文档库 最新最全的文档下载
当前位置:文档库 › 空间插值算法汇总

空间插值算法汇总

空间插值算法汇总
空间插值算法汇总

空间插值算法:

1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类型。多元回

归实际上不是插值器,因为它并不试图预测未知的Z 值。它实际上是一个趋势面分析作图程序。使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。参数设置是指定多项式方程中X 和Y组元的最高方次。

5、径向基本函数法(Radial Basis Function)径向基本函数法是多个数据插值方法的组合。根据适应你的数据和生成一个圆滑曲面的能力,其中的复二次函数被许多人认为是最好的方法。所有径向基本函数法都是准确的插值器,它们都要为尊重你的数据而努力。为了试图生成一个更圆滑的曲面,对所有这些方法你都可以引入一个圆滑系数。你可以指定的函数类似于克里金中的变化图。当对一个格网结点插值时,这些个函数给数据点规定了一套最佳权重。

6、谢别德法(Shepard's Method)谢别德法使用距离倒数加权的最小二乘方的方法。因此,它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观。谢别德法可以是一个准确或圆滑插值器。在用谢别德法作为格网化方法时要涉及到圆滑参数的设置。圆滑参数是使谢别德法能够象一个圆滑插值器那样工作。当你增加圆滑参数的值时,圆滑的效果越好。

7、三角网/线形插值法(Triangulation with Linear Interpolation)三角网插值器是一种严密的插值器,它的工作路线与手工绘制等值线相近。这种方法是通过在数据点之间连线以建立起若干个三角形来工作的。原始数据点的连结方法是这样:所有三角形的边都不能与另外的三角形相交。其结果构成了一张覆盖格网范围的,由三角形拼接起来的网。每一个三角形定义了一个覆盖该三角形内格网结点的面。三角形的倾斜和标高由定义这个三角形的三个原始数据点确定。给定三角形内的全部结点都要受到该三角形的表面的限制。因为原始数据点被用来定义各个三角形,所以你的数据是很受到尊重的。

8.自然邻点插值法(Natural Neighbor)自然邻点插值法(NaturalNeighbor)是Surfer7.0才有的网格化新方法。自然邻点插值法广泛应用于一些研究领域中。其基本原理是对于一组泰森(Thiessen)多边形,当在数据集中加入一个新的数

据点(目标)时,就会修改这些泰森多边形,而使用邻点的权重平均值将决定待

插点的权重,待插点的权重和目标泰森多边形成比例[9]。实际上,在这些多边形中,有一些多边形的尺寸将缩小,并且没有一个多边形的大小会增加。同时,自然邻点插值法在数据点凸起的位置并不外推等值线(如泰森多边形的轮廓线)。

9.最近邻点插值法最近邻点插值法(NearestNeighbor)又称泰森多边形方法,泰森多边形(Thiesen,又叫Dirichlet或Voronoi多边形)分析法是荷兰气象学家A.H.Thiessen提出的一种分析方法。最初用于从离散分布气象站的降雨量数

据中计算平均降雨量,现在GIS和地理分析中经常采用泰森多边形进行快速

的赋值[2]。实际上,最近邻点插值的一个隐含的假设条件是任一网格点p(x,y)的属性值都使用距它最近的位置点的属性值,用每一个网格节点的最邻点值

作为待的节点值[3]。当数据已经是均匀间隔分布,要先将数据转换为SURFER 的网格文件,可以应用最近邻点插值法;或者在一个文件中,数据紧密完整,只

有少数点没有取值,可用最近邻点插值法来填充无值的数据点。有时需要排

除网格文件中的无值数据的区域,在搜索椭圆(SearchEllipse)设置一个值,对无

数据区域赋予该网格文件里的空白值。设置的搜索半径的大小要小于该网格文件数据值之间的距离,所有的无数据网格节点都被赋予空白值。在使用最

近邻点插值网格化法,将一个规则间隔的XYZ数据转换为一个网格文件时,可

设置网格间隔和XYZ数据的数据点之间的间距相等。最近邻点插值网格化法没有选项,它是均质且无变化的,对均匀间隔的数据进行插值很有用,同时,它

对填充无值数据的区域很有效。

10.Moving Average(移动平均法)移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量、公司产能等的一种常用方法。移动平均法适用于即期预测。当产品需求既不快速增长也不快速下降,且不存

在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。移动平均法根据预测时使用的各元素的权重不同移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。

11.Local Polynomial(局部多项式法)

12.Modified Shepard's Method(改进谢别德法)

空间插值算法汇总

空间插值算法: 1、距离倒数乘方法 (Inverse Distanee to a Power ) 距离倒数乘方格网 化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于 一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0的权重,所有其它观测点被给予一个几乎为0.0的权重。换 言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒 数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 (Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 (Minimum Curvature )最小曲率法广泛用于地球科学。 用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的

长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准 4、多元回归法(Polynomial Regression )多元回归被用来确定你的数据 的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类型。 多元回归实际上不是插值器,因为它并不试图预测未知的Z值。它实际上是一个趋势面分析作图程序。使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。参数设置是指定多项式方程中X和Y 组元的最高方次。 5、径向基本函数法 (Radial Basis Function )径向基本函数法是多个数据 插值方法的组合。根据适应你的数据和生成一个圆滑曲面的能力,其中的 复二次函数被许多人认为是最好的方法。所有径向基本函数法都是准确的插值器,它们都要为尊重你的数据而努力。为了试图生成一个更圆滑的曲面,对所有这些方法你都可以引入一个圆滑系数。你可以指定的函数类似于克里金中的变化图。当对一个格网结点插值时,这些个函数给数据点规定了一套最佳权重。 6谢别德法(Shepard's Method )谢别德法使用距离倒数加权的最小 乘方的方法。因此,它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观。谢别德法可以是一个准确或圆滑插值器。在用谢别德法作为格网化方法时要涉及到圆滑参数的设置。圆滑参数是使谢别德法能够象一个圆滑插值器那样工作。当你增加圆滑参数的值时,圆滑的效果越好。

空间插值方法汇总

空间插值方法汇总 Inverse Distance to a Power(反距离加权插值法) Kriging(克里金插值法) Minimum Curvature(最小曲率) Modified Shepard's Method(改进谢别德法) Natural Neighbor(自然邻点插值法) Nearest Neighbor(最近邻点插值法) Polynomial Regression(多元回归法) Radial Basis Function(径向基函数法) Triangulation with Linear Interpolation(线性插值三角网法) Moving Average(移动平均法) Local Polynomial(局部多项式法) 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类型。多元回归实际上不是插值器,因为它并不试图预测未知的 Z 值。它实际上是一个趋势面分析作图程序。使用多元回归法时要涉及到曲

两种空间插值方法的比较研究

两种空间插值方法的比较研究 摘要:距离倒数加权法算法简单,容易实现,适合分布较均匀的采样点集,但容易出现“牛眼”现象;克里金法是一种无偏最优估计法,精度较高,适合空间自相关程度高的数据,但其算法复杂,实现较难。这两种 方法各有其适用情形,本文比较了这两种方法的优劣并提出算法优化的思路。 关键字:距离倒数加权,克里金,优化 1引言 空间插值是根据一组已知的离散数据或分区数据,按照某种假设推求出其他未知点或未知区域的数据的过程,简单的说就是由已知空间特性推求未知空间特性。它是地学研究中的基本问题,也是GIS 数据处理的重要内容。在利用GIS 处理空间数据的过程中,需要进行空间插值的场合很多,如采样密度不够、采样分布不合理、采样存在空白区、等值线的自动绘制、数字高程模型的建立、区域边界分析、曲线光滑处理、空间趋势预测、采样结果的2.5维可视化等[1]。通过归纳,空间插值可以简化为以下三种情形:(1)现有离散曲面的分辨率、像元大小或方向与所要求的不符,需要重新插值。例如将一个扫描影像(航空像片、遥感影像)从一种分辨率或方向转换为另一种分辨率或方向的影像。(2)现有连续曲面的数据模型与所需的数据模型不符,需要重新插值。如将一个连续曲面从一种空间切分方式变为另一种空间切分方式,从TIN 到栅格、栅格到TIN 或矢量多边形到栅格。(3)现有数据不能完全覆盖所要求的区域范围,需要插值。如将离散的采样点数据内插为连续的数据表面[2]。。 现有的空间插值方法多种多样,但每一种方法都有其适用情形和无法避免的缺陷,本文分析了距离倒数加权法和克里金法的插值结果,并提出改进的思路。 2方法 距离倒数加权法和克里金法都是建立在地理学第一定律之上的,即:空间距离越近,地理事物的相似性越大[3]。它们都是通过确定待插点周围采样点的权重来求取待插点的估计值,可统一表示。设n x x ,,1 为区域上的一系列观测点,)(,),(1n x Z x Z 为相应的观测值。待插点0x 处的值)(0x Z 可采用一个线性组合来估计: ∑==n i i i x Z x Z 10)()(λ (1)

空间插值算法汇总

空间插值算法: 1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类型。多元回

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法 1. 反距离加权法(IDW) ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。可表示为: 1111() ()n n i p p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。 2.多项式法 多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。 3.样条函数内插法 样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要

解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。 4.克里格插值法 克里格法是GIS 软件地理统计插值的重要组成部分。这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。 对于普通克里格法,其一般公式为 01()()n i i i Z x Z x λ==∑,其中,Z(x i )(i=1, Λ,n)为n 个样本点的观测值,Z(x 0)为待定点值,i λ为权重,权重由克立格方程组: 011 (,)(,)1n i i j i i n i i C x y C x x λμλ==?-=????=??∑∑ 决定,其中,C(x i ,x j )为测站样本点之间的协方差,C(x i ,x 0)为测站样本点与插值点之间的协方差,μ为拉格朗日乘子。 插值数据的空间结构特性由半变异函数描述,其表达式为: () 21 1()(()())2()N h i i i h Z x Z x h N h ν==-+∑ 其中,N(h)为被距离区段分割的试验数据对数目,根据试验变异函数的特性,选

arcgis空间内插值教程

GIS空间插值(局部插值方法)实习记录 一、空间插值的概念和原理 当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。 空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。 二、空间插值的几种方法及本次实习采用的原理和方法 –整体插值方法 ?边界内插方法 ?趋势面分析 ?变换函数插值 –局部分块插值方法 ?自然邻域法 ?移动平均插值方法:反距离权重插值 ?样条函数插值法(薄板样条和张力样条法) ?空间自协方差最佳插值方法:克里金插值 ■局部插值方法的控制点个数与控制点选择问题 局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。 为此,第一要注意的是控制点的个数。控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。 第二需要注意的是怎样选择控制点。一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。 S6、按照不同方法进行空间插值,并比较各自优劣 打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:

降雨空间插值分析

第五章降雨空间插值分析 降雨空间插值分析是系统的中间件,其主要任务是把流域内175个雨量站的资料利用空间插值方法合理地插值到分布式水文模型所应用的空间网格上,以便于利用历史和实时自动测报雨量进行模型的率定和模拟验证,其输出结果以数据库或数据文本方式储存。 该层次的功能主要包括以下三个方面:(1)把175站雨量信息合理地插值到计算网格;(2)雷达降雨与分布式水文模型耦合接口;(2)暴雨数值预报与分布式水文模型耦合接口。 5.1 概述 降雨空间插值分析是本系统的关键技术之一。该部分的功能实现途径如下: (1)建立统一的基础空间数据库,包括统一的网格、单元、区域、子流域划分及编码,实现对同一区域对象的地理、水文、气象综合描述。系统的基本分辨率规定为空间1km×1km; (2)多源降雨信息的同化及整合。无论是自动测报实时雨量,还是历史数据(包括月、日、时等时段),通过该软件都可以生成网格上的空间分布数据。 (3)数值天气预报产品转化为1km网格的空间数据; (4)雷达信息转换为分布式水文模型所用网格的空间数据。

5.2 空间插值方法 空间插值方法的主要思想是:由分布的流域上的各个测站(xi, yi, zi )(x, y 为坐标值,z 为雨量值),拟合出该时段降雨量在流域上的分布函数f (x, y),进而求得在该函数在计算网格上的积分: ()??=dA y x f P , 5-1 则网格上的面平均雨量为: A P P = 5-2 在实际操作时,分布函数的拟合是采用加权的最小二乘拟合得出,但是对于复杂的空间分布函数,其求解并不是简单的问题。一般情况下多选用多项式函数来作为数学表达式,另外还要求解上的可行性和便利性,目前趋势面的求解均采用最小二乘法,一般来说只有线性表达式以及可转化为线性的表达式方可求解。 目前流行较多的方法有:算术平均、距离反比加权平均、最短距离法、空间函数拟合插值等。算术平均方法比较简单,如果网格内有雨量站点,则该网格内的平均雨量为网格内站点雨量的平均值,但是小花间网格要4万多个,而雨量站点165个,该方法不能适用。以下重点介绍距离反比加权平均、最短距离法、克里格法和空间函数拟合插值方法。

空间插值算法-反距离加权法

Show Inverse Distance Weighted Interpolation One of the most commonly used techniques for interpolation of scatter points is inverse distance weighted (IDW) interpolation. Inverse distance weighted methods are based on the assumption that the interpolating surface should be influenced most by the nearby points and less by the more distant points. The interpolating surface is a weighted average of the scatter points and the weight assigned to each scatter point diminishes as the distance from the interpolation point to the scatter point increases. Several options are available for inverse distance weighted interpolation. The options are selected using the Inverse Distance Weighted Interpolation Options dialog. This dialog is accessed through the Options button next to the Inverse distance weighted item in the 2D Interpolation Options dialog. SMS uses Shepard's Method for IDW: Shepard's Method The simplest form of inverse distance weighted interpolation is sometimes called "Shepard's method" (Shepard 1968). The equation used is as follows: where n is the number of scatter points in the set, fi are the prescribed function values at the scatter points (e.g. the data set values), and wi are the weight functions assigned to each scatter point. The classical form of the weight function is: where p is an arbitrary positive real number called the power parameter (typically, p=2) and hi is the distance from the scatter point to the interpolation point or where (x,y) are the coordinates of the interpolation point and (xi,yi) are the coordinates of each scatter point. The weight function varies from a value of unity at the scatter point to a value approaching zero as the distance from the scatter point increases. The weight functions are normalized so that the weights sum to unity.

空间插值

EX07:空间插值 本实验包含3个任务,任务1是进行趋势面分析(Trend surface analysis);任务2使用IDW方法进行局部插值;任务3使用普通克里格(Ordinary kriging)方法进行插值。上述任务都可以在地统计分析(Geostatistical analyst)中进行空间插值,此时可以使用交叉有效性统计(如均方根统计)进行模型比较。地统计分析提供了比空间分析(Spatial Analyst)及ArcToolbox中插值工具更多信息及更好的用户界面。 任务1:趋势面模型用于插值 所需数据:stations.shp,包含Idaho州内及附近175个气象站的shapefile;idoutlgd,Idaho 州边界栅格文件。 在任务1中,在进行趋势面分析之前,首先查看stations.shp中的平均年度降水量数据。本任务中7、8、9等步骤涉及到栅格数据运算,为选作内容。 1.运行ArcCatalog,连接到EX07文件夹。运行ArcMap,将数据框架命名为Task1,将 stations.shp和idoutlgd添加到Task1。确保Geostatistical analyst和Spatial Analyst在Tools 菜单下的Extensions中的复选框被设置,且相应的工具条在程序中显示出来。 2.单击Geostatistical analyst中的下拉键头,指向Explorer Data,选择Trend Analysis。在 Trend Analysis对话框的底部,选择数据源的Layer为stations.shp,Attribute为ANN_PREC。 3.将Trend Analysis对话框最大化。对话框中的3D图表达了两种趋势信息:在YZ平面 中由北向南倾斜,在XZ平面中先表现为由西向东倾斜,而后些微上升。南北方向的趋势比东西方向趋势更为明显,即Idaho州降水量由北向南递减。关闭对话框。 4.单击Geostatistical analyst中的下拉键头,选择Geostatistical Wizard。在第1页中进行输 入数据和地统计方法的选择。单击Input Data下拉键头,选择stations。将Attribute选择为ANN_PREC。在Methods框架中,选择Global Polynomial Interpolation。 5.在下一页可以选择趋势面模型采用的阶数(Power)。在Power列表中提供了1-10的选 择。选择1作为阶数。下一页绘制了预测值与观测值、误差与观测值之间的分布图及一次趋势面模型相关统计。RMS是对趋势面模型综合符合度的一种衡量,在此起数值为 6.073。按Back返回且将阶数设置为2,此时RMS变为6.085。重复调整阶数,选择具 有最小RMS数值的趋势面模型即为本本任务最佳综合模型。对于ANN_PREC,最佳阶数设置为5。将阶数设置为5后单击Finish。在Output Layer Information对话框单击OK。Q1:当阶数为5时,RMS统计值是多少? 6.Geostatistical analyst(GA)的输出为Global Polynomial Interpolation Prediction Map,与 stations具有相同的范围。在Global Polynomial Interpolation Prediction Map上单击右键选择Properties,在Symbology页包含4个显示选项:山体阴影(Hillshade)、等高线(Contours)、栅格(Grid)和填充等高线(Filled Contours),选择Filled Contours后单击分类(Classify)。在分类对话框中,选择手工分类,将其分为7类并将分类线设置为 10、15、20、25、30和35。单击OK关闭对话框。等高线(等雨量线)用不同色彩作 分类。 7.要将Global Polynomial Interpolation Prediction Map裁剪至与Idaho州边界相符,首先将 GA数据转化为栅格数据。在Global Polynomial Interpolation Prediction Map上单击右键,指向Data,选择Export to Raster,在弹出的对话框中,设置单元大小为200(米),并将输出命名为trend5_temp。单击OK进行数据输出。将trend5_temp添加到地图,检查trend5_temp中位于州边界外部的数值。

空间内插方法分析

摘要 本文首先对空间插值的的理论基础包括空间插值的必要性以及目标等几个方面进行了介绍;在此基础上,对空间插值的几种方法包括反距离加权法、克里格法、泰森多边形法、样条函数法等进行了探讨和研究,对方法的适用范围、优缺点、插值精度等方面进行了总结;对反距离加权法和克里格法等的实现方法进行了研究;论文最后对空间内插的方法选择进行了归纳总结,并对空间内插今后有待进一步研究的方面以及发展应用方向进行了展望。 关键词:空间内插克里格反距离加权 Abstract Firstly,theoretical basis,including the necessity of spatial interpolation, aim etc., is specifically introduced in this paper. Beside this, we have done studies and researches on several methods of spatial interpolation, e.g.Inverse Distance Weighted、Kriging、Thiesen、Spline, concluded on the range、merit and shortcoming,interpolation accuracy and so on. The thesis it makes research on the programming process of Inverse Distance Weighted and Kriging etc, The end of the paper gives a summary to the methods selection of spatial interpolation, and outlooks the further research and probable application to be developed in spatial interpolation. Keywords:Spatial Interpolation Kriging Inverse Distance Weighted 0 前言:在地理信息系统(GlS)中,我们获得的空间数据往往是离散点的形式,或者是分区数据的形式。由于观测到的数据往往不能满足要求,最理想的方法就是调查地理空间所有样本的信息,以穷尽样本属性值的方式来获得详尽的地理信息。但这种方法从时间、经济角度上来说是行不通的,也是不现实的。我们可以从离散分布的数据开始来构造一个连续的表面,但是问题在于如何构建一个连续的数据表面。GIS空间内插方法为实现这个目的提供了有效的手段,它利用有限的观测数据,估计合理的空间分布、提高数据密度,获得完整空间信息分布,以填补缺失的数据,得到密集的数据分布。此外,由于数据集的来源、采样点的数据类型不同,如何选择适当的内插方法成为迫切需要解决的问题,如若选择了不适当的内插方法将会直接导致对数据的错误内插,从而造成了对实际情况错误的认识。每种内插方法都有各自的应用范围和优缺点,它们很大程度上依赖于采样数据原始的数学特征,不同的研究目的对内插都有特殊的要求。针对某一特定的数据集,如何来选择最有效的内插方法,是一个重要的、极富挑战性的任务。 本文试图从GIS空间内插方法的理论基础、实际效果两个方面比较几种常用的内插方法的实现原理及其基本的适用条件,并对空间内插今后有待进一步研究的方面进行了展望。 1空间内插方法的划分和分析 空间插值方法可以分为全局方法和局部方法两类。全局方法用研究区每个可利用的控制点来构建一个方程或一个模型,而后该模型可用于估算未知点的数值;局部方法是用控制点的样本来估计未知点的值。

ArcGIS中的空间插值和面积计算

说明:本文阐述了空间插值和污染面积估算的方法,供群内交流学习用,若要用于商业用途或转载,请与原作者联系。本文若有不正确之处,敬请指出! 一、空间插值 插值方法种类很多,每种插值方法里参数也很多,至于哪种最好,没有定论,只能根据需求以及制图的效果来选定。建议:插值效果图与网格图进行对比,哪种效果最接近网格图(能体现局部)而且又能反映整体趋势就取哪种。 1.1、 1.2、以“反距离权重法,1次方”为例:

请问:此处有可选smooth ,可以做进行平滑处理吗? 可以,但精度会受到影响,看平滑后的效果来决定是否进行平滑处理。建议不做

3、扩展研究区域 4、至此可以制作分层设色图filled contours/等值线图contours 为减少误差,还可以对分级进行设置 请问:此处分级该如何设置?有无相应依据? 含量图主要根据百分含量,如果作图效果不好,适当调整 评价图根据污染等级

5、这是采用“反距离权重法,1次方”来插值的。 可选用“局部多项式”或“普通克里格插值”方法来试试,看哪种和网格分级图更接近些。但无论哪种方法聚类误差可能都较大,一部分高值可能被掩盖。 二、下面转成栅格图层再进行分层设色图制作,这样精度较高,且图层可用来进行面积估算 2.1、导出成栅格图层

2.2、设置格网大小,一般在50到100左右(本次都设为100)

(2.3和2.4均非必要步骤,只是为了另外的处理或制图的美观性。如果是为了制图的美观性有可能这两个步骤会弄巧成拙,是否须要请根据具体需要和效果来定) 2.3、并可对栅格图层重分类,生成新的栅格图层如(ah_cd)

常见插值方法及其的介绍

常见插值方法及其介绍 Inverse Distance to a Power(反距离加权 插值法)”、 “Kriging(克里金插值法)”、 “Minimum Curvature(最小曲率)”、 “Modified Shepard's Method(改进别德法)”、 “Natural Neighbor(自然邻点插值法)”、 “Nearest Neighbor(最近邻点插值法)”、 “Polynomial Regression(多元回归法)”、 “Radial Basis Function(径向基函数法)”、 “Triangulation with Linear Interpolation(线性插值三角网法)”、 “Moving Average(移动平均法)”、 “Local Polynomial(局部多项式法)” 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数 控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被 给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。 计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距 离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个 观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点

被给予一 个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。 距离倒数法的特征之一是要在格网区域产生围绕观测点位置的"牛眼"。用距离倒数格网化时可 以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的 权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数 据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。 克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最 小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的 曲面。 使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛 标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类 型。多元回归实际上不是插值器,因为它并不试图预测未知的Z 值。它实际上是一个趋势面分析作

空间插值方法

空间插值方法 1.反距离权重插值:通过与样本点距离大小赋予权重,距离近的样本点被赋予较大的权重, 受该样本点的影响越大,同时可以限制插值点的个数、范围,通过幂值来决定样本点对插值点的影响程度,灵活性大,准确性高,但不太适用规则排列的插值点 2.克里金插值:克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数 作为权重,而克里金考虑到了空间相关性的问题。它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。使用克里金插值需确定半变异函数的类型、步长、步数。对于这种方法,原始的输入点可能会发生变化。在数据点多时,结果更加可靠。该插值方法对规则排列、较密集的点插值较适用,而离散的插值点则需进行多次调试才可达到较为理想的效果 3.自然邻域插值:原理是构建voronoi多边形,也就是泰森多边形。首先将所有的空间点 构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。 该方法不是通过数据模型来进行插值,不需要设置多于的参数,简便但不灵活,不适合离散点进行插值,因为会形成不规则插值边界,但插值结果相对符合实际数值、准确,适合规则排列、较密集的点插值。 4.样条函数插值:这种方法使用样条函数来对空间点进行插值,它有两个基本条件:1.表 面必须完全通过样本点2.表面的二阶曲率是最小的。插值主要受插值类型(Regularized 或Tension)和weight值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;适合那些空间连续变化且光滑的表面的生成。该方法虽可生成平滑的插值结果,但其结果会在原有样点值进行数值延伸,产生于实际不符的结果,不建议一般插值使用。 5.径向基函数:包括:薄板样条函数、张力样条函数、规则样条函数、高次曲面函数、反 高次曲面函数。作为精确插值器,RBF方法不同于全局和局部多项式插值器,它们都不是精确插值器(不要求表面穿过测量点)。比较RBF和IDW(也是精确插值器)来看,IDW 从不预测大于最大测量值或小于最小测量值的值,RB用于根据大量数据点生成平滑表面。 这些函数可为平缓变化的表面(如高程)生成很好的结果。但在表面值在短距离内出现剧烈变化和/或怀疑样本值很可能有测量误差或不确定性时,这些方法不适用,且该方法插值过程需要一定时间,不能快速得到插值结果。

surfer插值法介绍

在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括: Inverse Distance to a Power(反距离加权插值法) Kriging(克里金插值法) Minimum Curvature(最小曲率) Modified Shepard's Method(改进谢别德法) Natural Neighbor(自然邻点插值法) Nearest Neighbor(最近邻点插值法) Polynomial Regression(多元回归法) Radial Basis Function(径向基函数法) Triangulation with Linear Interpolation(线性插值三角网法) Moving Average(移动平均法) Local Polynomial(局部多项式法) 下面简单说明不同算法的特点。 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类型。多元回归实际上不是插值器,因为它并不试图预测未知的Z 值。它实际上是一个趋势面分析作图程序。使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。参数设置是指定多项式方程中X 和Y组元的最高方次。5、径向基本函数法 径向基本函数法是多个数据插值方法的组合。根据适应你的数据和生成一个圆滑曲面的能力,

空间插值方法

7.空间插值 7.1空间插值的概念和理论 空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。空间内插算法是一种通过已知点的数据推求同一区域其它未知点数据的计算方法;空间外推算法则是通过已知区域的数据,推求其它区域数据的方法。在以下几种情况下必须作空间插值: 1)现有的离散曲面的分辨率,象元大小或方向与所要求的不符,需要重新插值。例如将一个扫描影象(航空像片、遥感影象)从一种分辨率或方向转换到另一种分辨率或方向的影象。 2)现有的连续曲面的数据模型与所需的数据模型不符,需要重新插值。如将一个连续的曲面从一种空间切分方式变为另一种空间切分方式,从TIN到栅格、栅格到TIN或矢量多边形到栅格。 3)现有的数据不能完全覆盖所要求的区域范围,需要插值。如将离散的采样点数据内插为连续的数据表面。 空间插值的理论假设是空间位置上越靠近的点,越可能具有相似的特征值;而距离越远的点,其特征值相似的可能性越小。然而,还有另外一种特殊的插值方法——分类,它不考虑不同类别测量值之间的空间联系,只考虑分类意义上的平均值或中值,为同类地物赋属性值。它主要用于地质、土壤、植被或土地利用的等值区域图或专题地图的处理,在“景观单元”或图斑内部是均匀和同质的,通常被赋给一个均一的属性值,变化发生在边界上。 7.2空间插值的数据源 连续表面空间插值的数据源包括: ●摄影测量得到的正射航片或卫星影象; ●卫星或航天飞机的扫描影象; ●野外测量采样数据,采样点随机分布或有规律的线性分布(沿剖面线或沿等高线); ●数字化的多边形图、等值线图; 空间插值的数据通常是复杂空间变化有限的采样点的测量数据,这些已知的测量数据称

插值方法总结

克里格插值方法:克里格法的适用条件是区域化变量存在空间相关性。考虑待估点位置与已知数据位置的相互关系,而且还考虑变量的空间相关性。 通过无偏估计和估计值和实际值的插值的方差最小这两个约束条件来求得权重,进而插值。不足:计算步骤繁琐,插值速度慢。 反距离权重法:IDW的适用于呈均匀分布且密集程度足以反映局部差异的样点数据集; 优点:简便易行;可为变量值变化很大的数据集提供一个合理的插值结果;不会出现无意义的插值结果而无法解释; 优点:综合了泰森多边形的自然邻近法和多元回归渐变法的长处,在插值时为待估点为邻近区域内所有数据点的距离加权平均值,当有各向异性时,还要考虑方向权重。是一种精确的插值法,即插值生成的表面中预测的样点值与实测样点值完全相等。 不足:对权重函数的选择十分敏感;易受数据点集群的影响,结果常出现一种孤立点数据明显高于周围数据点的“鸭蛋”分布模式; 距离反比很少有预测的特点,内插得到的插值点数据在样点数据取值范围内。 最邻近法(泰森多边形插值法): 特征:用泰森多边形插值方法得到的结果图变化只发生在边界上,在边界内都是均质的和无变化的。适用于较小的区域内,变量空间变异性也不很明显的情况,同时只有少数缺失值时,对缺失值进行填补。 优点:不需其他前提条件,方法简单,效率高; 缺点:受样本点的影响较大,只考虑距离因素,对其他空间因素和变量所固有的某些规律没有过多地考虑。实际应用中,效果常不十分理想。 自然邻近法: 本质上是对最邻近插值法的一种改进,它对研究区域内各点都赋予一个权重系数,插值时使用邻点的权重平均值决定待估点的权重。每完成一次估值就将新值纳入原样点数据集重新计算泰松多边形并重新赋权重,再对下一待估点进行估值运算。对于由样点数据展面生成栅格数据而言,通过设置栅格大小(cell size)来决定自然邻近插值中的泰森多边形的运行次数n,即,设整个研究区域的面积area,则有:n=area/cell size

相关文档
相关文档 最新文档