文档库 最新最全的文档下载
当前位置:文档库 › 材料化学综述

材料化学综述

材料化学综述
材料化学综述

稀磁半导体材料的研究进展及应用前景

吕艳

1前言

1.1稀磁半导体概述

稀释磁性半导体(Diluted Magnetic Semiconductors,DMS),也称半磁半导体是指在III-V族、II-VI族、II-V族或IV-VI族化合物中,由磁性过渡族金属离子或稀金属离子部分替代非磁性阳离子所形成新的一类半导体材料。理想的稀磁半导体应具有以下特点:居里温度

c

T>500K.铁磁性与形成载流子的杂质能带的自旋分裂相关联:可以选择n型和P型掺杂;具有高的迁移率和自旋散射长度;具有磁光效应和反常霍尔效应[1]。由于稀磁半导体材料所具备的半导体和磁性材料的综合特性,使其可广泛应用于未来的磁(自旋)电子器件,从而使传统的电子工业面临一场新的技术革命。

什么DMS材料能引起人们很大的兴趣?概括起来有以下方面原因,1.当前世界上对半导体和磁性二大类材料研究得比较广泛和深人。且广泛地应用于光电器件,仪表,通讯,航天等领域。如果能把这二大类材料的优点集中在同一种材料上,既具有半导体性,又有磁性,兼有两者共同的优点,其虚用面将更广泛。2.由

于稀磁性半导体(DMS)AⅡ

t-x .M

a

B

是三元组份。其中,带有磁佳的锰离子的组份

是可调的,其材料的物理参数也随组份的改变而不同。由于掺入了Mn,Mn“离子就取代了AⅡ族离子,Mn“分布在I族阳离子的品格上,在低温下,引起自由自旋。3.Mn原子取代了AⅡBⅥ晶格,使它具有较高的有效的电荧光性质。4.Mn 的存在可引起s,p价电子层和d电子层的电子与Mn”的交换作用,产生电子能级(价电子和杂质电予能级)的分裂。Mn“在晶体中的自由自旋性质的增强将会引起新的效应,像巨大的法拉第旋转。A一MnBⅥ的晶格参数和能带宽度随组份x 的可变性,使它有可能成为优良的量子阱超晶格材料。

以前DMS的研究主要集中在磁性离子引入半导体材料后出现的独特的磁学、电学和磁光性能方面。而当自旋电子学这一全新领域得到飞速发展后,在更广义的情况下,这个新的领域即自旋电子学(Spin—electronic sorpintronics)[2]。

它包括那些既不需要外磁场也不需要其他磁性材料而利用自旋的器件。如磁

阻传感器(MR),一种包含金属铁磁体的多层材料。显示出巨磁阻(GMR)和隧道磁阻特性(TMR),是今天众所周知的磁电子学器件,而它是基于上述两个自由度之间相互作用的基础之上的[3]。与此同时它也为DMS的研究开拓了新的研究领域,这是因为自旋电子器件一般需要使用在常温下保持磁性的半导体,但大部分DMS 的居里温度都远远低于室温,从而在常温的环境下失去磁性。[4]具有室温铁磁性的DMS是自旋电子学应用的基础,它是利用载流子的自旋和电荷自由度构造将磁、电集于一体的半导体器件。因而实现自旋电子器件应用的关键技术在于提高材料的居里温度。[5]制备出更多种类的材料和寻找出更广范更适合掺杂的元素来提高稀磁半导体材料的居里温度是当前的首要问题。[6]目前研究的焦点还有,稀磁半导体磁性的来源、DMS材料的实用化与DMS器件设计与研发等问题。针对这些问题,物理学、化学和半导体材料学界开展了大量的研究工作[7].

2 DMS的特点及分类

当前用于制备稀磁半导体的基质包括Ⅱ一Ⅵ族、Ⅳ一Ⅵ族、Ⅱ一V族及Ⅲ一V族化合物,通过Mn、Fe、Co和稀土等的磁性阳离子替代而形成A一MBDMS混晶。它由组分为普通化合物半导体AB和组分为磁性半导体MB组成,其中M为过渡金属或稀土金属。DMS中有两个相互作用的子系统:一个是与电性相联系的载流子(能带电子或空穴);另一个是与磁性相联系的顺磁离子。这样在稀磁半导体中就存在着两种自旋一自旋交换作用:磁性离子与载流子之间的自旋交换作用(sp-d交换作用)以及磁性离子本身之间的自旋交换作用(d-d交换作用)。由于DMS的载流子与局域磁矩之间有强烈的自旋一自旋交换相互作用(sp-d交换作用),改变了能带结构和载流子的行为,使载流子行为强烈地受到温度和外磁场的影响。因此在加外磁场时可使导带和价带产生大的自旋劈裂作用,从而出现诸如巨法拉第旋转效应、激子带的巨塞曼分裂、自旋超晶格、极大的g因子、巨磁阻以及磁致绝缘体一金属转变等新的物理现象,具有显著的磁光效应和磁输运性,在高密度非易失性存储器、自旋电子器件、磁感应器、光隔离器件、半导体激光器集成电路以及量子计算机等方面有着重大的潜在应用[8]。DMS在没有外磁场的情况下,显示的是普通半导体的性质,但在外场下就可显示出一定的磁性,具有半导体和磁性材料的双重性质。另外稀磁半导体最为重要的特点是其禁带宽度和品格常数随掺入的磁性离子浓度的不同而变化,通过能带剪裁工程可使这些材料应用于各种器件。稀磁半导体中的磁离子对外磁场有强烈的响应,如同外磁

场的放大器,增强因子可达10量级,使DMS在中等适度磁场下就出现巨大的磁光效应等一系列与普通半导体完全不同的新的物理特性。过去对稀磁半导体的研究主要采用Mn、Fe、Co等过渡族金属作为磁性阳离子来代替部分半导体元素,但由于其居里温度低于室温以及饱和磁化强度较低[9],极大地限制了该类材料的应用。稀土元素由于其不满的4f层电子,掺杂到其他材料中,可获得优异的光、磁、超导等物理特性,同时Gd等稀土元素原子磁矩较大,作为磁性阳离子掺杂于Ⅳ一Ⅵ族半导体中替代Ⅳ族阳离子,可望开发出性能优异的新型稀磁半导体。

3 DMS的物理性质

3.1 磁学性质

绝大多数化合物半导体都是抗磁性的,但在用过渡族或稀土族金属离子部分、无规则地替代了化合物中非磁性阳离子后,在磁性质上发生了根本变化。磁学性质主要取决于材料中磁性离子之间的交换作用(d—d交换作用),例如,含Mn的DMS材料中的Mn2+-Mn2+的d-d交换作用。d-d交换过程一般分为3类:两空穴过程、空穴一电子过程和两电子过程。磁性离子的浓度是决定其性质的重要因素。一般情况下,在相同磁场强度下晶体的磁性离子含量越多(有一定限度),其磁化强度越高。随着温度丁和组分的变化,磁极化子浓度发生变化,导致DMS

材料发生磁相变。目前,研究表明Ⅱ一Ⅵ族DMS材料在一定温度和磁离子浓度范围内会出现3种磁相(顺磁相、自旋玻璃相和反铁磁相),III—V族DMS材料中则表现出2种相(顺磁相和铁磁相)。例如,用低温分子束外延制备的In

一Mn x As

1-x

薄膜在低温下呈现出截流子感生铁磁有序,(CA,Mn)Se、(CA,Mn)Te、(Hg,Mn)Se、(Hg,Mn)Te等显示的磁学性质丰富了磁输运的内容。DMS在一定条件下可以发生的磁相变----顺磁一自旋玻璃的相变,可以从磁光法拉第旋转效应的测量上明显地观察到[10]。

4 稀磁半导体的表征

4.2磁性表征

超导量子干涉仪(SQUID)测量得出室温下样品的磁滞回线以及磁化强度随温度的变化曲线。测量M-H曲线时,磁场扫描范围-0.2—0.2T;测量曲线时,保

持磁场强度是0.01T(0.05T),温度变化范围从5—300K(5~350K)

4.3结构和性能表征

采用日本RIGAKU公司生产的D/max2000vpc型x射线衍射仪(XRD)分析薄膜

的晶体结构,x射线是CuKα1射线,波长为0.15406nm,扫描范围2在10○~120○之间,扫描步长为0.02○采用美国Thermo—VGScientific公司生产的ESCALAB250型x射线光电子能谱(XPS)检测和分析薄膜成分,分析室真空度优于

2×10~Pa,X射线源为MgKa(1253.6eV),能量扫描范围为1~1100eV,得到的

谱图以Ag3d

的结合能368eV为基准进行校准。采用日本岛津公司V-3150紫外5/2

可见光分度计(UV-Vis)分析薄膜的吸收谱,使用钨灯光源,利用积分球方法,扫

描速度200nm/min,扫描范围200-800nm。

5 应用现状与前景展望

5.1改变组分获得所需的光谱效应

通过改变磁性离子的浓度可得到所需要的带隙,从而获得相应的光谱效应。

由于其响应波长可覆盖从紫外线到远红外线的宽范围波段,这种DMS是制备光电

器件、光探测器和磁光器件的理想材料。在Ⅲ一V族宽带隙稀磁半导体GaN中掺

入不同的稀土磁性元素可发出从可见光到红外的不同波长的光,加上GaN本身可

发紫外光,因此掺稀土GaN材料可发出从紫外到红外波段的光,如在GaN中掺

Er可发绿光,而掺Pr可发红光等。

1994年Wilson等副在掺Er的GaN薄膜中首次观察到1.54微米的红外光荧

光。1998年Steckl等采用Er原位掺杂方法首次获得绿光发射[11]。掺Er的GaN

的另一个重要特性是其温度猝灭效应很弱,这对于制备室温发光器件非常重要。

后来红光和蓝光器件相继研制成功,这些都可以作为光通信和光电集成的光源。

5.2 sp-d交换作用的应用

利用DMS的巨法拉第旋转效应可制备非倒易光学器件,也可用于制备光调谐

器、光开关和传感器件。(2)DMS的磁光效应为光电子技术开辟了新的途径。利

用其磁性离子和截流子自旋交换作用(sp-d作用)所引起的巨g因子效应,可制备一系列具有特殊性质的稀磁半导体超晶格和量子阱器件。这种量子阱和超晶格不仅具有普通量子阱和超晶格的电学、光学性质,而且还具有稀磁半导体的磁效应,因此器件具有很多潜在的应用价值。

利用磁性和半导体性实现自旋的注入与输运,可造出新型的自旋电子器件,如自旋过滤器和自旋电子基发光二极管等。深入研究自旋电子学。

推动DMS的实用化自旋电子学是目前固体物理和电子学中的一个热点,其核心内容是利用和控制固体,尤其是半导体中的自旋自由度。近年来以稀磁半导体为代表的自旋电子学的研究相当活跃,各国科研机构和各大公司都投入了巨大财力和人力从事此领域的研究。利用具有磁性或自旋相关性质的DMS基材料可制出一类新型器件——既利用电子、空穴的电荷也利用它们的自旋。这些新材料和人造纳米结构,包括异质结构(HS)、量子阱(Qw)和颗粒结构一直是一些新型功能的“沃土”——与自旋相关的输运、磁阻效应和磁光效应。自旋电子学可用于计算机的硬驱动,在计算机存储器中极具潜力。在高密度非易失性存储器、磁感应器和半导体电路的集成电路、光隔离器件和半导体激光器集成电路以及量子计算机等领域,DMS材料均有重大的潜在应用。但上述以稀磁半导体为基础的自旋电子器件的研制尚处于起步阶段,距实用化还有很长的路程。自旋电子学与自旋电子学器件研究的深入,将加深DMS机理的研究和理论的探索,推动DMS的实用化过程。[12]

5.3室温DMS的研究

为了应用方便,需要开发高居里温度(Te)的DMS材料(高于室温)。室温下具有磁性为磁性半导体的应用提供了可能。扩展更多的掺杂磁性元素或生长更多种类材料来提高DMS材料的居里温度是当前的首要问题。近来Hori等成功掺入5%Mn在GaN中,获得了高于室温的Tc;报道表明(Zn,Co)O的居里温度可达到

90-380K。Dietl等采用Zener模型对闪锌矿结构的磁半导体计算表明,GaMnN 和ZnMnO具有高达室温的居里温度,该计算结果对实验研究提供了很好的理论依据。[13]但是,如何将磁性和半导体属性有机地结合起来仍然是值得进一步研究问题。[14]

6 结语

稀磁半导体材料具有极高的应用价值,其研究已愈来愈受到人们的重视,各国已开展了大量的实验工作,研究重点已由先前的纯理论研究慢慢转向将基础研究与应用研究相结合。[15]随着MBE等技术的发展,制备高质量的稀磁半导体量子阱和超晶格成为可能,使DMS材料在光电子器件上的应用具有更广阔的前景。通过各种精妙的方法可制备出各种越来越实用化的稀磁半导体微结构器件,使得新的材料组合、新的材料结构、新的功能器件不断涌现,也为我们提供了新的研究对象,甚至新的研究领域。目前,在世界范围内正掀起DMS材料的研究高潮,而我国在该领域的研究还不太多,对其进行系统研究无疑是充满机遇和具有挑战性的。[16]

参考文献

[1] Coey J M D.[J].Curt Opin Solid State Mater Sci . 2006,10:83.

[2]危书义,王天兴,阎玉丽.III-V 稀磁半导体研究进展[J].河南师范大学学报(自然科

学版),2003:3l(2):50-53.

[3] Prinz.G.A.Magnetoelectronics[J].Science,1998,282:l660.

[4] Wolf.S.A .,Treger.D.Spintronics:a new paracligm for electronics for the new millennium [J].

Magnetics.2O00,36:2748.

[4] Bal1.P.,Meet the spin doctors[J] .Nature,2000,404:9l8.

[6] Wolf.S.,D.D.Awshalom,R.A.Buhrman,J.M.Daughton:aspin2based electronics vision for the

future[J].Science,2001,294:1488.

[7] 侯登录.稀磁半导体的制备与性质[J].物理实验,2005;25(8 ):3-7 .

[8]Can, Musa Mutlu:Defect dependent polarized spin current in 1% Co doped ZnO thin

films[J].Journal of Magnetism and Magnetic Materials,2014,337:229-238.

[9] Ahmed, Raju.Moslehuddin, A.S.M..Mahmood, Zahid Hasan.Hossain, A.K.M. Akther:Weak

ferromagnetism and temperature dependent dielectric properties of Zn0.9Ni0.1O diluted magnetic semiconductor.Materials Research Bulletin,2014,63:32-40

[10] Tao, H.L.,Lin, L.,Zhang,Z.H..He, M..Song, B:New diluted magnetic semiconductor(BaK)(ZnMn)2As2: Electronic structure and magnetic

properties[J].Computational Materials Science.2014,98:93-98.

[11] Li, Zhaoning,Wang, Weiping ,Zhao,Shicao:Mn–Mninteraction induced metallic or

insulating character of doped silicon:Anabinitio study[J].Computational Materials Science,2014,97:186-192

[12] Toydemir,B.,Onel,A.C.,Ertas,M.;Arslan,L.Colakerol::Dependence of magnetic

properties on the growth temperature of Mn0.04Ge0.96 grown on Si (001)[J].Journal of Magnetism and Magnetic Materials,2014,337:229-238.

[13] 刘力锋,杨瑞霞,郭惠.基于GaAs的新型稀磁半导体材料(Ga,Mn)As.半导体情报,

2001,38(6):28 [14] Wilson RG,Schwartz RN,Abernathy CR,etal。1.54/~mphotolum in escence from

Er-implanted GaN and A1N.ApplPhys Iett,1994,65(8):992

[15] 王颖,湛永钟,许艳飞,喻正文.稀磁半导体材料的研究进展及应用前景

[J]材料导报,2007,21:20-23

[[16]Ueda K,TabataH,KawaiT.Magnetican delectric proper—ties of transition-metal-doped ZnO films.Appl Phys Lett,2001,79(7):988

材料工艺学课程设计.

材料工艺学课程设计(论文) 题目:Cr12MoV钢电动机硅钢片冲裁模球化退火-淬火- 回火工艺设计 院(系): 专业班级: 学号: 学生姓名: 指导教师: 教师职称: 起止时间:

课程设计(论文)任务及评语 院(系):材料科学与工程学院教研室:材料科学与工程学号学生姓名专业班级 课程设计 (论文) 题目 Cr12MoV钢电动机硅钢片冲裁模球化退火-淬火-回火热处理工艺设计 课程设计(论文)要求与任务一、课设要求 熟悉设计题目,查阅相关文献资料,概述相关工件的热处理工艺,进行工件的服役条件与失效形式分析,提出硬度、耐磨性、强度等要求,完成工艺设计。阐述Cr12MoV电动机硅钢片冲裁模球化退火-淬火-回火热处理工艺理论基础,选择设备、仪表和工夹具,阐述电动机硅钢片冲裁模热处理质量检验项目、内容及要求;阐明电动机硅钢片冲裁模热处理常见缺陷的预防及补救方法;给出所用参考文献。 二、课设任务 1.电动机硅钢片冲裁模材料的选择(要求在满足工件使用性能的前提下,兼顾经济性和工艺性,合理选择材料); 2.给出Cr12MoV的C曲线; 3.给出Cr12MoV电动机硅钢片冲裁模冷热加工工艺流程图; 4.制定Cr12MoV电动机硅钢片冲裁模球化退火-淬火-回火热处理工艺 三、设计说明书要求 设计说明书包括三部分:1)概述;2)工艺设计;3)热处理工艺卡;4)参考文献。设计说明书结构见《工艺设计模板》。 工作计划 集中学习0.5天,资料查阅与学习,讨论1.5天,设计7天:1)概述0.5天,2)服役条件与性能要求0.5天,3)失效形式、材料的选择0.5天,4)结构形状与热处理工艺性0.5天,5)冷热加工工序安排0.5天,6)工艺流程图0.5天,7)热处理工艺设计2天,8)工艺的理论基础、原则0.5天,9)设计工夹具0.5天,10)可能出现的问题分析及防止措施0.5天,11)热处理质量分析0.5天,设计验收1天。 指 导 教 师 评 语 及 成 绩 成绩:指导教师签字: 年月日

高分子材料课程设计

2011级高分子材料课程设计题目:羟丙基纤维素合成 学院名称:材料工程学院 专业:化学工程与工艺 班级: 学号: 姓名: 指导教师姓名: 二零一四年六月

一、绪论 (1) 1.羟丙基纤维素发展简史 (1) 2.羟丙基纤维素的特性和结构式 (1) 3. 羟丙基纤维素的应用 (2) 3.1 HPC在医药工业的应用 (3) 3.2 HPC在食品工业中的应用 (4) 3.3 HPC在聚氯乙烯(PVC)悬浮聚合中的应用¨ (4) 3.4 HPC在建筑行业的应用 (5) 3.5 其他应用 (5) 二、羟丙基纤维素合成方法 (5) 2.1 非均相法 (5) 2.1.1 液相法 (5) 2.1.2 气相法 (7) 2.2 均相法 (7) 三、原料 (8) 四、有关设计参数 (8) 五、物料衡算 (9) 六、性能检测设计 (11) 1.温度对HPC 溶液流变性的影响 (11) 2. HPC 质量分数对HPC 溶液流变性能的影响 (12) 3. 醚化剂用量对HPC 溶液流变性能的影响 (13) 4. HPC 溶液的非牛顿指数 (14) 七、参考文献 (17)

一、绪论 1.羟丙基纤维素发展简史 纤维素是自然界最丰富的可更新资潭,自1973年世界上出现了石油涨价之后, 再一次引起了人们的重视.纤维素衍生种类很多. 一般可分为纤维素醋和纤维素醚两大类, 纤维素醚又可分 为离子型和非离子型. 轻丙基纤维索(H P C)是国外继乙墓纤维素( E C )、羚乙基纤维素( H E C )、经乙基甲基纤维素(H E M C )之后工业化生产较早的非离子型纤维索醚之一。国外离子型纤维素醚的生产和用量都很大, 可广泛应用于建筑、石油开采、涂料、食品及食品包装. 高分子合成医药辅料等各个行业, 其生产量约占纤维素醚总产量的一半左右. 发展速度远远超过离子 型纤维素醚类. 我国纤维素衍生物工业虽然已有几十年的发展史, 但除几 种纤维素醋和纤维素醚中的玫甲基纤维素钠( 离子型. 年产量 约3 万吨) 具有一定的生产规模外, 世界上用量越来越大的非 离子型纤维素醚, 产盘甚徽。因此, 我国的纤维素醚, 特别是非离子型纤维素醚的发展应引起有关部门和广大科技人员的高度 重视. 2.羟丙基纤维素的特性和结构式 羟丙基纤维素(HPC)是一种水溶性的非离子型纤维素醚,它是一种以天然纤维素为原料经化学改性制得的半合成型高分子 聚合物,HPC具有热塑性、胶结能力、乳化能力、发泡能力以及

材料化学考试重点整理

第一章 1、材料的基本概念 材料是人类赖以生存的基础,材料的发展和进步伴随着人类文明发展和进步的全过程。材料是国民经济建设,国防建设和人民生活不可缺少的重要组成部分,是社会现代化的物质基础与先导。 材料,尤其是新材料的研究、开发与应用反映着一个国家的科学技术与工业水平。 材料特别是新材料与社会现代化及现代文明的关系十分密切,新材料对提高人民生活,增加国家安全,提高工业生产率与经济增长提供了物质基础,因此新材料的发展十分重要。 材料是一切科学技术的物质基础,而各种材料的起点主要来源于材料的化学制备和化学改性。 2、什么是材料科学工程 具有物理学、化学、冶金学、金属学、陶瓷学、计算数学等多学科交叉与结合的特点,并且具有鲜明的工程性。 3、什么是材料化学 材料化学在研究开发新材料中的作用,就是用化学理论和方法来研究功能分子以及由功能分子构筑的材料的结构与功能关系,使人们能够设计新型材料,提供的各种化学合成反应和方法使人们可以获得具有所设计结构的材料。 采用新技术和新工艺方法,合成新物质和新材料,通过化学反应实现各组分在原子或分子水平上的相互转换过程。涉及材料的制备、组成、结构、性质及其应用的一门科学。 材料化学既是材料科学的一个重要分支,也是材料科学的核心内容。同时又是化学学科的一个组成部分,具有明显的交叉学科、边缘学科的性质。是材料学专业学生的一门重要的专业基础知识课程。 4、材料的分类 (1)按照材料的使用性能:可分为结构材料与功能材料两类 结构材料的使用性能主要是力学性能; 功能材料的使用性能主要是光、电、磁、热、声等功能性能。 (2)以材料所含的化学物质的不同将材料分为四类:金属材料、非金属材料、高分子材料及由此三类材料相互组合而成的复合材料。 第二章 1、原子结合---键合 两种主要类型的原子键:一次键和二次键。 (1)一次键的三个主要类型:离子键、共价键和金属键。(一次键都涉及电子的转移,或者是电子的共用。)一次键通常比二次键强一个数量级以上。 ①金属键:自由电子和正离子组成的晶体格子之间的相互作用就是金属键。没有方向性和饱和性的。 ②离子键:包含正电性和负电性两种元素的化合物最通常的键类型为离子键。阴阳离子的电子云通常都是球形对称的,故离子键没有方向性和饱和性。 ③共价键:由两个原子共有最外层电子的键合,使每个原子都达到稳定的饱和电子层。共价键具有方向性和饱和性。 (2)二次键:范德华键(二次键既不涉及电子的转移,也不涉及电子的共用。) 以弱静电吸引的方式使分子或原子团连接在一起的,比前3种键合力要弱得多。包含色散效应、分子极化、氢键。 ①色散效应:对称的分子和惰性气体原子,由于电子运动的结果,有时分子或原子的内部会发生电子的偏离而引起瞬时的极化,形成诱导瞬间电偶极子,就会产生很弱的吸引力,这样的吸引力在其它力不存在时能使分子间产生结合。 ②分子极化:原子、离子及分子的电荷并不是固定在一定部位上,它们在相互靠近时,电荷会发生偏移,形成

常用材料标准及化学成分表 (1)

常用材料所用标准及化学成分表 标准牌号 元素质量分数%(除给出范围外为最大值) 序 号 标准 牌号 C Mn P S Si Cu Ni Cr Mo V Nb 备注 1 ASTM A216 WCB 0.30 1.00 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.03 … 铸件① 2 WCC 0.25 1.20 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.0 3 … 铸件① 3 ASTM A352 LCB 0.30 1.00 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.03 … 铸件 4 LCC 0.2 5 1.20 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.03 … 铸件 5 LC3 0.15 0.50~ 0.80 0.04 0.045 0.60 … 3.00~ 4.00 … … … … 铸件 6 LC9 0.13 0.90 0.04 0.045 0.45 0.30 8.50~ 10.0 0.50 0.20 0.03 … 铸件 7 ASTM A105 A105 0.35 0.60~ 1.05 0.035 0.04 0.10~ 0.35 0.40 0.40 0.30 0.12 0.08 …锻件②

标准牌号 元素质量分数%(除给出范围外为最大值) 序 号 标准 牌号 C Mn P S Si Ti Ni Cr Mo V W 备注 8 ASTM A182 304 0.08 2.00 0.045 0.03 1.00 … 8.00~ 11.0 18.0~ 20.0 … … … 锻件 9 316 0.08 2.00 0.045 0.03 1.00 … 10.00~ 14.0 16.0~ 18.0 2.0~ 3.0 … … 锻件 10 316L 0.03 2.00 0.045 0.03 1.00 … 10.00~ 15.0 16.0~ 18.0 2.0~ 3.0 … … 锻件 11 321 0.08 2.00 0.045 0.03 1.00 0.70 9.00~ 12.0 17.0~ 19.0 …… …锻件③

材料化学试题库

一填空题 01)材料是具有使其能够用于机械、结构、设备和产品性质的物质。这种物质具有一定的 性能或功能。 02)材料按照化学组成、结构一般可分为金属材料、无机非金属材料、聚合物材料和复合 材料。 03)材料按照使用性能可分为结构材料和功能材料。结构材料更关注于材料的力学性能; 而另一种则考虑其光、电、磁等性能。 04)材料化学是关于材料的结构、性能、制备和应用的化学。 05)一般材料的结构可分为三个层次,分别是微观结构、介观结构和宏观结构。 06)对于离子来说,通常正离子半径小于相应的中性原子,负离子的半径则变大。 (7)晶体可以看成有无数个晶胞有规则的堆砌而成。其大小和形状由晶轴(a,b,c)三条边和轴间夹角(α,β,γ)来确定,这6个量合称晶格参数。 08)硅酸盐基本结构单元为硅氧四面体,四面体连接方式为共顶连接。 09)晶体的缺陷按照维度划分可以分为点缺陷、线缺陷、面缺陷和体缺陷,其延伸范围为 零维、一维、二维和三维。 010)位错分为韧型位错、螺型位错以及由前两者组成的混合位错三种类型。 (11)固溶体分为置换型固溶体和填隙型固溶体,前者溶质质点替代溶剂质点进入晶体结点 位置;后者溶质质点进入晶体间隙位置。 (12)材料热性能主要包括热容、热膨胀和热传导。 (13)材料的电性能是指材料被施加电场时的响应行为,包括有导电性、介电性、铁电性和压电性等。 014)衡量材料介电性能的指标为介电常数、介电强度和介电损耗。 015)磁性的种类包括:反磁性、顺磁性、铁磁性、反铁磁性和铁氧体磁性等。 016)铁磁材料可分为软磁材料、硬磁材料和矩磁材料。 017)材料的制备一般包括两个方面即合成与控制材料的物理形态。 (18)晶体生长技术主要有熔体生长法和溶液生长法,前者主要包括有提拉法、坩埚下降法、区融法和焰融法等。 (19)溶液达到过饱和途径为:一,利用晶体的溶解度随改变温度的特性,升高或降低温度而达到过饱和;二,采用蒸发等办法移去溶剂,使溶液浓度增高。 (20)气相沉积法包括物理气相沉积法PVD和化学气相沉积法CVD。

工程材料课程设计

《工程材料应用》课程设计说明书 专业 学生姓名 班级 学号 指导教师 完成日期

目录 第一章任务书---------------------------------------------------------------------------2 第二章铸造件设计--------------------------------------------------------------------- 第三章锻造件设计--------------------------------------------------------------------- 第四章焊接件设计-------------------------------------------------------------------- 第五章总结------------------------------------------------------------------------------ 第六章心得体会------------------------------------------------------------------------ 参考文献------------------------------------------------------------------------ 格式方面: 1、大标题采用二号黑体加粗; 2、小标题采用四号黑体字,顶格; 3、正文部分采用小四宋体,多倍行距1.25,首行缩进2字符; 4、页面采用A4纵向,上页边距采用上、下各2.5,左3,右2.6; 5、封面采用机械学院发布的统一格式。

高分子化学课程设计

材料合成工艺学课程设计

材料合成工艺学课程设计任务书 一、本课程设计的性质、任务与目的 本课程是材料科学与工程专业的一门实用性和技术性很强的专业课程。学习本课程的目的是使学生在学完材料科学与工程专业的有关课程后,尤其是在学完《材料合成工艺学》这门课程后,综合运用3年所学的全部知识,进行工厂的初步设计。通过专业课程设计使学生掌握应具备的基本设计技能。待学生走上工作岗位后既能担负起工厂技术改造的任务,又能进行车间或全厂的工艺设计。 本课程任务是: 1.撰写简要设计说明书。 2.绘制物料流程示意图一张。 二、课程设计的主要内容 (一)设计方案选择,对给定或选定的设计方案进行简要论述。 (二)工艺计算,应完成工艺流程各过程的物料衡算,能量衡算。绘制物料流程示意图,编写物料平衡表及热量平衡表。 (三)主要设备设计,在满足工艺条件的前提下,进行主要设备的选型及结构设计。 (四)典型辅助设备设计选型,包括典型设备主要结构尺寸计算和设备型号规格的选定。 (五) 车间布置。 三、设计说明书的基本要求 要求包括以下几个内容: 1)封面 2)任务书 3)目录 4)流程和方案的说明及论证

5)设计计算与说明 6)设备选型及设计 7)车间布置 8)对设计的评述及结论 9)参考文献目录 四、课程设计题目 题目30 组分 单体稳定剂乳化剂增塑剂引发剂pH调节剂介质醋酸乙 烯酯 聚乙 烯醇 OP-10 邻苯二甲 酸二丁酯 过硫 酸钾 碳酸氢钠蒸馏水 用量,重量(份)150 5.4 1.1 10.9 0.3 0.3 100 生产规模:2000t/a 生产时间:300d/a 间歇操作,聚合釜每天2批,其他原料配制每天1批。 相关技术指标 项目内容技术指标项目内容技术指标 过滤器过滤损失率2%(质量)过硫酸钾溶液浓度20%(质量) 碳酸氢钠溶液浓度10%(质量)聚乙烯醇溶液浓度30% 引发剂效率f 0.8 质量标准,原料均视为纯物质。

材料化学复习资料

第一章材料科学基础 1.1 原子间的键合、分子间作用 1、原子的键合、分子间作用有哪些? 原子:金属键、离子键 分子:共价键、氢键、德华键 2、各种键合有什么特点和特性? 3、形成氢键的两个条件是什么? 分子中必须含活性氢、另一个元素必须是显著的非金属元素 1.2 晶体结构与缺陷 1、晶态与非晶态之间的转化? 非晶态所属的状态属于热力学亚稳态,所以非晶态固体总有向晶

态转化的趋势,即非晶态固体在一定温度下会自发地结晶,转化到稳定性更高的晶体状态。通常呈晶体的物质如果将它从液态快速冷却下来也可能得到非晶态。 2、晶格常数(晶系)? 例如:正交晶系的晶格常数特征是什么?(选择题) 3、按几何形态分晶体缺陷有哪几种? 点缺陷(零维缺陷):缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。包括:空位;间隙质点;错位原子或离子。线缺陷(一维缺陷):指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短。 面缺陷(二维缺陷):是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。如晶界、堆积层错等。

1.3 材料的亚稳态 1、为什么纯金属做玻璃不可能? 因为可用于做玻璃的多元合金需满足以下条件: 合金系有三个以上组元、主要组元要有12%以上的尺寸差、各元素间要有大的混合热 第三章高分子材料学基础 3.1.1 高分子链近程结构 1、常见的高分子的缩写及单体? 聚氯乙烯:PVC,CHCLl=CH2 有机玻璃:PMMA聚甲基丙烯酸甲酯, 塑料王:PTFE,聚四氟乙烯,CF2=CF2 2、聚乙烯醇在水中可不可以水解? 3、链的原子种类和排列特点及举例? 特点举例 碳链高分子不溶于水,可塑性(可加 工性)但耐热性差PP聚丙烯, PE聚乙烯,PS聚苯乙烯.PVC聚氯乙烯、PMMA聚甲基丙烯酸甲酯 杂链高分子具有极性,易水解、醇解, 耐热性比较好,强度高PA(尼龙)、PET(涤纶)、PPO(聚苯醚)、PSU (聚砜)、POM(聚甲醛)、PPS(聚苯硫醚)。 元素有机高分子具有无机物的热稳定性, 有机物的弹性和塑性 硅橡胶 4、几何异构:顺式异构和反式异构举例? 顺式聚异戊二烯: 弹性大,是一种橡胶 反式聚异戊二烯:由于结构对称,极易结晶,为坚硬塑料

材料化学 课程报告

北京科技大学 课程报告 题目:GaN纳米材料研究进展 课程名称:材料化学基础 学院: 专业: 班级: 学生姓名: 学生学号: 日期:

前言: 随着光电产业的不断发展,对半导体材料的要求也越来越高。进入20世纪90年代以后,由于一些关键技术获得突破以及材料生长和器件工艺水平的不断提高,使GaN薄膜研究空前活跃,GaN基器件发展十分迅速。氮化镓(GaN) =3.39eV)、发光效率高、电子属III-V族宽直接带隙半导体,具有带隙宽(E g 漂移饱和速度高、热导率高、硬度大、介电常数小、化学性质稳定、抗辐射、耐高温等优点。由于以上优越的性能,GaN具有着巨大的应用潜力和广阔的市场前景,如高亮度蓝光发光二极管(LED)、紫外—蓝光激光二极管(LD)、异质结场效应晶体管(HFETs)、紫外探测器等光电子器件、抗辐射、高频、高温、高压等电子器件。[1]GaN也因此被誉为继第一代锗、磷化铟化合物半导体材料之后的第三代主导半导体材料,成为目前全球半导体研究者们关注的焦点。[2]第三代半导体也被誉为高温半导体,且其具有更宽的禁带宽度,因此可以广泛用于导弹防御、相控阵雷达、通信、电子对抗以及智能武器等军事装备,也可用于半导体照明以及光存储与处理,是推动信息技术在新世纪继续发展的关键技术。[3]日本和欧美都非常重视开展对宽禁带半导体技术的研究,分别制定和实施了各自的宽禁带半导体技术发展计划。日本于2001年就出台了“下一代半导体材料和工艺技术开发”计划,将GaN晶体管视为未来民用通信系统的核心,希望“GaN基HEMT”能替代目前在无线基站中起放大信号作用的硅和砷化镓芯片,并还可应用于汽车雷达等领域。而欧美则将宽禁带半导体技术视为下一代军事系统与装备的关键。2002年美国国防先进研究计划局实施了WBGSTI(宽禁带半导体技术)计划,成为加速改进SiC、GaN以及AlN等宽禁带半导体材料特性的重要“催化剂”。欧洲也于2005年制定并实施KORRIGAN(GaN集成电路

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 .生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 部分常用钢的牌号、性能和用途1 《信息来源:无缝钢管》

材料化学的发展前景概述

材料化学的发展前景概述 摘要:作为新兴的交叉学科——材料化学,在高速发展的现代社会正发挥着越来越重要的地位与作用,本文将从生物医药、信息技术等领域对其做出阐述。 关键字:材料化学材料科学研究概况 材料与国民经济、国防建设和人民生活密切相关[3],可是材料到底是什么呢?从本质上来讲,材料是一种物质,但不是所有物质都可以称为材料,如燃料、化工原料、化学用品、食品、药物等都不能称为材料,材料还必须具备一定的使用功能。 80年代以来,人们将新材料、信息和生物技术并列为新技术革命的重要标志[3],由此不难发现,材料在社会发展中所占据的重要地位。 材料化学,作为一门新兴的交叉学科,就是利用化学变化和物理手段来加工出形式各样功能新颖的新材料。这是在化学角度上研究材料结构、制备、组成、性能、表征和应用的新兴学科。材料化学不仅是材料科学的分支之一,更是化学科学的重要组成部分,属于基础科学科,具有明显交叉科学、边缘学科的特点。材料化学的研究范围涉及所有的材料领域(本文主要介绍材料化学在生物医药、信息技术等领域的应用与发展),其主要职责是研究新型材料在制备、生产、应用和废弃等过程中的化学性质的变化,且涵盖各类应用材料的化学性能以及与化学有关的应用基础理论和研究方法。本文将从以下几个部分对材料化学学科做一个简要的介绍。 1.生物医药领域 在医学领域,材料化学可谓是必不可少的,新材料的不断产生和应用在医学领域掀起一次次的技术和观念革命,不断推动着医学技术的前进与发展。微创介入技术的诞生,使得多年来医疗服务中追求已久的“及时,微创,无痛,舒适”的观念终于得到实施,特殊材料使得医生在进行手术时可以有效减少病人的出血、创伤和感染,使病人并发症少,术后恢复得又快又好,尤其在治疗心脑血管疾病方面更是疗效显著。纳米材料的应用更是在医学领域掀起了风暴,如空心结构的纳米粒子利用纳米材料特有的小尺寸效应在肿瘤诊断和治疗方面起着重要作用,贵金属——纳米银以其超强的还原能力和优异的杀菌疗效成为一种性能优良的抗菌材料,而目前正在研发的用于医学方面的纳米机器人相信其一旦问世,也会给医学领域带来巨大的变革。 目前由于多种新材料的诞生和应用,越来越多衰竭或坏死的器官可以被新研发出的人造器官所取代。其生理功能也与移植器官的功能不想上下,甚至更为优异。而且没有免疫排异现象,患者的恢复时间也较快。虽然此项技术目前还不十分成熟,但是相信日后必将在医学领域带来一场革命。当然,这一切还要依托材料科学的进步与化学手段的发展。材料化学在医学领域的重要作用不仅限于此,医疗观念、技术、手段、器械等的不断进步都与材料化学的发展有着重要联系,所以说材料化学对医学科学的发展有着重要影响与推进作用 2.信息技术领域 先进的计算机、信息及通信技术同样也离不开相关的材料和成型工艺,而化学学科在其中起了巨大的作用。例如,现代芯片制造设施基本上是一个化学工厂,在这个工厂里,通过使用化学手段,如化学气相沉积法、等离子体刻蚀,将分子物质转化成具有特定电子功能的复杂三维复合材料,从而大大提高信息的传输速度,大大推动了现代信息社会的发展。所以说材料化学将会激活一个新领域的发展,其中一个可能的例子就是光子电路和光计算机的产生。 3.环境和新能源领域 物质生产过程中需要用到大量的材料,同时也会产生很多环境不友好的废料,这对生态环境的影响是不容忽视的。要致力于减少整个生产过程中资源浪费加工流程和对环境有害的物质,据此,可开发一些对环境无毒无害的新材料(如以秸秆为原料的可降解材料等等),

江苏大学材料工艺课程设计

1陶瓷工艺设计的目的和意义 陶瓷是最古老的一种材料,是人类在征服自然中获得的经化学变化而制成的产品,是人类文明的象征之一。它和金属材料、高分子材料并列为当代固体三大材料。由于陶瓷的原子结合方式是键能较大的离子键、共价键或者离子-共价混合键,所以其具有耐高温、耐腐蚀、耐磨损、耐热冲击、高强度、硬质、高刚性、低膨胀、隔热以及不吸收外来物质等许多优良性质。陶瓷材料的应用范围很广,在日用、卫生、建筑、化工、电气、航天、汽车、生物医学等领域均有重要应用。 陶瓷材料性能的优劣在很大程度上与各种陶瓷制品的制造工艺手段关系密切。很多陶瓷材料制品要求很高的致密性,随之而产生的其它性能也就很优良。例如,陶瓷植入材料羟基磷灰石的密度为3.05g/cm3~3.15g/cm3时,孔隙率仅为0.1%~3%。根据经典材料理论分析,一般致密陶瓷材料的晶粒细小,晶界较多,细小晶粒对各个晶间孔隙填充较好,材料的性能较为稳定。因此,选用细颗粒原料制备高致密度的陶瓷材料有着重要的现实意义。例如,在电子陶瓷中99瓷以及97瓷主要用作集成电路基片。集成电路必须具有高度平坦光滑的平面。为了保证基片经仔细抛光后具有极高的表面光洁度,基片本身必须充分致密,而且应保证晶粒细小,晶粒结合性能才能良好。氧化铝陶瓷是最为常见的陶瓷之一,性能优良。在现代工程技术中,氧化铝陶瓷成为应用最为广泛的陶瓷之一,因为它具有较高的机械强度、硬度、抗损毁性、高耐火度、热导率较高及抗化学侵蚀等特性,氧化铝陶瓷大量应用于电子工程、电力工程和结构设计中。在电子技术领域中广泛用作真空电容器的陶瓷管壳、大功率栅控金属陶瓷管、微波管的陶瓷管壳、微波管输能窗的套瓷组件、各种陶瓷基板(包括多层布线基板)及半导体集成电路陶瓷封装管壳等。它是电真空陶瓷的主要瓷种,也是生产陶瓷基板及多层布线封装管壳的一种基本材料。 氧化铝陶瓷(又称刚玉瓷)是一种以α-Al2O3为主晶相的陶瓷材料。Al2O3的主要键合方式为共价键和离子键。强的键合能力使其理化性能、力学性能良好。氧化铝瓷的莫氏硬度为9,抗折强度350MPa,抗压强度为2100MPa。高性能的氧化铝陶瓷具有机械强度高,电阻率高,电绝缘性能好,化学稳定性好,生物相容性好等优点,在机械、化工、石油炼制、光学、真空电子、生物医学等诸多领域均有重要的应用。本次课程设计,任务就是设计一条75氧化铝陶瓷的生产线。 材料工艺课程设计,是我们巩固所学知识,并且将所学运用在实际生产实际中的一个有

材料化学与材料物理

材料化学与材料物理 材料0802 材料化学是从化学的角度研究材料的设计、制备、组成、结构、表征、性质和应用的一门科学。它既是材料科学的一个重要分支,又是化学学科的一个组成部分,具有明显的交叉学科、边缘学科的性质。通过应用研究可以发现材料中规律性的东西,从而指导材料的改进和发展。在新材料的发现和合成,纳米材料制备和修饰工艺的发展以及表征方法的革新等领域所作出了的独到贡献。材料化学在原子和分子水准上设计新材料的战略意义有着广阔应用前景。随着国民经济的迅速发展以及材料科学和化学科学领域的不断进展,作为新兴学科的材料化学发展日新月异。是一个跨学科领域涉及的问题性质及其应用领域的各种科学和工程。这一科学领域探讨了在原子或分子尺度材料的结构之间的关系及其宏观性能。随着媒体的关注明显集中在纳米科学和纳米技术,在近年来材料科学逐步走在很多大学的前列。对一个给定的材料往往是时代的选择,它的界定点。材料的化学分析方法可分为经典化学分析和仪器分析两类。前者基本上采用化学方法来达到分析的目的,后者主要采用化学和物理方法(特别是最后的测定阶段常应用物理方法)来获取结果,这类分析方法中有的要应用较为复杂的特定仪器。现代分析仪器发展迅速,且各种分析工作绝大部分是应用仪器分析法来完成的,但是经典的化学分析方法仍有其重要意义。应用化学方法或物理方法来查明材料的化学组分和结构的一种材料试验方法。鉴定物质由哪些元素(或离子)所组成,称为定性分析;测定各组分间量的关系(通常以百分比表示),称为定量分析。有些大型精密仪器测得的结果是相对值,而仪器的校正和校对所需要的标准参考物质一般是用准确的经典化学分析方法测定的。因此,仪器分析法与化学分析法是相辅相成的,很难以一种方法来完全取代另一种。 经典化学分析根据各种元素及其化合物的独特化学性质,利用与之有关的化学反应,对物质进行定性或定量分析。定量化学分析按最后的测定方法可分为重量分析法、滴定分析法和气体容量法。 ①重量分析法:使被测组分转化为化学组成一定的化合物或单质与试样中的其他组分分离,然后用称重方法测定该组分的含量。 ②滴定分析法:将已知准确浓度的试剂溶液(标准溶液)滴加到被测物质的溶液中,直到所加的试剂与被测物质按化学计量定量反应完为止,根据所用试剂溶液的体积和浓度计算被测物质的含量。 ③气体容量法:通过测量待测气体(或者将待测物质转化成气体形式)被吸收(或发生)的容积来计算待测物质的量。这种方法应用天平滴定管和量气管等作为最终的测量手段。 仪器分析根据被测物质成分中的分子、原子、离子或其化合物的某些物理性质和物理化学性质之间的相互关系,应用仪器对物质进行定性或定量分析。有些方法仍不可避免地需要通过一定的化学前处理和必要的化学反应来完成。仪器分析法分为光学、电化学、色谱和质谱等分析法。 光学分析法:根据物质与电磁波(包括从γ射线至无线电波的整个波谱范围)的相互作用,或者利用物质的光学性质来进行分析的方法。最常用的有吸光光度法(红外、可见和紫外吸收光谱)、原子吸收光谱法、原子荧光光谱法、发射光谱法、荧光分析法、浊度法、火焰光度法、X射线衍射法、X射线荧光分析法、放射化分析法等。 材料物理是使用物理描述材料在许多不同的方式,如力,热,光,力学。这是一个综合

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 1.生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe 形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS 化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S <0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢: P <0.025%;优质钢: P<0.04%;

材料化学专业实习报告

材料化学专业实习报告 材料化学专业实习报告-化学专业实习报告 材料化学专业实习报告-化学专业实习报告 2020-04-29 报告材料 材料化学专业实习报告-化学专业实习报告1 一.实习目的 1.通过理论联系实际使学生全面地运用所学知识去分析判断生产中的实际问题,进一步扩大学生的专业知识,培养独立工作能力。 2.通过对企业的了解进一步使学生对将来所从事的职业有初步的认识。 3.通过参观实习提高学生的安全素养与规范操作意识。 4.通过参观增加学生对具体生产工艺与流程的了解。 5.通过实习进一步培养学生的组织性、纪律性、集体主义精神等优良品德,为胜任以后的工作打好基础。二.本次实习的单位及单位概况。 1.XX 集团 XX集团医用高分子制品股份有限公司及其附属公司主要从事研发、生产及销售医用耗材、骨科材料、心脏支架等。该公司为国家高技术研究发展(863)计划成果产业化基地、国家级高新技术企业。该集团拥有一个由18个销售办事处及21个客户联络中心和107多家城市代表处组成的庞大销售网络,并已建立广泛的客户基础,其产品销售予5,400多家医疗单位和分销商。该集团生产的产品种类多达150余种,产品规格超过5000种,产品可分为六大系列,即1)一次性使用医疗耗材及原料;2)骨科材料及工具;3)医用针制品;4)血液净化系列耗材;5)心脏支架产品;6)用于药品包装的预充式注射器。 2.XX化工有限公司 XX化工有限公司是威海金泓高分子有限公司与美国罗门哈斯公司出资组建的合资企业,双方将携手为中国建筑和pvc包装材料市场提供全系列优质塑料添加剂产品和一流技术支持。公司于XX年3月5日成立,注册资金1100万美元。XX化工有限公司以威海金泓高分子位于威海市的工厂为基地,主要生产面向中国和其他新兴

材料化学专业课程

材料化学专业培养方案 Curriculum of Undergraduate of Material Chemistry Major 一、培养目标 本专业培养适应社会经济发展需要,具有较好自然科学基础和人文社会科学基础、良好的敬业精神和社会责任感、扎实的材料化学方面专业知识,具有创新精神的高素质创新应用型人才,并期望毕业5年后能达成下列目标: 1、具有良好的个人修养与社会道德水准; 2、能够进行材料化学相关的新型材料技术与新产品研发、工艺与设备设计和生产技术管理; 3、能够具有一定的团队协作精神和领导能力,在一个科研技术开发团队中能有效地发挥作用; 4.、具备设计、研究和开发新材料、新工艺的能力,在新材料的合成与制备、材料性能分析、材料应用等领域具有就业竞争力,并有能力进入研究生阶段学习; 5、能够通过终身学习拓展自己的知识和能力; 6、有意愿创新实践,并有能力服务社会。 Ⅰ. Training Objectives This major aims at training undergraduate students to be high level creative talentswith good professional quality,moral cultivation, good employment competitive power and innovation ability. The expected achievements for graduates of Materials Chemistry in 5 years: 1.Good manner and excellent moralities; 2.Ability to conduct research on technology and product of new materials in materials chemistry discipline, the design of technique and equipment as well as management of production technique; 3.Good team spirit and leadership ability to have contributions in a technique developing team; 4.Knowledge and skills of designing, researching and developing new materials and technologies; Advantages in the field of materials preparation, processing, analyzing and application; Abilities to be engaged in postgraduate education; 5.Ability to adapt to the development and to expand the vision and to improve competitiveness through keeping study all their lifelong; 6.Ability to be creative and willing to serve the society. 二、毕业要求 1、工程知识:能够将数学、自然科学、工程基础和专业知识应用于解决材料化学领域的复杂工程问题。 2、问题分析:能够应用数学、自然科学和工程科学的基本原理,识别、表达、掌握材料科学与工程学科的基础理论,掌握材料科学和化学科学的基本知识,具有一定的实验操作基本技能,并借助文献研究分析材料化学领域复杂工程问题,以获得有效结论。 3、设计、开发解决方案:能够针对材料化学领域复杂工程问题进行研究路线设计并提出解决方案,根据材料合成与制备、材料设计与加工、材料结构与性能测定等方面的专业基础知识和原理,设计制备新型材料化学体系,并具有分析测试新型材料基本性能和判断应用领域的能力,同时考虑社会、健康、安全、法律、文化以及环境等因素。 4、实验设计与信息处理:能够基于科学原理并采用科学方法对材料化学领域复杂工程问题进行分析

2016年秋 西南大学网教[0978]《材料化学基础》新版作业及参考答案

2016年秋西南大学网教[0978]《材料化学基础》 新版作业及参考答案 1、加聚反应是具有两个或两个以上反应官能团的低分子化合物相互作用而生成大分子的过程。B A.√ B.× 2、固相反应是固体参与直接化学反应并起化学变化,同时至少在固体内部或外部的一个过程中起控制作用的反应。A A.√ B.× 3、嵌段共聚物是指将两种或两种以上性质不同的聚合物链段连在一起制备而成的一种特殊聚合物,它可以将多种聚合物的优良性质结合在一起,得到性能比较优越的功能聚合物材料。A A.√ B.× 4、物理吸附是可逆的,具有低吸附热。A A.√ B.× 5、使用后不能再充电复原而丢弃的电池,称为一次电池。A A.√ B.× 6、金属的冶炼过程就是矿石的氧化过程。B A.√ B.× 7、通用塑料指产量大,成本低和应用广泛的一类塑料。A A.√ B.× 8、各种物质的水化热差异很大,它与物质的本性以及结合的水分子数目有关。A A.√ B.× 9、硅酸盐指的是硅、氧与其它化学元素结合而成的化合物的总称。A A.√ B.× 10、缩聚反应是具有两个或两个以上反应官能团的低分子化合物相互作用而生成大分子的过程。A A.√

11、化学吸附大多缺乏可逆性,即呈现很大的滞后现象,并具有较高的吸附热。A A.√ B.× 12、是指聚合物在加工、贮存及使用过程中,其物理化学性能及力学性能发生不可逆坏变的现象。A A.√ B.× 13、液相和气相间的分配比随成分不同而不同,利用这一特性,可以去除杂质完成精炼,称之为挥发精炼。A A.√ B.× 14、液相和气相间的分配比随成分不同而不同,利用这一特性,可以去除杂质完成精炼,称之为区域精炼。B A.√ B.× 15、使用后不能再充电复原而丢弃的电池,称为二次电池。B A.√ B.× 16、金属的冶炼过程就是矿石的还原过程。A A.√ B.× 17、反应物颗粒大小对固相反应速度有直接影响,颗粒越细反应速度越快。A A.√ B.× 18、聚乙烯塑料化学性能稳定,通常制作食品袋及各种容器,耐酸、耐碱及盐类水溶液的侵蚀4-B-3,但不宜用强碱性洗涤剂擦拭或浸泡。A A.√ B.× 19、如果在某一固相反应中,化学反应速度最慢,则此时固相反应速度为化学反应速度所控制。A A.√ B.× 20、凡是能促进反应物晶格活化的因素,均可促进固相反应的进行。A A.√ B.× 21、利用溶液中析出固体的现象,使其中一种成分浓缩、富聚的方法叫做挥发精炼。B

材料力学课程设计

材料力学课程设计 说明书

目录 一、课程设计目的---------------03 二、课程设计任务和要求---------------03 三、课程设计题目---------------04 四、课程设计计算过程 1.画出力学简图,求出外力 ---------------05 强度计算 ---------------07刚度计算 ---------------08 B截面的实际位移 ---------------16 2.疲劳强度校核 ---------------19 3.超静定校核设计 超静定校核设计 ---------------20校核疲劳强度 ---------------22 五、循环计算程序---------------24 六、课程设计总结---------------30 七、参考文献---------------30

材料力学课程设计的目的是在于系统的学习材料力学之后,能结合工程中的实际问题,运用材料力学设计的基本原理和计算方法,独立计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题的目的。同时,可以使我们将材料力学的理论和现代的计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既是对以前学到的知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)的综合运用,又为以后学习的课程(机械设计、专业课等)打下了基础,并初步掌握了工程中的设计思想和设计方法,对实际工作能力有所提高。具体有以下六项: 1.使我们的材料力学知识系统化,完整化。 2.在系统的全面的复习的基础上,运用材料力学的知识解决工程中的实际问题。 3.由于选题力求结合专业实际,因而课程设计可以把材料力学的知识和专业需要结合起来。 4.综合运用以前所学的各门课程知识(高等数学、工程图学、理论力学、算法语言、计算机等),是相关学科知识有机的联系起来。 5.初步了解和掌握工程实践中的设计思想和设计方法。 6.为以后课程的学习打下基础。 二、课程设计任务和要求 参加设计者要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。

相关文档