文档库 最新最全的文档下载
当前位置:文档库 › 科里奥利秤的使用和维护

科里奥利秤的使用和维护

科里奥利秤的使用和维护
科里奥利秤的使用和维护

浅论科里奥利力与漩涡方向的关系

浅论科里奥利力与漩涡方向的关系 谷俊青PB05000805 如果大家把澡盆放满水后拔去塞子,仔细观察一下,也许会因为见到的结果各不相同而议论纷纷。但是在北半球,一般较多的是向左旋的情况。实际上,在水流出来的时候确实有一股想使它向左旋转的倾向或影响力,总之,在北半球,所有的澡盆里都存在着具有这样作用的自然力。(20世纪40年代科学家卡皮罗在每次实验后,把污水倒入水槽时发现在漏水口处形成的旋涡总按固定的方向旋转,这个现象引起了他的注意。于是在水流下时他故意用手指向相反方向搅动,但手离开后旋涡又恢复原来的旋转方向。这是否与漏水口的形状有关?于是他做了许多不同形状的漏水口,但试验结果总是相同。他对此困惑不解,于是他到世界各地去做同样的试验,使他大为惊奇的是在南半球水流漩涡的方向与北半球刚好相反,在北半球是逆时针的而在南半球是顺时针的,在赤道附近两种情况几乎各有一半。卡皮罗喜出望外,他终于找到了结论,在原漩涡的方向与在地球上所处位置有关。后来人们把这种现象称为卡皮罗现象。) 很容易的,我们想到了科里奥利力。地球的自转使得在北半球上的物体均受到它的向右作用,由于它的存在,北半球火车由南向北快速行驶时右边轨道上所受的压力要大些,由南向北的河流东岸受冲刷较厉害,而南半球恰恰相反。这些现象都可用科里奥利力来解释。 不妨设在地球的北半部存在一个盛满温度均匀的水(可以看作其不受热对流的影响)的较大容器,水处于对地球相对静止的状态,空气流动及其它干扰因素均忽略不计:取一小段离塞子(容器下部)最近的一小段水柱,可视其为质点。当塞子拔掉的瞬间,这段小水柱由于受液体压强的作用,从而有向下运动的趋势。 F分=mgcosθ; 从而北半球的物体受到向右的偏向力 该水柱受到与斜线方向垂直向右的偏向力:F偏=mrv*ω(此时v很小,接近于0);

科里奥利质量流量计介绍

科里奥利质量流量计 科里奥利质量流量计(Coriolis Mass Flowmeter)简称科氏力流量计,是利用流体在振动管中流动时,将产生与质量流量成正比的科里奥利力的原理测量的。由于它实现了真正意义上的高精度的直接流量测量,具有抗磨损、抗腐蚀、可测量多种介质及多个参数等诸多优点,现已在石油化工、制药、食品及其他工业过程中广泛应用。 科氏力质量流量计计量准确、稳定、可靠,在需要对流体进行精确计量或控制的场合选用较多,但其售价较高,在不需要精确计量及控制的场合一般选用其他质量流量计代替。科氏力质量流量计对于液体和气体都可选用,但是在现场应用中,氢气流量的精确测量一般都选用热式质量流量计。 在我国,艾默生高准公司的科里奥利质量流量计已在兰州石化、安庆石化、新疆塔河油田、中国海洋石油等中低压天然气中的流量计量得到良好的应用。2007年末,高准公司的科里奥利质量流量计,顺利通过了中国最权威的原油大流量计量站成都天然气流量分站(CVB)的天然气实流测试,测量精度达到0.5%,并具有良好的重复性。 1 科里奥利质量流量计的工作原理 科氏力流量计由传感器和变送器两大部分组成。其中传感器用于流量信号的检测,主要由分流器、测量管、驱动、检测线圈和驱动、检测磁钢构成,如图1所示。 变送器用于传感器的驱动和流量检测信号的转换、运算及流量显示、信号输出,变送器主要有电源、驱动、检测、显示等部分电路组成。所有流量计都必须人为地建立一个旋转体系,以双“U”型测量管传感器为例,用电磁驱动的方法使“U”型测量管的回弯部分作周期性的微小振动。这相当于使“U”型管绕一个固定轴(OO 轴)作周期性时上时下的旋转,其旋转方向周期性的变化,像钟摆一样运动。“U”型管的出入口段被固定,这样就建立一个以“U”形管出入口段为固定轴的旋转体系。传感器力学分析如图2所示。

大学物理演示实验报告

实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 图1,锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

实验二陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。 【实验步骤】: 用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。 【注意事项】: 注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。 实验三弹性碰撞仪 【实验目的】: 1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2. 演示弹性碰撞时能量的最大传递。 3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。 【实验仪器】:弹性碰撞仪 图3,弹性碰撞仪

浅谈科里奥利力在自然界和人类生活中的影响

浅谈科里奥利力在自然界和人类生活中的影响 摘要:分析了科里奥利力的产生原理,并给出其计算公式。举例说明了科里奥利力在自然界及人类生活中的影响。并与地质学专业相联系,说明科里奥利力在地质 作用中可能的影响。旨在引导人们了解科里奥利力,从而更好地将其应用到实 际的生活生产中去,并继续研究探索,发现更多的奥秘。 关键词:科里奥利力、惯性力、偏转 0 引言 地球是一个转动的参照系,在地球表面或内部以某一速度运动的物体,如果其运动 方向与地轴转动方向不平行,则会受到科里奥利力(简称“科氏力”)的作用。科里奥利力在自然界以及人们的生活中都有着重要的影响以及应用。了解其原理有助于我们更好地利用它或减小它带来的不利影响。 1 原理分析 科里奥利力来自于物体运动所具有的惯性,在旋 转体系中进行直线运动的质点,由于惯性,有沿着原 有运动方向继续运动的趋势,但是由于体系本身是旋 转的,在经历了一段时间的运动之后,体系中质点的 位置会有所变化,而它原有的运动趋势的方向,如果 以旋转体系的视角去观察,就会发生一定程度的偏离。 运动物体在转动体系中受到的科里奥利力为:(示意图 如右) 其中为物体的质量,为小球相对于转动系的速度,为转盘旋转的角速度。 由于地球的旋转,在北半球物体运动会受到向右的科里奥利力,而在南半球则向左。 2 应用 不论是在自然界、生活中、或在军事等领域,科里奥利力在很多方面都扮演者重要的角色。 在自然界中:气流涡旋的形成便是空气在向气压中心运动时受到科里奥利力的作用偏离了直线运动轨迹,从而旋转着向低压中心运动,形成了涡旋。而在南北半球,由于受到科里奥利力作用方向不同,北半球是逆时针的,南半球则相反。在北半球河流由于受到科里奥利力的作用也会对右岸产生更强的侵蚀作用。 在生活中:由于科里奥利力的影响,北半球的双轨铁路由于右侧受到更大的压力,导致右轨的磨损程度明显大于左轨。同样,傅科摆也可以用科里奥利力来解释:傅科摆是科里奥利力在摆动中的表现。在北半球安置的傅科摆, 在每次摆动时均偏右, 致使摆动平面沿顺时针方向转动。在南半球则与之相反。 在军事中:由于竖直方向上的运动也会受到科里奥利力的作用,自由落体的物体落地点会偏东,而竖直上抛的物体则会偏西。因此在炮弹的投掷或发射中应当考虑到这一因素的影响。 次外,在地质构造运动中,科里奥利力也是有着一定影响的。例如:据前人研究,在断层错动中会产生科里奥利应力。而对于断层错动产生的科里奥利法向应力是否会影响到主震地震矩的释放,目前并没有定论。因此这也需要我们这些后继者继续努力,去做进一步的研究,发现更多的科学奥秘。

物理演示实验

大连海事大学 《物理演示实验》课程教学大纲 Syllabus for INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT 课程编号新 000000000 原13012200 学时/学分18/1 开课单位物理系考核方式考查 适用专业全校各专业执笔者牟恕德 编写日期 2008年3月 一、本课程的性质与任务 物理学是一门实验科学。所有物理定律的形成和发展都是建立在对客观自然现象的观察和研究的基础上,物理演示实验可以使学生加深对物理教学内容的理解,巩固记忆,激发兴趣,诱导思考,纠正错误观念,能使学生真实感地看到支配物理现象的规律如何起作用,通过对实验现象的观察分析,学习物理实验知识,从理论和实践的结合上加深对物理学原理的理解。 1、培养和提高学生基本的科学实验能力,其中包括: 自学能力:通过自行阅读实验教材和其它资料,能正确概括出实验内容、方法和要求,做好实验前的准备; 动手能力:借助教材《物理演示实验》和仪器说明书,正确调整和使用仪器;安排实验操作顺序,把握主要实验技能,排除实验故障;掌握常规物理实验仪器的使用,掌握科学实验的数据处理方法和科学实验报告的形成,为进一步学习和从事科学实验研究打下坚实的基础。 分析能力:运用所学物理知识,对实验现象和结果进行观察分析判断,得出结论; 表达能力:正确记录和处理实验数据,绘制曲线,正确表达实验结果,撰写合格的实验报告; 2、培养和提高学生科学实验素养:要求学生养成理论联系实际和实事求是的科学作风,严肃认真的工作态度,主动研究的探索精神和创新意识,遵守纪律、遵守操作规程、爱护公共材物、团结协作的优良品德。 物理演示实验是面向全校各年级学生的开放式实验选修课,共18学时;学生可自主安排在计划课表内任何时段来上课。 二、课程简介 《物理演示实验》将日常生活或生产实践中不易观察到的或习以为常而未引起注意的物理现象突出地显示出来,把实际较为复杂的现象,在课堂演示的条件下分解出有意义的部分,从兴趣和提高关注度出发,培养学生的探索精神,引导学生观察、思考、建立物理思想,培养学生根据物理原理分析解决实际问题的能力。演示实验片广开学生眼界,介绍现代科学技术前沿的新技术、新发明、新材料、新探索、新成果,分享现代科学技术飞跃发展的喜悦。 INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT displays the physical phenomenon which is unobservable in daily life and production practice, or is accustomed and thus not given attention. It draws out the significative parts from real complex phenomenon through the demonstration in class. In view of the students' interest,physical demonstration experiement may cultivate students' exploring spirit and inducts them to observe and think so that they can found physical idea and possess the abilities to analyse and solve questions according the physical theories. Physical demonstration experiment introduces new technique, new invention, new exploration and new production in modern technology and so widen students' eyereach and make students enjoy the flying development of modern technology

什么是科里奥利力

科里奥利力是在转动系统中出现的一种效应。法国工程师、数学家科里奥利(1792-1843)首先描述了这种力并用数学公式表示出来。当物体运动的参考系统为转动物体时(运动方向不沿转动轴),就出现科里奥利力。认识它对气象学、弹道学和海洋学的研究是极其重要的。科里奥利力的作用在生活中处处可见,自然界中人能接触到的科里奥利力表现在它决定风的方向以及飓风和龙卷风的旋转。地球是一个转动体系,它转动的角速度是不变的。但是地球各处运动的线速度因纬度高低而不同。因此,物体在地球上沿南北方向运动时就受到科里奥利力的作用。 换句话说,北(南)半球上的物体在沿经线运动时,就受到向右(左)的科里奥利力的作用,物体偏向东(西),因此,南北走向的河流东岸冲刷较多。 受河岸被冲刷的启发,有人建议采取适当的睡觉方式,使身体内的主要血管沿南北方向,血流就会增强对管壁的冲刷作用,使刚刚沉积在血管壁上的胆固醇被血流冲刷下来,这样就可以延缓血管的硬化,达到延年益寿的目的。 科里奥利曾任巴黎综合工科学校分析和力学副教授。1835年,在他发表的论文《论物系相对运动的方程组》中指出,在一个旋转面上,除了物体运动的通常效应外,还有与运动方向成直角的惯性力作用于物体。这种力作用的结果,是使物体本来应走的直线变成了曲线。第一次世界大战时,英德双方在福克兰群岛(约南纬50度)附近的海面上,展开了一场有名的海战。战斗的紧要关头,英军瞄准好的炮弹,像着了魔似的不可思议都落在离德国军舰左方约100码的地方。后经调查才发现,其原因就是英国在本土上校准大炮的瞄准器时,忽略了南北半球科里奥利力方向相反这一情况。 同是一战时期,德军用巨型加农炮在距巴黎70英里处轰击巴黎,如果用通常瞄准法,炮弹本该偏离目标1英里以上,但德军考虑了科里奥利力的作用,作了修正瞄准,结果炮弹准确地打到了巴黎市内。 在地球北半球出现低气压区时,周围高气压区的空气就会刮进来,使气压平衡。从南向北的方向的风,本应刮进低气压中心,可是由于科里奥利力的存在,风总是偏东,而从北向南的风又总是偏西,这样风不能直接刮进低气压中心,形成了台风眼,以台风眼为中心,风是逆时针方向刮。 一般南北方向的风都会受到科里奥利力的作用。从日本九州往西的帆船被风送往西南方向。因此,日本自古以来就和中国东南部、东南亚国家的贸易繁盛。在文化等方面深受中国和东南亚各国的影响,科里奥利力在这方面起了很大作用。 因重力而振动的振子,振动面不变。由于地球自转,摆的振动面会慢慢转动,这是科里奥利力在起作用。1851年法国科学家付科在巴黎大教堂穹顶下吊了一个重28公斤的铁球,悬挂的钢丝长67米,付科以此证明了地球的自转。这种摆被称为付科摆。 浴缸排水时,因受到科里奥利力的作用,水会发生旋转。北半球所有的浴缸排水时都是沿逆时针方向打旋。当然,很难使每次实验都达到预想的效果,因为普通浴缸不是为了显示科里奥利力而设计的。浴缸放水时打旋的方向还取决一些不可控制的因素。 一块石头从高塔上落下,不少人认为会垂直落地,其实不然,在北半球石头下落就相当于从南往北走,除了受重力作用,还要受到科里奥利力的作用。石头落下不是垂直而是偏向东方,有人计算过,从333米高塔落下的石头应该偏东10.5厘米左右。 伸开双臂作旋转运动的滑冰表演者,突然手臂一收拢,旋转就加快了。原来当伸开旋转的手臂收拢时,就好像在地球上从南向北走一样,受到了科里奥利力的作用,因此,旋转加快了。以上是部分有关科里奥利力的作用的例子,如果你留心,还能发现更多。

浅谈地转偏向力的影响

浅谈地转偏向力的影响 黄琪1142041084 生命科学学院2011级生态专业 摘要:水平地转偏向力亦称地偏力,因为地球自转而产生的以地球经纬网为参照系的力。地转偏向是科氏力(科里奥利力)在沿地球表面方向的一个分力。对于自然界和人们的生活有着潜移默化的影响,从气流洋流的流向,到皮鞋的磨损都与地转偏向力有关。 关键词:地转偏向力北半球大气运动手性植物洋流冲积平原 1.地转偏向力简介 由于地球自转而产生作用于运动物体的力,称为地转偏向力,简称偏向力。它只在物体相对于地面有运动时才产生(实际不存在),只能改变水平运动物体运动的方向,不能改变物体运动的速率。地转偏向力可分解为水平地转偏向力和垂直地转偏向力两个分量。由于赤道上地平面绕着平行于该平面的轴旋转,空气相对于地平面作水平运动产生的地转偏向力位于与地平面垂直的平面内,故只有垂直地转偏向力,而无水平地转偏向力。由于极地地平面绕着垂直于该平面的轴旋转,空气相对于地平面作水平运动产生的地转偏向力位于与转动轴相垂直的同一水平面上,故只有水平地转偏向力,而无垂直地转偏向力。在赤道与极地之间的各纬度上,地平面绕着平行于地轴的轴旋转,轴与水平面有一定交角,既有绕平行于地平面旋转的分量,又有绕垂直于地平面旋转的分量,故既有垂直地转偏向力,也有水平地转偏向力。 2.产生的原因及计算方式 2.1产生原因

George-Gate的《定性分析地转偏向力》一文从科里奥利力的角度分析得出:对于水平运动的物体,在北半球,其所受的地转偏向力指向运动方向的右手边,在南半球,地转偏向力指向运动方向的左手边;对于在竖直方向运动的物体,无论在哪个半球,若物体竖直向上运动,则地转偏向力指向正西方,若物体竖直向下运动,则地转偏向力指向正东方。对于一个作一般运动的物体,可将其速度分解成竖直方向和水平方向两个分量,分别求出两分速度对应的地转偏向力后对两力求矢量和。 由于除南北两极外,各纬度的角速度都一样,从北向南飞的时候,南边的圈大,即越向南纬线越长,所以线速度大,所以在北边的时候具有的一个小的线速度与南边的线速度相比就显的慢了,所以其就由于惯性表现出往右偏。向北也一样,由快的地方到慢的地方,速度“超前”了,前进方向上也就向右偏了。 沿纬线向东西方向飞(这里要分两种情况讨论,1:由西向东,2:由东向西),这时候由于万有引力的方向指向地心,而纬圈转的方向指向的圆心并不是地心,所以由于这个角度,万有引力不能完全提供你围着纬线的圆心转的那个向心力,所以一综合:情况1下:严格按照纬度方向运动的物体会向赤道方向受到一个重力的分力。情况2中:严格按照纬度方向运动的物体同样会受到向着赤道的分力。这种情况2不符合所谓的北半球都向右偏离。个人认为:由于无法做到完全按纬度,实际情况中,所有运动肯定与纬线方向有夹角,一旦有夹角,就可以直接看南北方向的分量,而这一分量会向右偏。 赤道不受地转偏向力正是因为地心正好就是纬圈旋转的圆心,二者重合了,正好重力可以抵消掉向外的力。最后,南北两极地转偏向力最大。

科里奥利质量流量计的现状与未来

科里奥利质量流量计的现状与未来 引言质量流量计现在受到用户的青睐,是由于它能直接测量管道内流体 的质量流量,而不必像过去那样,分别测量被测流体的体积流量和密度,然后 计算求得。此外,它的精度和稳定度较高,量程比也比较大,但是其性能价格 比太高。对制造厂商而言,这是个利润颇丰的产品,所以对此产品的开发、试 制和推销,一直是积极的。原理柯氏质量流量计的原理,实质是利用一个弹 性体的共振特性:队友流体流动和无流体流动的振动(在共振区附近)的金属 管元件,测定其动态响应特性,求出此谐振系统的相位差(时间差)与质量流 量之间的关系。而有流体流动的金属管元件谐振的动态响应特性,与无流体流 动的金属管的动态响应特性之间的差别,是由于Coriolis 效应引起的。所谓柯 氏效应,是指当质点在一个转动参考系内作相对运动时,会产生一种不同于通 常离心力的惯性力作用在此质点上。其大小与方向可用2mvXw(公式)来表示。 这是法国科学家Coriolis 首先发现的。利用上述原理的弹性元件构成的流量计 又称为柯氏质量流量计。所以要在理论上分析、发展质量流量计,其难点实质 上是来计算弹性金属管的动态谐振特性。这主要是靠固体力学理论对弹性体作 振动分析来确定。现有的文献报道,一种是对挠性管进行动态响应分析。1. 挠性管的动态响应分析(i)挠性曲管的分析Hemp and Sultan (Cranfield Institute of Technology, England) 用Euler 梁理论,对挠性曲管的谐振的动态响应进行过分析,并结合U-型管作了具体计算。 a. 方程(Oscillating tube of cruved part) 对于不同的几何形状,上述的一般性公式和边界条件还可以在进一步简化。 譬如,对弹性金属管的直管部分,可以令a 趋于无穷即可。b. 边界条件 在端点上,有在不同形状的管段的连接点上,有c. 数值求解和计算结果

2014_2015第二学期演示实验内容解析

第一次课: 锥体上滚演示装置 [实验原理] 不稳定平衡的物体偏离平衡位置时,物体总是向重心降低的方向运动。 在本装置中,影响锥体滚动的参数有三个,即导轨的坡度角α,双轨道的夹角γ和双锥体的锥顶角β。 β角是固定的,夹角γ和α是可调的。双锥体中心O 位于锥体轴线的中点。计算表明,当角α、β、γ三角满足22tg tg tg β γ α>时,重心O 下降,就会出现锥体主动上滚的现象。 [操作方法] 1、通过可调节支架调节α和γ 的大小使之满足上述关系; 2、将双锥体置于轨道低处,松手后锥体沿轨道自低向高处滚动; 3、调节α和γ中的一个角度,使之不满足上述关系,双锥体将不能上滚。 [思考] 上述公式22tg tg tg βγα>的推导过程如何? 科里奥利力演示仪 [实验目的] 模拟转动参考系中径向运动的小球的运动轨迹,直观地演示科里奥利力。 [实验仪器] 转盘 小球 [实验原理] 在相对于惯性系匀速转动的参考系(非惯性系) 中分析直线运动物体的运动时,应加以虚拟的惯性力即科里奥 利力: ω ?=r c v m f 2 其中,m 为物体质量,r v 为物体相对转动参考系的速度, ω 为转动参考系相对惯性系的转动角速度。 [操作方法] 1、转盘静止,让小球从狭槽的顶点向下运动,可以看到小球沿着狭槽的延长线方向继续向前作直线运动; 2、缓慢转动转盘,让小球从狭槽的顶点向下运动,可以发现小球在离开狭槽时,偏离原来的径向运动,其偏转方向与c f 方向相同; 3、改变转盘的转动方向,重复2的操作,可以观察到小球在离开狭槽后,向相反的方向偏离;改变转盘的转速,可以发现转盘转得越快,小球偏离原来的方向越远。 [思考] 上述观察结果是以地面为参考系还是以转盘为参考系?你能通过力的分析分析上述结果吗?若以地面为参考系,小球作什么运动? 傅科摆 [实验仪器] 摆绳长约1米的单摆。 [实验原理] 由于地球的自转,地球表面并不是惯性系。所以分析地球表面的物体运动规律时,应加上两个假想力:惯性离心力和科里奥利力 2F mv ω'=?科 北京处于北半球,地球自转的角速度方向垂直于地面向上。 故在地面上方运动的物体所侧视图 俯视图

谈谈科里奥利力的影响

谈谈科里奥利力的影响 摘要相对于地球运动的物体会受到科里奥利力的作用, 本文对地球上物体受科里奥利力影响的各种现象加以描述。包括水平运动物体的偏转,落体偏东,傅科摆和对分子光谱的影响。 关键词科里奥利力,水平运动物体的偏转,落体偏东,傅科摆,分子光谱 一引言 在地球上, 相对于地球运动的物体(运动方向平行于地轴时除外) 会受到一种惯性力的作用, 这种惯性力是以首先研究它的法国数学家科里奥利的名字命名的, 叫做科里奥利力,由于科里奥利力垂直于物体的运动方向, 所以不能影响物体运动速度的大小, 但它可以改变物体的运动方向。 科里奥利力的计算公式如下: F=2mv×ω F=-2mω×v.(from Wiki) 式中F为科里奥利力;m为质点的质量;v为质点的运动速度;ω为旋转体系的角速度;×表示两个向量的外积符号。 二科里奥利力的影响 (一)水平运动物体的偏转 地球上一切运动的物体, 如气流、海洋、河流、交通工具及飞行物等, 除了运动方向平行于地轴外,都要受到科里奥利力的作用.如将科里奥利力分解成竖直方向和水平方向的两 个力,则垂直分力使运动物体的重力略有改变(增加或减少) , 水平分力可能使物体运动方 向发生变化(北半球偏右, 南半球偏左, 赤道上不偏) .地球上高、中、低纬度的三圈大气环流、洋流系统的形成, 气旋与反气旋的旋转, 大河两岸的不对称, 都同地转偏向力的作用有关. 它们既是地球自转的后果, 也是地球自转的证据. (二)落体偏东 落体偏东(或抛体偏西) 是科里奥利力对沿垂直方向运动物体作用的结果。落体偏东的数值以赤道最大, 向两极减小至0. 总的说来, 数值都很小. 例如, 在纬度400 的地方, 在 离地面200 m 高处自由下落的物体, 偏东的数值约为4175 cm , 加上其它因素(如风) 的干扰, 难于察觉。在很深的矿井中所做的落体实验, 除赤道上证明是偏东外, 在北南半球由于地球自转惯性离心力的影响, 分别是偏东略南和偏东略北. (三)傅科摆 傅科摆是科里奥利力在摆动中的表现. 在北半球安置的傅科摆, 在每次摆动时均偏右, 致使摆动平面沿顺时针方向转动. 在南半球安置的傅科摆, 在每次摆动时均偏左, 致使摆 动平面沿逆时针方向转动. (四)对分子光谱的影响 科里奥利力会对分子的振动转动光谱产生影响。分子的振动可以看作质点的直线运动,分子整体的转动会对振动产生影响,从而使得原本相互独立的振动和转动之间产生耦合,另外由于科里奥利力的存在,原本相互独立的振动模之间也会发生能量的沟通,这种能量的沟通会对分子的红外光谱和拉曼光谱行为产生影响。 三小结 目前对科里奥利力的研究已基本有了定论, 其产生的原因、大小、方向及其性质都已基本没有争议,科里奥利效应是自然界非常重要的一种效应,在人类生产生活中有着重要应用。 参考文献 [1]吴新华,李宏伟.浅谈科里奥利力的影响及应用.河北北方学院学报(自然科学版) [J] .2008 .2:36~38.

下面用科里奥利力向大家详细介绍一下有关傅科摆的问题

科里奥利现象和傅科摆小论文 小论文人员分配: 组长:耿蕾 主讲:耿蕾 查资料:杜欣赵华鞠大升 写论文:鞠大升赵华杜欣耿蕾 我们生活在一个物质的世界,人类从古至今在不停地对身边的一切进行探索,从小的现象得到启发,进而上升到理论,直至推动整个社会的发展。 科里奥利现象和科里奥利力是常常发生在我们的事, 傅科摆是科里奥利力的一个重要应用。 (一)科里奥利现象和科里奥利力 我们现在从一个简单的例子说起。如图1.设在以角 速度ω沿逆时针方向转动的水平圆盘上,沿同一半径坐 着两个儿童,童A靠外,童B靠内,二者离转轴O的距 离分别为V A和V B,童A以相对于圆盘的速度V’沿半径 方向向童B抛出一球。如果圆盘是静止的,则经过一段 时间△t=(V A-V B)/V’后,球会到达童B,但结果是球 图1:水平转盘 到达了童B转动的前方一点B’,对这个现象可如下分析, 由于圆盘在转动,故球离开童A的手时,除了具有径向速度V’外,还具有切向速度V tA,而童B 的切向速度为V tB,由于童B的位置靠近圆心,所以V tA>V tB,在垂直于AB的方向上,球运动得比B远些。这是在盘外不转动的惯性系观察到的情形。 对于以圆盘为参考系的B,他只看到A以初速度向他抛来一球,但球并未沿直线到达他,而是向球球运动的前方的右侧偏去了,这一结果的分析发现,地球在具有径向初速度V’的同时,还具有了垂直于这一方向而向右的加速度a’,应用牛顿第二定律对于加速度的解释,既然球出手后在水平方向上没有受到“真实力”的作用,那么球一定受到了一个垂直于速度V’而向右的惯性力Fc。这种在转动参考系中观察到的运动物体(由于转动参考系中各点的线速度不同而产生)的加速现象中科里奥利效应,产生此效应的虚拟的惯性力叫科里奥利力。 利用此例可导出科里奥利力的定量公式。以转动系为参考系,球从A到达B’的时间是△t’=(V A-V B)/V’。在△t’时间内球偏离AB的距离BB’=(V tA-V tB)△t’=ω(V A-V B)△t’= V’ω(△t’)2,在△t’很小的情况下,可以认为沿BB’的运动是匀加速运动而初速为0,以a’表示以加速度应用BB’=1/2 a’(△t’)2,与上一结果比较可得:a’=2V’ω。在此转动参考系内形式地应用牛顿第二定律,可得科里奥利力大小为F C=ma’=2m V’ω。在此例中,圆盘沿逆时针方向转动,科里奥利力方向指向质点运动的右方。同理,如果圆盘沿顺时针方向转动,则科里奥利力的方向指向质点运动的左方。 一般地可以证明,当质量为m的质点相对于转动参考系(角速度矢量为ω)的速度为V时,则在转动参考系内观察到的科里奥利力为 Fc=2m V ×ω。(1) 转动参考系上物体运动时受另一种惯性力(科里奥利力)的作用现象是法国一位工程师和物理学家科里奥利发现的。我们的地球就是一个转动参考系,所以在地面上运动的物体一般都受科里奥利力的作用。1851年,法国科学家傅科做了一个著名的实验,他从巴黎葬院的穹顶上悬挂了一副67米长的绳索,下面吊着一个28公斤重的摆锤。随着每一次摆动,地上巨大的沙盘便留下摆

科里奥利质量流量计工作原理和基本结构

标 题: 科里奥利质量流量计工作原理和基本结构 说明:众所周知,当一个位于旋转系内的质点作朝向或者离开旋转中心的运动时,将产生一惯性力。如 图6-1所示,当质量为(δm的质点以匀速u在一个围绕旋转轴P以角速度ω旋转的管道内轴向移动时,这个质点将获得两个加速度分量: (1)法向加速度a r (向心加速度),其值等于ω2r,方向指向P轴。 (2)切向加速度a t (科里奥利加速度),其值等于2ωu,方向与a r 垂直,正方向符合右手定则,如图6-1所示。 为了使质点具有科里奥利加速度a t ,需在a t 的方向上加一个大小等于2ωuδm的力,这个力来自 管道壁面。反作用于管道壁面上的力就是流体施加在管道上的科里奥利力F c 。 方向与α t 相反。 从图6-1可以看出,当密度为ρ的流体以恒定流速u沿图6-1所示的旋转管流动时,任一段长度ΔX的管道都将受到一个大小为ΔF e的切向科里奥利力: 式中,A为管道内截面积。由于质量流量q m =ρuA,因此: 基于上式,只要能直接或者间接地测量出在旋转管道中流动的流体作用于管道上的科里奥利力,就可以测得流体通过管道的质量流量。 在过程工业应用中,要使流体通过的管道围绕P轴以角速度ω旋转显然是不切合实际的。这也是早期的质量流量计始终未能走出实验室的根本原因。经过几十年的探索,人们终于发现,使管道

绕P轴以一定频率上下振动,也能使管道受到科里奥利力的作用。而且,当充满流体的管道以等于或接近于其自振频率振动时,维持管道振动所需的驱动力是很小的。从而从根本上解决了CMF 的结构问题。为CMF的迅速商用化打下了基础。 经过近二十年的发展,以科里奥利力为原理而设计的质量流量计已有多种形式。根据检测管的形状来分,大体上可以归纳为四类,即:直管型和弯管型;单管型和多管型(一般为双管型)。 弯管型检测管的仪表管道刚度低,自振频率也低,可以采用较厚的管壁,仪表耐磨、耐腐蚀性能较好,但易存积气体和残渣引起附加误差。直管型仪表不易存积气体,流量传感器尺寸小,重量轻。但自振频率高,为使自振频率不至于太高,往往管壁做得较薄,易受磨损和腐蚀。单管型仪 表不分流,测量管中流量处处相等,对稳定零点有好外,也便于清洗,但易受外界振动的干扰,仅见于早期的产品和一些小口径仪表。双管型仪表由于实现了两管相位差的测量,可降低外界振动干扰的影响。 科氏力质量流量计的性能特点: 与传统的流量测量方式相比,该流量计具体优点有如下几个方面: 直接测量管道内流体的质量流量 测量准确度高、重复性好,可在较大量程比范围内,对流体质量流量实现高准确度直接测量。 计量的准确度高 该流量计的质量流量测量准确度是0.2级;同时,它还能准确地测出流体介质的温度和密度。 工作稳定可靠 流量计管道内部无障碍物和活动部件,因而可靠性高、寿命长、维修量小;使用方便、安全。 适应的流体介质面宽 除一般粘度的均匀流体外,还可测量高粘度、非牛顿型流体;不仅可以测量单一溶液的流体参数,还可以测量混合较均匀的多相流;无论介质是层流还是紊流,都不影响其测量准确度。 广泛的应用领域 可在石油化工、制药、造纸、食品、能源等多种领域实施计量和监控。 防腐性能好 能适用各种常见的腐蚀性流体介质。 多种实时在线测控功能 除质量流量外,还可直接测量流体的密度和温度。智能化的流量变送器,可提供多种参数的显示和控制功能,是一种集多功能为一体的流量测控仪表。 可扩展性好 公司可根据用户需要,专门设计和制造特殊规格型号和特殊功能的质量流量计;还可进行远程监控操作等。 两相分离计量的另一种形式的计量设备由两相分离器、质量流量计和气体流量计组成。质量流量计测量分离出的液量,并计算出其中的含水率,从而测量出油井的油、气、水产量。这种计算装置投资较少、操作简便,在我国油田中获得了较多的应用。 由这一段话可以看出液体和气体的计量是有区别的。 点击下面的文字可以看清楚的。

6.科里奥利力演示仪

科里奥利力演示仪 【仪器介绍】 如图6-1所示,科里奥利力演示仪由底座、 转盘、飞轮、塑料串珠等构成。 【操作与现象】 一手握住底座上方的转盘,使传盘固定,另 一手驱动飞轮,使飞轮绕水平自转轴转动,可以 观察到飞轮边缘上的塑料串珠都在同一竖直平 面内作圆周运动,呈一朵花的形状。 飞轮绕自转轴转动的同时,驱动转盘使飞轮 绕转盘支承轴转动,可以观察到塑料串珠构成的 花的形状发生了改变,串珠产生了向竖直转动平 面内或外的偏移,一眼望去,串珠的边缘似乎起 了波浪。 【原理解析】 塑料串珠发生偏移的原因,是因为受到了科里奥利力的作用。科里奥利力是由法国气象学家科里奥利在1835年提出的,是为了描述非惯性系(旋转体系)的运动而需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理非惯性系(旋转体系)中的运动方程,大大简化了非惯性系的处理方式。 科里奥利力:ω ?=v m f 2 (6-1) 式中f 就为科里奥利力,v 为质点相对非惯性系 (旋转体系)运动的线速度,ω 为质点绕垂直轴转动的角速度。f 的方向可由右手螺旋法则来判 断。 取四个特殊位置(上、下、左、右)的珠子 来判断串珠的运动变化。假设转盘是逆时针转动, 即非惯性系的转动角速度ω 的方向竖直向上,若 飞轮绕自转轴在纸平面内的转动也是逆时针的, 此时四个位置上的珠子相对于飞轮(非惯性系) 的线速度v 如图6-2所示,则可以判断出:左、右 两颗珠子所受的科里奥利力为零;上面的珠子受到的科里奥利力为ωmv f 2=,方向垂直纸面向内(如图6-2所示),从而该位置上的串珠向内偏移;下面的珠子也受到同样大小的科里奥利力,方向却是垂直纸面向外图6-1 科里奥利力演示仪

质量流量计原理:科里奥利力

科里奥利力 科里奥利力(英语:Coriolis force,简称:科氏力)是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。 概述 认识历史 旋转体系中质点的直线运动 科里奥利力是以牛顿力学为基础的。1835年,法国气象学家科里奥利(Gaspard-Gustave Coriolis)提出,为了描述旋转体系的运动,需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理旋转体系中的运动方程,大大简化了旋转体系的处理方式。由于人类生活的地球本身就是一个巨大的旋转体系,因而科里奥利力很快在流体运动领域取得了成功的应用。 物理学中的科里奥利力 科里奥利力来自于物体运动所具有的惯性,在旋转体系中进行直线运动的质点,由于惯性的作用,有沿着原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。

如右图所示,当一个质点相对于惯性系做直线运动时,相对于旋转体系,其轨迹是一条曲线。立足于旋转体系,我们认为有一个力驱使质点运动轨迹形成曲线,这个力就是科里奥利力。 根据牛顿力学的理论,以旋转体系为参照系,这种质点的直线运动偏离原有方向的倾向被归结为一个外加力的作用,这就是科里奥利力。从物理学的角度考虑,科里奥利力与离心力一样,都不是真实存在的力,而是惯性作用在非惯性系内的体现。 科里奥利力的计算公式如下: 式中为科里奥利力;m为质点的质量;为质点的运动速度;为旋转体系的角速度;表示两个向量的外积符号。 科里奥利力与科里奥利加速度的关系 通常,在惯性系中观察到的科里奥利加速度,其中为圆盘转动的角速 度矢量,为质点所具有的径向速度。可见科里奥利加速度的方向与科里奥利力的方向 相反。这是因为,科里奥利加速度是在惯性系中观察到的,由作用力产生;而科里奥利力则是在转动的参考系中观察到的,它产生的加速度是相对于非惯性系而言的。不能认为科里奥利加速度是由科里奥利力产生的[1]。 科里奥利力产生的影响 在地球科学领域 由于自转的存在,地球并非一个惯性系,而是一个转动参照系,因而地面上质点的运动会受到科里奥利力的影响。地球科学领域中的地转偏向力就是科里奥利力在沿地球表面方向的一个分力。地转偏向力有助于解释一些地理现象,如河道的一边往往比另一边冲刷得更厉害。 傅科摆

科里奥利力

匀速转动系统中科里奥利力的推导 建立如上图所示的转动系统。记静止坐标系为参照系S ,转动坐标系xoy 为转动参照系S ’。两个参照系有共同的轴ok ,且xoy 坐标系作匀速圆周运动,角速度为。 假设有一个点P (质量为m )在运动,其相对o 的位移为??r xi yj =+ 。这里需要注 意,xoy 坐标系是转动的,也就是说?i 和?j 是岁时间改变的:???di i j dt ω== ,???dj j i dt ω==- 。 现在,我们就可以通过对r 求两次导来求得质点P 的加速度了: ??()????dr d xi yj v xi yj x j y i dt dt ωω+===++- 222??????????????()()2()dv a xi x j yj y i x j x i y i y j dt xi yj yj xi xj yi ωωωωωωωω==++-+---=+-++- 上式中分三项,(1)x 和y 是P 相对转动参照系S ’的轴向加速度,合计为??a xi yj '=+ ,称 为相对加速度;(2)2??()yj xi ω-+=2r ω-? ,沿径矢r 指向o ,是由于xoy 系绕轴转动以角 速度ω转动引起的,称为向心加速度;(3)??2()xj yi ω- = 2v ω'-? ,由xoy 系统转动的角速度ω (=?k ω)和P 在xoy 中运动的速度v ' (=??xi yj + )共同决定,方向垂直于ω 和v ' 所决 定的平面,2v ω'-? 称为科里奥利加速度,相应的有科里奥利力为 2mv ω'? 。

注:如果xoy坐标系是作变加速圆周运动,则在计算结果中会出现包含 d dt ω ω= 的项,这一 下称为切向加速度(这里不做详细推导)。

科里奥利质量流量计的选用

科里奥利质量流量计的选用 基于流体在振动管中流动时将产生与质量流量成正比的科里奥利力,简称“科氏力”。科氏力流量计有很多分类:如按用途分类,可分为液体用和气体用;按测量管形状分类,有弯管型、直管型;按测量管段数分类,有单管型、双管型。 1、科氏力流量计的结构和特点 以常见的U形测量管为例。在单U形测量管结构中,电磁驱动系统以固定频率驱动U形测量管振动,当流体被强制接受管子的垂直运动时,在前半个振动周期内,管子向上运动,测量管中流体在驱动点前产生一个向下压的力,阻碍管子的向上运动,而在驱动点后产生向上的力,加速管子向上运动。这两个力的合成,使得测量管发生扭曲;在振动的另外半周期内,扭曲方向则相反。测量扭曲的程度,与流体流过测量管的质量流量成正比,在驱动点两侧的测量管上安装电磁感应器,以测量其运动的相位差,这一相位差直接正比于流过的质量流量。在双U形测量管结构中,两根测量管的振动方向相反,使得测量管扭曲相位相差180°。相对单测量管型来说,双管型的检测信号有所放大,流体能力也有所提高。 科氏力流量计的特点。可以直接测量质量流量,不受流体物性(密度、黏度等)影响,测量精确度高。测量值不受管道内流场影响,无上、下游直管段长度的要求。可测量各种非牛顿流体以及粘滞的和含微粒的浆液。可做多参数测量,如同期测量密度、溶液中溶质所含浓度。

影响测量精确度因素较多,如零点不稳定形成零点漂移;管路振动;测量管路腐蚀与磨损、结垢等。不能用于低密度气体的测量,液体中含气量较大会影响测量值。阻力损失较大。 2、科氏力流量计的选用及安装使用注意事项 大部分科氏力流量计只适合测量液体,如果要测量气体,须明确在什么工况下使用。科氏力流量计对被测液体的黏度适应性范围宽,从低黏度的液化石油气到高粘度原油和沥青液,适用于非牛顿流体和液固双相流体,如乳胶、悬浮高岭土液、巧克力、肉糜浆等。用于混相流测量时,气液混合物中气泡小且均匀,以及液固混合物中含少量固体杂质是可以应用的。要注意游离气体的排出,注意测量管的磨损和堵塞。近年来,科氏力流量计的制造技术获得了快速发展,例如CMF100 传感器与2400S 变送器配用,测量液体时,液体的质量流量精确度可达流量值得±0.05%,而且已延伸到气体流量的测量。应用上述配置的流量计测量气体质量流量,精确度可达流量值得±0.35%。因为它能直接显示质量流量,所以更简单、更准确,但因气体管道直径一般比较大,选用科氏力流量计去测量投资很高,所以具体选型时应根据必要性决定取舍。应用科氏力流量计测量气体流量时还要考虑一个重要问题,即可行性。因为现有的产品测量压力很小的气体流量,目前还有困难,所以选型时还应列出具体测量点的工况条件及物性数据,向供应商咨询,确认是否在可测范围内。 科氏力流量计安装使用注意事项

科里奥利力及其应用

科里奥利力 1 引言 科里奥利力(Coriolis force),简称为科氏力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。科里奥利力是以牛顿力学为基础的。1835年,法国气象学家和工程师科里奥利(Gaspard-Gustave Coriolis)提出,为了描述旋转体系的运动,需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理旋转体系中的运动方程,大大简化了旋转体系的处理方式。由于人类生活的地球本身就是一个巨大的旋转体系,因而科里奥利力很快在流体运动领域取得了成功的应用。 2 物理学中的科氏力 科里奥利力来自于物体运动所具有的惯性,在旋转体 系中进行直线运动的质点,由于惯性的作用,有沿着原有 运动方向继续运动的趋势,但是由于体系本身是旋转的, 在经历了一段时间的运动之后,体系中质点的位置会有所 变化,而它原有的运动趋势的方向,如果以旋转体系的视 角去观察,就会发生一定程度的偏离。如右图1所示,当 一个质点相对于惯性系做直线运动时,相对于旋转体系, 其轨迹是一条曲线。立足于旋转体系,我们认为有一个力 驱使质点运动轨迹形成曲线,这个力就是科里奥利力。 根据牛顿力学的理论,以旋转体系为参照系,这种质点的直线运动偏离原有方向的倾向被归结为一个外加力的作用,这就是科里奥利力。从物理学的角度考虑,科里奥利力与离心力性质相似,都不是真实存在的力,而是惯性作用在非惯性系内的体现。科里奥利力的计算公式如下: F c=?2mω×v 式中F c为科里奥利力;m为质点的质量;v为质点的运动速度;ω为旋转体系的角速度;×表示两个向量的外积符号。 特殊的是,在地球上,拥有水平于地面方向运动分量的物体受里奥利力大小为:F=2mvωsin? 式中F为地转偏向力的大小;m为物体质量;v为物体 的水平运动速度分量;ω为地球自转的角速度;?为物 件所处的纬度。受力方向北半球向物体运动的右侧,南 半球向物体运动的左侧。 3 生活中的科氏力 3.1 柏而定律 该定律是自然地理中一条从实际观察总结出来的著 名规律,即北半球河流右岸比较陡削,南半球则左岸比

相关文档
相关文档 最新文档