCoO 2 锂硫电池的总反应为:2Li + S 放电Li 2S 有关上述两种电池说法正确的是( ) A .锂离子电池放电时,Li +向负极迁移 B .锂硫电池充电时,锂电极发生还原反应 C .理论上两种电池的比能量相同 D .右图表示用锂离子电池给锂硫电池充电 7.【2014海南16题】锂锰电池的体积小,性能优良,是常用的一次电池。该电池反应原理如图所示,其中电解质LiClO 4溶于混合有机溶剂中,Li +通过电解质迁移入MnO 2晶格中,生成LiMnO 2。回答下列问题: Li 2SO 4水溶液 LiMn 2O 4 Li +快离子导体聚合物电解质 a b 电解质LiCoO 2电解质 Li

锂电池隔膜概念股一览锂电池上市公司一览

(4)锂电池隔膜概念股一览 锂电池上市公司一览 “十二五”期间,“膜”的国产化将成为国家扶持的重点,为此在薄膜国产化和新能源动力汽车发展的前景下,相关的锂电池隔膜生产企业将会受益。那么具体锂电池隔膜概念股一览锂电池上市公司具体如下: 锂电池隔膜概念股一览锂电池上市公司一览 纽米科技投产云天化(600096)新材料产业渐成形 日前,云天化重庆纽米新材料科技有限责任公司投产塈重庆研发中心揭牌典礼在晏家工业园隆重举行。中国科学院理化技术研究所所长李世元、国家863计划动力电池专家组组长曹亚等行业专家出席典礼仪式,云天化集团公司副董事长兼总经理他盛华、长寿区区长韩树明及云南省国资委云天化集团监事会主席王迤南在典礼上致辞,对云天化在新材料、新能源方面的发展给予了高度的肯定。 据了解,纽米科技成立于2010年2月,位于重庆长寿经济技术开发区,总占地面积130亩,主要从事新材料、新能源材料的研发和生产,是云天化投资设立的全资子公司。公司与成都慧成科技公司合作,现已获得具有自主知识产权的高性能隔膜生产技术,并已建成年产1500万平方米高性能锂离子电池隔膜生产线一条,是重庆市科委批准的2010年重庆市纯电动汽车研发与应用示范项目及国家发改委批

准的国内投资鼓励发展项目;未来3至5年,纽米科技将形成年产2亿平方米高性能锂离子电池隔膜的生产能力。 同时揭牌成立的重庆研发中心为云天化的二级单位,下设五个研发部,分别负责聚甲醛合成技术和改性技术的研究与产品开发、玻璃纤维改性技术研究和复合材料的开发、LTCC带的开发和关键原材料的制备技术研究、氟塑料及太阳能背光膜制备技术的研究以及储能材料的制备技术研究等,可充分发挥云天化在聚甲醛工程塑料和玻璃纤维产业上的优势,形成聚甲醛与玻璃纤维复合材料系列产品的生产,实现两大产业的有机结合,促进公司聚甲醛和玻璃纤维的产业升级。 业内人士表示,近年来,云天化持续深入企业转型,主业平台成功由以肥为主转变为“以化为主、相关多元”,并重点在新材料及新能源两大领域谋求发展,增强了抵御行业风险和增强综合盈利能力。通过在重庆、珠海、巴西等地区的产业布局及国内外的技术合作,公司在玻纤及聚甲醛两大产业上的产能及技术均处于行业领先水平。此次纽米科技正式投产塈重庆研发中心揭牌成立后,云天化将实现锂电池隔膜的量产,在聚甲醛及玻纤产品的研发能力也将获大幅增强,可助其向“两新”的产业方向顺利转型。

关于电池的环保指令

电池产品的 RoHS 关于电池的环保法规 1、先澄清欧盟的几个指令 A、RoHS (Directive 2002/95/EC) DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment 该指令是针对电子电气设备的有害物质的使用做限制说明,该指令的主要内容体现 在针对6种(铅、镉、汞、六价铬、PBB和PBDE)有害物质在电子电器设备中必 须达到的含量指标作说明,同时依据目前的科技水平针对含量无法达到的一些产品 做排外说明; B、W EEE (Directive 2002/96/EC) DIRECTIVE 2002/96/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on waste electrical and electronic equipment (WEEE) 该指令主要说明电子电气设备在按照RoHS 指令的要求生产的同时,如何管控生 产、运输、销售、使用、寿命终止等所有过程所产生的废弃物应如何标识、处理,应由谁来承担处理的费用; C、电池的环保指令(Directive 2006/66/EC) DIRECTIVE 2006/66/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 6 September 2006 on batteries and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC (Text with EEA relevance) 该指令是针对电池和蓄电池以及废弃的电池和蓄电池,同时该指令取代旧的电池环保指令91/157/EC,该指令不但说明了电池和蓄电池中的危害物质使用的限制同时也说明了如何处理废弃电池;就是说2006/66/EC 这个指令是针对电池的,相当于RoHS指令和WEEE指令加起来针对电子电气产品的作用; 2、必须能清楚的几个问题 A、从法规定义的理解可以看出,法规并未要求电池按照电子电气产品的环保指令进行 管控,那么是否有书面的定义说明这一点: A-1、从欧盟法规的官方网站网站可以找到2005年5月发表的一篇文章,该文章是针对RoHS和WEEE常见问题的回答,其中有明确说明这两个法规不适用于电池:

关于减少和消除废旧电池环境污染的建议

关于减少和消除废旧电池环境污染的建议 随着科技的飞速发展,电池的需求量越来越大,有相当一部分电器需要电池,如各单位的仪器设备、家用的复读机、CD机、电话机、MP3、录音机等等、等等。电池已成为我们生活中不可缺少的一部分,据统计全国每年大约需要电池近44亿节,平均每人一年用掉11节。但有关数据调查表明,我国电池的回收率还不到2%,一次性用掉的大量的废电池一扔了之,而废弃的电池会对我们生活土壤等环境产生很大的影响。 电池有着集中生产,分散污染:短时使用,长期污染的特点。不同的种类,有着不同的污染。电池污染是因为电池中含有以下重金属: 铅:主要危害神经系统和消化系统,导致神经衰弱、手足麻痹、消化不良、腹部绞痛等。 汞:主要危害口腔和消化系统,导致脉搏加快、肌肉颤动等不良症状。汞进入人体与胃酸作用,产生氯化甲基汞,经肠道几乎全部被吸收进入血液,最后积蓄在脑细胞中,造成人体运动失调,甚至导致死亡或遗患终身,并会危及后代健康。 镉、锰:主要危害神经系统。其中镉中毒后患者手足疼痛,全身各处都很容易发生骨折,俗称“痛痛病”,还会影响肝、肾器官的正常功能。 我国生产的电池有96%为锌锰电池和碱锰电池,通过对电池的观察分析及资料的查阅表明:其结构及主要材料成分如下(以锌锰电池为例):见电池材料的组成成分: 废旧电池污染环境的途径有: 电池→土壤→微生物→动物循环 粉尘→农作物→食物→人体→神经→沉积发病(其它)

生物从环境中摄取的重金属可以经过食物链,逐级在较高级的生物中积累,然后通过食物进入人体,在某些器官中积蓄造成慢性中毒。 本人从事生物化学的教学和科研工作20多年,多次组织和指导学生研究观察废旧电池对多种植物种子发芽和多种水生动物生长的影响,结果表明废旧电池对生物的影响极大,严重的会导致生物死亡。 一粒钮扣电池可污染60万升水,等于一个人一生的饮水量。一节一号电池烂在地里,能使一平方米的土地失去利用价值,废旧电池就象一颗颗“污染小炸弹”,时刻破坏着我们的生活环境和身体健康。 本人组织了中学生对温州市民家庭电池使用量和电池危害的有关知识进行问卷调查,数据表明:每年使用11节以上的人数占77。6%,可见电池的使用不但非常普遍,而且用量非常大。另外据调查还发现,约85%人不知道废旧电池对环境的严重污染和危害的知识。大约有90%以上的人对废旧电池的处理是随意乱丢。 我国目前生活垃圾的处理主要是填埋、堆肥和焚烧三种方式,混入生活垃圾的废旧电池在这三个过程中的污染体现在: 填埋:废旧电池的重金属通过渗透作用污染水体和土壤(主要是干电池)。 堆肥;废旧电池的重金属含量高,造成堆肥质量下降。 焚烧:废旧电池在高温下腐蚀设备;某些重金属在焚烧炉中挥发在飞灰中,造成大气污染,焚烧炉底重金属堆积对产生的灰渣造成污染。 废旧电池的回收和处理是人们关注的焦点。为了减少和消除废旧电池环境污染,我们提出以下建议: 一、做好宣传,提出倡议。社会上市民尤其是乡村、城镇的百姓对废旧电池的污 染和危害了解极微,因此各种媒体应做好宣传,让全社会的人都知道:废旧电池随意丢弃,任其腐烂,将给地球带来极大地灾难,祸及我们的生活和健康。同时提出倡议,倡导全社会的人积极行动起来,集中回收废旧电池。二、政府就废旧电池回收问题应制定一些相关的地方性法规。在学校、医院、小 区及街道、村庄等主要场所放置两用垃圾箱(可回收的和不可回收的),方便人们对废旧电池的统一放置。 三、政府要引导和采取多种途径回收废旧电池,如:采取一些优惠政策让销售点 以低价收购或以旧换新等鼓励措施,进行回收,也可以合理的价格租赁使用

相关文档