文档库 最新最全的文档下载
当前位置:文档库 › ASTM D2247-15在100%相对湿度下涂层的耐水性试验

ASTM D2247-15在100%相对湿度下涂层的耐水性试验

ASTM D2247-15在100%相对湿度下涂层的耐水性试验
ASTM D2247-15在100%相对湿度下涂层的耐水性试验

Designation:D2247?15

Standard Practice for

Testing Water Resistance of Coatings in100%Relative Humidity1

This standard is issued under the?xed designation D2247;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(′)indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S.Department of Defense.

1.Scope*

1.1This practice covers the basic principles and operating procedures for testing water resistance of coatings by exposing coated specimens in an atmosphere maintained at100% relative humidity so that condensation forms on all surfaces of test specimens.

1.2This practice uses the technique of creating a slight temperature differential within the exposure area to form condensation on the coated specimens.As the warmer satu-rated air passes the cooler specimens,water is deposited onto the specimens in the form of condensation.

1.3This practice places the entire specimen in the exposure area allowing condensation to form on all surfaces.This makes this practice suitable for?at panels as well as large or3D objects.This practice differs from other methods where con-densation is only formed on the front coating surface,while the back surface is outside the exposure area.Other tests may also deposit water droplets on the surface but where the source is not from condensation(for example,water spray).

N OTE1—Alternative practices for testing the water resistance of coatings include Practices D870,D1735,and D4585.

1.4This practice is limited to the methods of obtaining, measuring,and controlling the conditions and procedures of tests conducted in100%relative humidity.It does not specify specimen preparation,or evaluation of results.

1.5The values stated in SI units are to be regarded as the standard.The values given in parentheses are for information only.

1.6This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

2.Referenced Documents

2.1ASTM Standards:2

D609Practice for Preparation of Cold-Rolled Steel Panels for Testing Paint,Varnish,Conversion Coatings,and Related Coating Products

D610Practice for Evaluating Degree of Rusting on Painted Steel Surfaces

D714Test Method for Evaluating Degree of Blistering of Paints

D823Practices for Producing Films of Uniform Thickness of Paint,Varnish,and Related Products on Test Panels D870Practice for Testing Water Resistance of Coatings Using Water Immersion

D1193Speci?cation for Reagent Water

D1654Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments

D1730Practices for Preparation of Aluminum and Aluminum-Alloy Surfaces for Painting

D1735Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus

D2616Test Method for Evaluation of Visual Color Differ-ence With a Gray Scale

D3359Test Methods for Measuring Adhesion by Tape Test D3363Test Method for Film Hardness by Pencil Test

D4541Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers

D4585Practice for Testing Water Resistance of Coatings Using Controlled Condensation

3.Summary of Practice

3.1Coated specimens are placed in an enclosed chamber containing a heated,saturated mixture of air and water vapor. The temperature of the chamber is usually maintained at38°C (100°F).At100%relative humidity(RH),a very small temperature difference between the specimen and the surround-ing vapor causes the formation of condensation on the speci-mens.The exposure condition is varied by selecting the

1This practice is under the jurisdiction of ASTM Committee D01on Paint and Related Coatings,Materials,and Applications and is the direct responsibility of

Subcommittee D01.27on Accelerated Testing.

Current edition approved Dec.1,2015.Published December2015.Originally approved https://www.wendangku.net/doc/7110797489.html,st previous edition approved in2011as D2247–11.DOI: 10.1520/D2247-15.

2For referenced ASTM standards,visit the ASTM website,https://www.wendangku.net/doc/7110797489.html,,or contact ASTM Customer Service at service@https://www.wendangku.net/doc/7110797489.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.

*A Summary of Changes section appears at the end of this standard Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959.United States

duration of the test.Water permeates the coating at rates that are dependent upon the characteristics of the coating.Any effects such as color change,blistering,loss of adhesion, softening,or embrittlement are observed and reported.

4.Signi?cance and Use

4.1Water can cause the degradation of coatings,so knowl-edge of how a coating resists water is helpful for assessing how it will perform in actual service.Failure in tests at100% relative humidity may be caused by a number of factors including a de?ciency in the coating itself,contamination of the substrate,or inadequate surface preparation.This practice is therefore useful for evaluating coatings alone or complete coating systems.

4.2Tests at100%relative humidity are used for speci?ca-tion acceptance,quality control,and research and development for coatings and substrate treatments.Some tests are used for a pass or fail determination at an arbitrary time.A coating system is considered to pass if there is no evidence of water-related failure after a period of time.Other tests are used to monitor degree of failure as a function of exposure time.

4.2.1Arbitrary pass/fail levels and the test durations re-quired are typically set in other material speci?c test methods. Users of this practice alone may use the known performance of the controls to set test end points.Another option is to continue the test until all specimens have failed,and use the time to reach failure as a way to differentiate performance.

4.3Results obtained from the use of100%humidity tests in accordance with this practice should not be represented as being equivalent to a period of exposure to water in the natural environment,until the degree of quantitative correlation has been established for the coating or coating system.

4.4The test chamber can be a small laboratory cabinet or a room large enough to hold an automobile or a truck.Some automobile manufacturers test completed vehicles in rooms maintained at100%relative humidity.Corrosion tests can be conducted,as the condensate dripping off the test articles in not recirculated.

5.Apparatus

5.1Test Chamber,constructed of corrosion-resistant mate-rials with supports for the test specimens.

5.2Source of Heated Water Vapor can be created by one of the following methods:

5.2.1Heated Water Tank,within the test chamber,a water supply,and a water level control.

5.2.2Water Vapor(Steam)Generator,located outside the test chamber,a water supply,and a means of introducing the vapor to the test chamber.

5.3Thermostatic Control,for the water heater with the sensor located adjacent to the specimen holders,or a means of controlling volume of steam.

5.4Thermometer,with sensor located adjacent to the speci-men holders.

5.5Diagrams and details of the apparatus are shown in Appendix X1.

6.Test Specimens

6.1This practice does not cover the preparation of test specimens.The substrate composition and surface preparation, specimen preparation,and the number of specimens should be agreed upon prior to testing.

N OTE2—Applicable methods for the preparation of test panels and substrates are given in Practices D609and D1730.Practices D823cover application techniques for the production of uniform?lms.

6.2It is recommended that a control specimen of a coating with known durability and similar failure type be included with each test.Such control specimens can provide warning of changes in test severity in a given apparatus,and can indicate variations in test severity between different apparatuses.Best practice is to use two different control specimens,one with known relatively poor performance,and one with known relatively good performance.The use of control specimens with known performance can also be used to determine the duration of the test that is required to produce meaningful results.

6.3It is recommended that at least two replicate specimens of each different coating be used,so as to compensate for variations between specimens and potential variations in test conditions with the device.If more than one replicate specimen is exposed,place the replicates in different locations in the exposure area.

7.Procedure

7.1Generate the saturated water vapor with reagent water conforming to at least the requirements of Type IV of Speci-?cation D1193.

7.2Unless otherwise speci?ed,adjust the temperature of the saturated air and water vapor mixture so that the air tempera-ture next to the test specimens is38°C.During equilibrium operation,the temperature of the sensor used to measure the air next to the specimens can vary by a maximum of62°C from the desired temperature.If a temperature set point different from38°C is used,it must be included in the Test Report. 7.2.1The temperature of the water vapor will typically be the same or higher than the air temperature next to the specimens.This is a requirement in order for this procedure to work correctly.The temperature of the water in the vapor generation is not set by this practice but water vapor tempera-tures that are greater than38°C tend to make condensation more uniform over the test specimens.

N OTE3—Due to heat loss to the specimens and the walls of the chamber where a heated water tank is used,the temperature of the water in the tank will be above the temperature of the air and water vapor mixture.

7.3Support?at specimens approximately15°from the vertical with the front side facing up.Slotted nonmetallic supports are suitable for?at specimens.Position3-dimensional specimens on a support so that the primary surface is as close to end-use position as possible.Material used for supports shall be of sufficient stiffness so that they do not distort or sag during prolonged use.The minimum distance between adjacent speci-mens or between specimens and the walls of the chamber shall be at least30mm.Arrange specimens so that condensate from one specimen cannot drip on other

specimens.

7.4Droplets of condensation shall appear evenly on the specimen at all times if the chamber is operating properly. Before using the exposure device to this standard for the?rst time,verify the exposure area for condensation uniformity in accordance with the procedure described in Annex A1.Re-verify the chamber if there are any changes to the setup of the equipment or if any of the components listed in Section5are repaired or replaced.Operate the test continuously with the test chamber closed unless otherwise speci?ed.Short interruptions to inspect or remove specimens are permitted,but such interruptions should occur no more than once each day.

7.5To control for variability within the apparatus,reposi-tion the specimens on a regular basis so that all specimens spend equivalent amounts of time in the various areas of the apparatus(front,back,left,right,and center).

7.6Conclude the test after a speci?ed period of time or after effects from exposure to water are observed.

7.7Wipe the test specimens dry.Rate specimens for changes in color,blistering,etc.Evaluate specimens no less than5min and no more than10min after removal from test, as the effects from water exposure can change within a short time.Remove only as many specimens as can be rated within the speci?ed time.

N OTE4—Relevant procedures for evaluating water effects are de-scribed in Practice D610and Test Methods D714,D1654,D2616,D3359, D3363,D4541.

7.7.1If possible,rate the specimens again after they have been removed from the test for a recovery period long enough that moisture absorbed within the specimens dries out and the specimens reach moisture equilibrium with room air.A recov-ery period from12to24h is generally sufficient.The post-recovery rating allows evaluation of the permanent effects of the exposure as distinct from the transient effects,and is especially important for evaluation of color and gloss.

8.Report

8.1Report the following information:

8.1.1Sample identi?cation.

8.1.2Results of the evaluation(s).

8.1.3Reference to Practice D2247.

8.1.4Hours of test duration.

8.1.5Test temperature.

8.1.6Special conditions of test or any deviations in test procedure.

9.Keywords

9.1adhesion;blistering;humidity;resistance-water;rust

ANNEX (Mandatory Information) A1.VERIFICATION

A1.1Chamber Veri?cation Procedure—Place at least17 specimens throughout the planned exposure area with one at the center and four each uniformly distributed in each quadrant of the planned exposure area.Fig.A1.1is a diagram of placement of specimens for chamber veri?cation.After the specimens have been in an unopened chamber for at least12h, open the chamber and check for the presence of uniform condensation on each specimen.Specimens used for chamber veri?cation shall be at least as tall as the tallest specimens evaluated in normal testing.The minimum distance between specimens used for chamber veri?cation and the wall of the chamber shall be75mm.The minimum distance between adjacent test specimens shall be150mm.If any specimen does not have condensation,or the condensation is present on only part of the specimen surface,the area within6100mm(4in.) of the specimen position shall not be used for

testing. FIG.A1.1Diagram of Specimen Placement for Mapping Chamber for Condensation

Uniformity

APPENDIX (Nonmandatory Information) X1.APPARATUS

X1.1The apparatus must be constructed so that heated water vapor is generated or introduced at the bottom of the chamber.This saturates the air in the lower portion of the test chamber with water vapor.The saturated mixture of water vapor and air temperature rises and then cools below the dew point,causing condensation on the specimens.Three types of apparatus have been found to meet the requirements of this practice.One type uses a water tank with an electric immersion heater,another uses a water vapor generator,and the third type uses a submerged air distribution pipe.

X1.2In chambers using a water tank with electric immer-sion heater to supply heat and humidity,the area of the heated water tank should be limited to no more than25%of the?oor area of the chamber.The use of a large heated water tank would tend to make the temperature within the chamber uniform,and thus inhibit or prevent the formation of condensate on the specimens.The water temperature will be approximately from 5to10°C(10to20°F)above the vapor temperature when the water tank and chamber are properly proportioned.

X1.3In chambers using a water jacket to supply heat and humidifying tower(optional)and submerged air distribution pipe to supply humidity,the water level in the chamber should be approximately15cm(6in.)above the bottom of the chamber.The level of water in the heating jacket should be approximately30cm(12in.)above the bottom of the chamber. Specimens must be placed at a level above the water in the heating jacket to insure proper condensation.Air pressure to the humidifying tower should be approximately7to14kPa(1 to2psi).

X1.4Insulation of the test chamber is not required and can possibly interfere with the formation of condensate by reducing the temperature differential within the chamber.It is difficult to produce condensation with small chambers because the tem-perature differential is too slight.

X1.5Large walk-in chambers may require more than one heated water tank to generate the convective currents needed to cause condensation at all points within the chamber.Circulat-ing fans should be used with caution as their use may reduce the temperature differential and limit condensation.

X1.6In a properly operating chamber,condensation is observed on the specimens or parts when the chamber is opened for inspections.If condensation is not observed on any specimen immediately after the chamber is opened,discon-tinue the test and determine the cause of the lack of conden-sation before continuing.Report any instances of condensation non-uniformity if they occur during the exposure.It may be necessary to avoid placing specimens in the lower portion of the chamber as the temperature differentials at the lower levels may be too small to induce condensation.

X1.7In the event that enough condensation does not occur, or condensation does not form at all the desired points,it is possible to increase condensation by turning off the water heater periodically to cause temperature?uctuations.

X1.8Many variations in the design of the apparatus are possible in the use of this practice.Four typical designs are shown in Fig.X1.1,Fig.X1.2,Fig.X1.3,and Fig.X1.4

.

0—Angle of lid,90to125°

1—Hinged top,hydraulically operated,or counterbalanced

2—Water seal

3—Constant-level water tank unheated with over?ow outlet and equalizer connection

4—Heater water tank for supplying heat and humidity to cabinet

5—Immersion heater

6—Water temperature limit control

7—Thermostatic controller for room temperature.Primary limit control for immersion heater(5)

8—Water line

9—Insulation if necessary(see X1.3)

10—Temperature recorder(optional)

11—Drain

FIG.X1.1Humidity Cabinet

1—Temperature recorder

2—Fiberglass door with magnetic closers and rubber seal;inward sloping sill

3—Light switch

4—Thermostatic controller for room temperature.Primary limit control for immersion heater(6)

5—Heated water tank for supplying heat and humidity to room

6—Immersion heater

7—Water temperature limit control

8—Constant level water tank unheated with over?ow outlet

9—Equalizer connection

10—Floor drain

N OTE1—The chamber shall feature waterproof construction with insulation and vapor proof?xtures on the interior,lighting may be accomplished with a?uorescent?xture above insulating glass sealed in the ceiling.Polyvinyl chloride pipe and?anges shall be used for sleeves through walls.

FIG.X1.2Walk-in Humidity Chamber

1—Water vapor generated as steam outside the chamber

2—Water vapor introduced to bottom portion of chamber

3—Air inside the chamber is heated by plates inside the chamber and located in lower portion 4—Chamber walls are not insulated

5—Temperature of air is controlled next to the specimens

6—Warm saturated water vapor rises and forms condensation in the slightly cooler top portion of the chamber

FIG.X1.3Cyclic Corrosion Tester Cabinet with Vapor Generator

FIG.X1.4Humidity Cabinet

SUMMARY OF CHANGES

Committee D01has identi?ed the location of selected changes to this standard since the last issue(D2247–11) that should not impact the use of this standard.(Approved December1,2015.)

(1)Minor revisions to7.2.1,Note3,to increase clarity.(2)Revised A.1to correct“is”to“shall be.”

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.wendangku.net/doc/7110797489.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk

of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards

and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the

responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should

make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above

address or at610-832-9585(phone),610-832-9555(fax),or service@https://www.wendangku.net/doc/7110797489.html,(e-mail);or through the ASTM website

(https://www.wendangku.net/doc/7110797489.html,).Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center,222

Rosewood Drive,Danvers,MA01923,Tel:(978)646-2600;https://www.wendangku.net/doc/7110797489.html,/

湿度名词解释

【湿度】表示大气干燥程度的物理量。在一定的温度下在一定体积的空气里含有的水汽越少,则空气越干燥;水汽越多,则空气越潮湿。空气的干湿程度叫做“湿度”。在此意义下,常用绝对湿度、相对湿度、比较湿度、混合比、饱和差以及露点等物理量来表示;若表示在湿蒸汽中液态水分的重量占蒸汽总重量的百分比,则称之为蒸汽的湿度。 【绝对湿度】单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干程度。 【相对湿度】空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24Pa (12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,

所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示:例如,空气中含有水汽的压强为1606.24Pa(12.79毫米汞柱),在35℃时,饱和蒸汽压为5938.52Pa(44.55毫米汞柱),空气的相对湿度为 1606.24/5938.52=27%.而在15℃时,饱和蒸汽压是1606.24Pa(12.79毫米汞柱),相对湿度是100%。 湿度与相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和汽压也要随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小,而冬天的相对湿度又比夏天的大。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道绝对湿度或相对湿度,即可算出相对湿度或绝对湿度来。 湿度通常是指大气中所含的水蒸气量。湿度传感器是用以感受大气湿度并变换成适当电信号输出的传感器。 湿度有两种常用的表示方法,即绝对湿度和相对湿度。 绝对湿度是指一定空间中水蒸气的绝对含量,可用kg/m3表示。绝对湿度也可称为水汽浓度或水汽密度。绝对湿度也可用水的蒸气压来表示。设空气的水汽密度为ρv,与之相对应的水蒸气分压为Pv,则根据理想气体状态方程有如下关系:式中: M--水汽的摩尔质量;

室内温度25℃时露点与相对湿度对照表 文档

时露点与相对湿度对照表 ℃时露点与相对湿度对照表 25℃ 室内温度25 相对湿度 露点 相对湿度 露点 0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -24.49 15.0% - 3.02 2.2% -24.02 16.0% -2.25 2.3% -2 3.57 17.0% -1.15 2.4% -2 3.14 18.0% -0.83 2.5% -22.73 19.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

绝对湿度与相对湿度对照表

5%10%15%20%25%30%35%40%45%50%55% 60%65%70%75%80%85%90%95%100%5℃0.340.68 1.02 1.36 1.70 2.04 2.38 2.72 3.06 3.40 3.73 4.07 4.41 4.75 5.09 5.43 5.77 6.11 6.45 6.7910℃0.470.94 1.41 1.88 2.35 2.82 3.29 3.76 4.23 4.70 5.16 5.63 6.10 6.577.047.517.988.458.929.3915℃0.64 1.28 1.92 2.56 3.21 3.85 4.49 5.13 5.77 6.417.057.698.338.979.6210.2610.9011.5412.1812.8220℃0.86 1.73 2.59 3.45 4.32 5.18 6.04 6.917.778.649.5010.3611.2312.0912.9513.8214.6815.5416.4117.2725℃ 1.15 2.30 3.45 4.60 5.75 6.908.059.2010.3511.5112.6613.8114.9616.1117.2618.4119.5620.7121.8623.0130℃ 1.52 3.03 4.55 6.067.589.0910.6112.1213.6415.1616.6718.1919.7021.2222.7324.2525.7627.2828.7930.3135℃ 1.98 3.95 5.937.909.8811.8513.8315.8017.7819.7621.7323.7125.6827.6629.6331.6133.5835.5637.5339.5140℃ 2.55 5.107.6510.2012.7515.3017.8520.4022.9525.5028.0530.6033.1535.7038.2540.8043.3545.9048.4551.0045℃ 3.26 6.529.7813.0416.3019.5622.8226.0829.3432.6135.8739.1342.3945.6548.9152.1755.4358.6961.9565.2150℃ 4.138.2712.4016.5320.6624.8028.9333.0637.1941.3345.4649.5953.7257.8661.9966.1270.2574.3978.5282.6555℃ 5.1910.3915.5820.7825.9731.1736.3641.5646.7551.9557.1462.3367.5372.7277.9283.1188.3193.5098.70103.8960℃ 6.4812.9519.4325.9132.3938.8645.3451.8258.2964.7771.2577.7284.2090.6897.16103.63110.11116.59123.06129.5465℃8.0216.0324.0532.0640.0848.0956.1164.1272.1480.1588.1796.18104.20112.21120.23128.24136.26144.27152.29160.3070℃9.8519.6929.5439.3949.2459.0868.9378.7888.6298.47108.32118.16128.01137.86147.71157.55167.40177.25187.09196.9475℃12.0224.0336.0548.0660.0872.0984.1196.12108.14120.16132.17144.19156.20168.22180.23192.25204.26216.28228.29240.3180℃14.5729.1343.7058.2772.8387.40101.97116.53131.10145.67160.23174.80189.36203.93218.50233.06247.63262.20276.76291.3385℃17.5535.1052.6570.2087.75105.29122.84140.39157.94175.49193.04210.59228.14245.69263.24280.78298.33315.88333.43350.9890℃21.0242.0463.0584.07105.09126.11147.13168.14189.16210.18231.20252.22273.23294.25315.27336.29357.31378.32399.34420.3695℃25.0350.0675.09100.12125.15150.18175.21200.24225.27250.30275.33300.36325.39350.42375.45400.48425.51450.54475.57500.60100℃ 29.65 59.30 88.94 118.59 148.24 177.89 207.54 237.18 266.83 296.48 326.13 355.78 385.42 415.07 444.72 474.37 504.02 533.66 563.31 592.96 绝对湿度与相对湿度对应表(大气压:1bar) 相对湿度 (RH) 绝对湿度 g/m 3 温度

露点和相对湿度

露点的原始定义一般说来是:湿度一定压力一定的被测量气体被降温,当降到一个特定的温度时出现结露现象,此时这个特定温度就是这个压力条件下的露点温度。所以才出现了从原始定义出发测量露点的镜面式露点仪,GE的测量镜面采用铂铑合金。 相对湿度是被测量气体的水蒸气分压与相同压力、温度条件下净水表面饱和水蒸气分压的比值。范围0-100% 单位RH,无量纲单位。 露点的测量环境要根据测量仪器的不同而定,镜面式露点仪一般要求流量,基本都为0.25升/分钟至5升/分钟之间,流量过大或过小都将导致测量不准确。探头式的在线露点仪也要求流量条件,它的流量性质准确的称为流速,不同压力下流速允许范围因传感器不同而异。GE的金基三氧化二铝传感器有许多种,种种不同,根据测量条件内置针阀式采样器的可测量更大压力气体的露点,MMY35典型的流速允许为 1bar 基本是常压了,可达50米/秒。但在10bar压力条件下,只有5米/秒的最大流速。 相对湿度基本没碰到过有什么要求,一般常见的是在相对湿度含量很低的情况下用露点表示,或者直接用含水PPM表示,因为你不能用小数点以后几个零的数字来表示,那样没有意义。高温下也一般已经不存在相对湿度的概念,因为水已经被完全汽化,根本不存在含水量的概念(高压下例外)。无论是高温还是高温高压下,现在的相对湿度传感器基本都是通过采样气体测量常温湿度,然后反推得出的。 结论:如果空气相对湿度达到100%RH,那么此时的空气温度就是露点温度,这个结果不难得出。 而且现在的计量单位,从一级到二级站基本都已经将镜面露点仪作为相对湿度的最高标准。 什么是相对湿度? 在相同温度下,空气中水汽含量与饱和水汽含量之间的比例。 详细解释:压力为P,温度为T的湿空气的相对湿度是指给定的湿空气中,水汽的摩尔分数怀同一温度T和压力P下纯水表面的饱和水汽的摩尔分数之比,用百分数表示。相对湿度是两个压强值之比: %RH = 100 x p/ps 在这里p 是周围环境中水蒸汽的实际部分压强值;ps是周围环境中水的饱合压强值. 相对湿度传感器通常是在标准室温情况下校准的(高于0度),相应的,通常认为这种传感器可以指示在所有温度条件下的相对湿度(包括在低于0度的情况).

环境湿度基本常识

湿度的基本概念 空气中含有一定量的水蒸气,来自江河湖海和土壤水分的不断蒸发。空气中的水蒸气含量越多,就越潮湿,反之就越干燥。空气中的干燥和潮湿程度,就叫空气的湿度。空气的湿度通常有以下几个概念: 1.绝对湿度(absolute humidity) 单位体积内的空气中,实际所含的水蒸气量,称为空气的绝对湿度。用密度单位“g/m3”表示。如lm3的空气中含有水蒸气,绝对湿度就是m3。某温度下的绝对湿度,也可以用水汽压强单位毫米高水银柱( mmHg)近似地表示。如水汽压强是8mmHg,绝对湿度可近似地表示为8g/m3。湿度与温度和水的蒸发强度有直接的关系,一般温度高,蒸发到空气中的水汽就多,绝对湿度就大,反之就小。绝对湿度与温度成正比。 设空气的水汽密度为ρv,与之相对应的水蒸气分压为Pv,则根据理想气体状态方程有如下关系 ρv=PvM/RT (1)式中,M为水汽的摩尔气体质量;R为摩尔气体常数;T为绝对温度。 2.饱和湿度(saturated humidity)在一定温度下,空气中水蒸气的最大含量,称为饱和湿度。饱和湿度的单位以g/m3表示。在一定的温度下,空气中的水蒸气含量不会无限制地增多。当空气中的水蒸气含量达到最大限度时,空气中的水蒸气量就达到饱和。大气是由干空气和水蒸气组成的混合气体,大气具有一定的压强,就是通常所说的大气压。水蒸气也具有一定的压强,称为水蒸气分压力。大气压等

于空气的分压力与水蒸气分压力之和。 饱和湿度不是固定不变的,饱和湿度随温度的上升而增大,温度越高,单位体积中所能容纳的水蒸气含量就越多,水汽压就越大,直到达到饱和,此时饱和水汽压也增大到该温度下的最大值,多余的水蒸气就会出现凝结现象。例如:20℃时饱和水汽压为m3, 30℃时增大到m3。饱和湿度与温度成正比。 3.相对湿度(relative humidity)在一定温度下,空气中实际含有的水汽量与同温度下的空气最大水汽量之比的百分数,称为相对湿度。即一定温度下绝对湿度占饱和湿度的百分比数。 相对湿度=绝对湿度/饱和湿度×100% 绝对湿度=饱和湿度×相对湿度 RH=(Pv/Pw)T×100% (2)式中,Pv为空气水蒸气分压;Pw为空气温度T同温时水的饱和水汽压。 相对湿度只表示空气离饱和的程度,不表示空气湿度的绝对大小。例如,温度在10℃、15℃时,若相对湿度均为70%,其绝对湿度是不同的,10°C时绝对湿度是m3,15℃时为8. 95g/m3。通常所说的相对湿度小,就表示空气距同温度下的饱和湿度远,空气较干燥;相反就表示距离同温度下的饱和湿度近,空气较潮湿。某温度下的相对湿度为100%时,水汽达到饱和,水汽压达到同温度下的最大值。 温度与相对湿度的关系是:如果某一时刻的温度不变,绝对湿度的高低决定相对湿度的大小。因为在一定的温度下,空气的饱和湿度

相对湿度

在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸汽量(水蒸汽压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。 三、绝对湿度和相对湿度、露点 湿度很久以前就与生活存在着密 切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 绝对湿度是指每立方米的空气中含有水蒸气的质量。 相对湿度(Relative Humidity,缩写为RH)是指水蒸气在空气中达到饱和的程度,饱和时为100%RH。当绝对湿度不变时温度越高相对湿度越小。当空气中的含水量没有达到饱和状态,实际含水量与饱和含水量的比值就是相对湿度。相对湿度达到100%,水就不会再自然蒸发了。温度不同,饱和水量也不同,温度越高,容纳的水越多,温度降低了,空气中不能容纳原来那麽多的水了就会出现结露。

凝露是当空气湿度达到一定饱和程度时,在温度相对较低的物体上凝结的一种现象。 湿度是普遍存在的,而凝露只是湿度达到一定程度时的一种特殊现象。 四、相对湿度RH%的计算公式 计算相对湿度可按照下述公式: 其中的符号分别是: ρw –绝对湿度,单位是克/立方米 ρw,max –最高湿度,单位是克/立方米 e –蒸汽压,单位是帕斯卡 E –饱和蒸汽压,单位是帕斯卡 s –比湿,单位是克/千克 S –最高比湿,单位是克/千克 湿空气 大气中的空气总含有水蒸气,通常称为湿空气。在许多工程实际中都要利用湿空气,它所含的水蒸气量虽不多,却显得特别重要。由于水蒸气的性质不同于气体,而有其本身的特殊性,因此本章专题讨论湿空气的基本知识。

露点与相对湿度

绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg,12℃时的饱和蒸汽压为lO.52mmHg。则此时:空气的绝对湿度p=10.52mmHg, 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。 ②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。 ⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。 由于未饱和汽的压强随温度的变化是遵循下列规律Pt=P0(1+t/273)。

绝对温度与相对湿度

温度与相对湿度、绝对湿度、饱和湿度的关系 作者:不详来源:网上收集更新日期:2009-6-10 阅读次数:1042 四、相对湿度、露点温度转换的基本原理说明 湿度研究对象是气体和水汽的混合物。无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 压力为P,温度为T的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T和压力P下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 实际水汽压与同一温度条件下的饱和水汽压的比值: 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压;实际水汽压除以饱和水汽压,就可以得到相对湿度。 相对湿度换算为露点温度:由于露点温度定义为空气中的水汽达到饱和时的温度,所以,必须先计算出实际水汽压。根据露点的定义,这时的水汽压就是露点温度对应的饱和水气压。因此,可以用对饱和水汽压求逆的方法计算露点温度。 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位

温度与相对湿度要点

温度与相对湿度、绝对湿度、饱和湿度的关系 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l 立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 2 5 4P su x =? (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg ,12℃时的饱和蒸汽压为lO.52mmHg 。则此时:空气的绝对湿度p=10.52mmHg , 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。 ②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。 ⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。

相对湿度和绝对湿度有什么区别

相对湿度和绝对湿度有什么区别 【湿度】表示大气干燥程度的物理量。在一定的温度下在一定体积的空气里含有的水汽越少,则空气越干燥;水汽越多,则空气越潮湿。空气的干湿程度叫做“湿度”。在此意义下,常用绝对湿度、相对湿度、比较湿度、混合比、饱和差以及露点等物理量来表示;若表示在湿蒸汽中液态水分的重量占蒸汽总重量的百分比,则称之为蒸汽的湿度。 【绝对湿度】单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干湿程度。 【相对湿度】空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24Pa(12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比 ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示: 例如,空气中含有水汽的压强为1606.24Pa(12.79毫米汞柱),在35℃时,饱和蒸汽压为5938.52Pa(44.55毫米汞柱),空气的相对湿度 而在15℃时,饱和蒸汽压是1606.24Pa(12.79毫米汞柱),相对湿度是100%。 绝对湿度与相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和汽压也要随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小,而冬天的相对湿度又比夏天的大。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道绝对湿度或相对湿度,即可算出相对湿度或绝对湿度来。

绝对湿度与相对湿度和露点

绝对湿度、相对湿度、露点、绝热饱和温度 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是

跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg,12℃时的饱和蒸汽压为lO.52mmHg。则此时:空气的绝对湿度p=10.52mmHg, 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。

相对湿度 、露点温度转换的计算公式

相对湿度、露点温度转换的计算公式 湿度研究对象是气体和水汽的混合物。 无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 1、压力为P,温度为T 的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T 和压力P 下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 2、实际水汽压与同一温度条件下的饱和水汽压的比值 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。 但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的(在湿度论坛中,本人给出了温度to 饱和水汽压的简化公式以及计算程序,可下载)。 上面说道:饱和水汽压是与温度相关的量。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to 饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to 饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压 实际水汽压除以饱和水汽压,就可以得到相对湿度。

湿度的计算

空气相对湿度RH%的计算 空气相对湿度RH%,计算 内容摘要:相对湿度是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高,它的单位是% 相对湿度 相对湿度是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高,它的单位是%。相对湿度为100%的空气是饱和的空气。相对湿度是50% 的空气含有达到同温度的空气的饱和点的一半的水蒸气。相对湿度超过100%的空气中的水蒸气一般凝结出来。随着温度的增高空气中可以含的水就越多,也就是说,在同样多的水蒸气的情况下温度升高相对湿度就会降低。因此在提供相对湿度的同时也必须提供温度的数据。通过相对湿度和温度也可以计算出露点。 以下是计算相对湿度的公式: 其中的符号分别是: ρw –绝对湿度,单位是克/立方米 ρw,max –最高湿度,单位是克/立方米 e –蒸汽压,单位是帕斯卡 E –饱和蒸汽压,单位是帕斯卡 s –比湿,单位是克/千克 S –最高比湿,单位是克/千克

「绝对湿度」指一定体积的空气中含有的水蒸气的质量,一般其单位是克/立方米。绝对湿度的最大限度是饱和状态下的最高湿度。绝对湿度只有与温度一起才有意义,因为空气中能够含有的湿度的量随温度而变化,在不同的高度中绝对湿度也不同,因为随着高度的变化空气的体积变化。但绝对湿度越靠近最高湿度,它随高度的变化就越小。 下面是计算绝对湿度的公式: 其中的符号分别是: [编辑]相对湿度(RH) 一台溼度計正在紀錄相對濕度 「相对湿度」(RH)是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高。相对湿度为100%的空气是饱和的空气。相对湿度是50%的空气含有达到同温度的空气的饱和点的一半的水蒸气。相对湿度超过100%的空气中的水蒸气一般凝结出来。随着温度的增高,空气中可以含的水就越多。也就是说,在同样多的水蒸气的情况下,温度降低,相对湿度就会升高;温度升高,相对湿度就会下降低。因此在提供相对湿度的同时也必须提供温度的数据。通过最高湿度和温度也可以计算出露点。

干湿球温度计的相对湿度对照表

相对湿度对照表 本表格不太全,精度也有限,适合要求不高的场合。 如要求较高,另有以下选择: 1。根据干湿球温度的相对湿度计算程序(汇编)50元: 环境条件:风速:0.4m/s 0.8m/s 2.5m/s三种可选 大气压:110,100,90,80kPa四种可选 干球温度范围:0~100摄氏度 干湿球温度差:不限 程序入口:干球温度(精确到0.1度) 湿球温度(精确到0.1度) 程序出口:相对湿度(精确到1%) 2.相对湿度对照表(JPG文件)100kPa 0.8m/s 干球温度范围:15~100摄氏度 30元。 请联系wt9405@https://www.wendangku.net/doc/7110797489.html, ;--------------------------相对湿度表 ;干球温度 0 ~ 40 度, ;每度16档温差:0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,.....14.0, 14.5, 15.0 ;温差0.0档应为100,为了只用一字节十进制表示,100用99代 SD_TAB:DB 99H,91H,83H,75H,67H,61H,54H,48H,42H,37H,31H,27H,22H,18H,14H,10H DB 07H,04H,01H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H _1:DB 99H,91H,83H,76H,69H,62H,50H,44H,39H,34H,30H,25H,21H,17H,14H,10H DB 07H,04H,01H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H _2:DB 99H,92H,84H,77H,70H,64H,58H,52H,47H,42H,37H,33H,28H,24H,21H,17H DB 14H,11H,08H,05H,02H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H _3:DB 99H,92H,85H,78H,72H,65H,60H,54H,49H,44H,39H,35H,31H,27H,23H,20H DB 17H,14H,11H,08H,06H,03H,01H,00H,00H,00H,00H,00H,00H,00H,00H,00H _4:DB 99H,93H,86H,80H,74H,68H,63H,57H,53H,48H,44H,40H,36H,32H,29H,25H DB 22H,19H,17H,14H,12H,10H,07H,05H,03H,02H,00H,00H,00H,00H,00H,00H _5:DB 99H,93H,86H,80H,74H,68H,63H,57H,53H,48H,44H,40H,36H,32H,29H,25H DB 22H,19H,17H,14H,12H,10H,07H,05H,03H,02H,00H,00H,00H,00H,00H,00H _6:DB 99H,93H,87H,81H,75H,69H,64H,59H,54H,50H,46H,42H,38H,34H,31H,28H DB 25H,22H,19H,17H,15H,12H,10H,08H,06H,05H,03H,01H,00H,00H,00H,00H _7:DB 99H,93H,87H,81H,75H,69H,64H,59H,54H,50H,46H,42H,38H,34H,31H,28H DB 25H,22H,19H,17H,15H,12H,10H,08H,06H,05H,03H,01H,00H,00H,00H,00H _8:DB 99H,94H,88H,82H,76H,71H,66H,62H,57H,53H,49H,46H,42H,39H,35H,32H DB 29H,27H,24H,22H,19H,17H,15H,13H,11H,10H,08H,06H,05H,04H,02H,02H 第 1 页

相对湿度对照表-1

干湿通风表湿度对照表 干湿温差 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 干球温度相对湿度(%) 50 97 94 92 89 87 84 82 79 77 74 72 70 68 66 63 61 49 97 94 92 89 86 84 81 79 77 74 72 70 67 65 63 61 48 97 94 92 89 86 84 81 79 76 74 71 69 67 65 62 60 47 97 94 92 89 86 83 81 78 76 73 71 69 66 64 62 60 46 97 94 91 89 86 83 81 78 76 73 71 68 66 64 62 59 45 97 94 91 88 86 83 80 78 75 73 70 68 66 63 61 59 44 97 94 91 88 86 83 80 78 75 72 70 67 65 63 61 58 43 97 94 91 88 85 83 80 77 75 72 70 67 65 62 60 58 42 97 94 91 88 85 82 80 77 74 72 69 67 64 62 59 57 41 97 94 91 88 85 82 79 77 74 71 69 66 64 61 59 56 40 97 94 91 88 85 82 79 76 73 71 68 66 63 61 58 56 39 97 94 91 87 84 82 79 76 73 70 68 65 63 60 58 55 38 97 94 90 87 84 81 78 75 73 70 67 64 62 59 57 54 37 97 93 90 87 84 81 78 75 72 69 67 64 61 59 56 53 36 97 93 90 87 84 81 78 75 72 69 66 63 61 58 55 53 35 97 93 90 87 83 80 77 74 71 68 65 63 60 57 55 52 34 96 93 90 86 83 80 77 74 71 68 65 62 59 56 54 51 33 96 93 89 86 83 80 76 73 70 67 64 61 58 56 53 50 32 96 93 89 86 83 79 76 73 70 66 64 61 58 55 52 49 31 96 93 89 86 82 79 75 72 69 66 63 60 57 54 51 48 30 96 92 89 85 82 78 75 72 68 65 62 59 56 53 50 47 29 96 92 89 85 81 78 74 71 68 64 61 58 55 52 49 46 28 96 92 88 85 81 77 74 70 67 64 60 57 54 51 48 45 27 96 92 88 84 81 77 73 70 66 63 60 56 53 50 47 43 26 96 92 88 84 80 76 73 69 66 62 59 55 52 48 46 42 25 96 92 88 84 80 76 72 68 64 61 58 54 51 47 44 41 24 96 91 87 83 79 75 71 68 64 60 57 53 50 46 43 39 23 96 91 87 83 79 75 71 67 63 59 56 52 48 45 41 38 22 95 91 87 82 78 74 70 66 62 58 54 50 47 43 40 36 21 95 91 86 82 78 73 69 65 61 57 53 49 45 42 38 34 20 95 91 86 81 77 73 68 64 60 56 52 58 44 40 36 32 19 95 90 86 81 76 72 67 63 59 54 50 56 42 38 34 30 18 95 90 85 80 76 71 66 62 58 53 49 44 41 36 32 28 17 95 90 85 80 75 70 65 61 56 51 47 43 39 34 30 26 16 95 89 84 79 74 69 64 59 55 50 46 41 37 32 28 23 15 94 89 84 78 73 68 63 58 53 48 44 39 35 30 26 21 14 94 89 83 78 72 67 62 57 52 46 42 37 32 27 23 18 13 94 88 83 77 71 66 61 55 50 45 40 34 30 25 20 15 12 94 88 82 76 70 65 59 53 47 43 38 32 27 22 17 12 11 94 87 81 75 69 63 58 52 46 40 36 29 25 19 14 8 10 93 87 81 74 68 62 56 50 44 38 33 27 22 16 11 5 9 93 86 80 73 67 60 54 48 42 36 31 24 18 12 7 1 8 93 86 79 72 66 59 52 46 40 33 27 21 15 9 3 7 93 85 78 71 64 57 50 44 37 31 24 18 11 5 6 92 85 7 7 70 63 55 4 8 41 34 28 21 13 3 5 92 84 7 6 69 61 53 46 36 28 24 16 9 4 92 83 7 5 67 59 51 44 3 6 28 20 12 5 3 91 83 7 4 66 57 49 41 33 2 5 1 6 7 1 2 91 82 7 3 6 4 5 5 4 6 38 29 20 12 1 1 90 81 7 2 62 5 3 43 3 4 2 5 1 6 8 0 90 80 71 60 51 40 30 21 12 3

相关文档
相关文档 最新文档