文档库 最新最全的文档下载
当前位置:文档库 › 三线摆法测定刚体的转动惯量

三线摆法测定刚体的转动惯量

三线摆法测定刚体的转动惯量
三线摆法测定刚体的转动惯量

三线摆法测定刚体的转动惯量

一、实验简介

转动惯量是刚体转动时惯性的量度,其量值取决于物体的形状、质量、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。对于几何形状简单、质量分布均匀的刚体可以直接用公式计算出它相对于某一确定转轴的转动惯量。对于任意刚体的转动惯量,通常是用实验方法测定出来的。测定刚体转动惯量的方法很多,通常的有三线摆、扭摆、复摆等。

本实验要求学生掌握用三线摆测定物体转动惯量的方法,并验证转动惯量的平行轴定理。

二、实验原理

图1三线摆结构示意图图2下圆盘的扭转振动

1—底座;2—底座上的调平螺丝;3—支杆;4—悬架和支杆连接的固定螺丝;5—悬架;

6—上圆盘悬线的固紧螺丝;7—上圆盘;8—悬线;9—下圆盘;10—待测金属环;

当上、下圆盘水平时,将上圆盘绕竖直的中心轴线转动一个小角度,借助

悬线的张力使悬挂的大圆盘绕中心轴作扭转摆动。同时,下圆盘的质心

O O 1O O 11O

沿着转动轴升降,如上图中右图所示。H 是上、下圆盘中心的垂直距离;h 是下圆盘在振动时上升的高度;α是扭转角。显然,扭转的过程也是圆盘势能与动能的转化过程。扭转的周期与下圆盘(包括置于上面的刚体)的转动惯量有关。

当下圆盘的扭转角α很小时,下圆盘的振动可以看作理想的简谐振动。其势

能和动能分别为:

(1)

(2)

式中是下圆盘的质量,g 为重力加速度,h 为下圆盘在振动时上升的高度,

为圆频率,为下圆盘质心的速度,轴的转动惯量。

若忽略摩擦力的影响,则在重力场中机械能守恒:

(3)

因下圆盘的转动能远大于上下运动的平动能,于是近似有

(4)

又通过计算可得:

(5)

将(5)代入(4)并对t 求导,可得:

(6)

该式为简谐振动方程,可得方程的解为:

(7)

p E k E 0p E m gh =220011()()22k d dh E I m dt dt

α=

+0m ωα

=dt d dt dh 为圆盘对0I O O 1恒量=+??

?

??+??? ??gh m dt dh m dt d 02

02021I 21α恒量=+??

? ??gh m dt d 02

0I 21αH

Rr 2h 2α=ααH I gRr m dt

002

2d -=H

I gRr

m 002=

ω

因振动周期,代入上式得:

故有:

(8)

由此可见,只要准确测出三线摆的有关参数、R 、r 、H 和,就可以精确地求出下圆盘的转动惯量。

如果要测定一个质量为m 的物体的转动惯量,可先测定无负载时下圆盘的转

动惯量,然后将物体放在下圆盘上,并注意,必须让待测物的质心恰好在仪器的转动轴线上。测定整个系统的转动周期,则系统的转动惯量可由下式求出:

(9)

式中为放了待测物之后的上、下圆盘间距,一般可以认为。待测物的转动惯量I 为:

(10)

用这种方法,在满足实验要求的条件下,可以测定任何形状物体的转动惯量。

用三线摆可以验证转动惯量的平行轴定理。物体的转动惯量取决于物体的质

量分布以及相对于转轴的位置。因此,物体的转动惯量随转轴不同而改变,转轴可以通过物体内部,也可以通过物体外部。根据平行轴定理,物体对于任意轴的转动惯量,等于通过此物体以质心为轴的转动惯量加上物体质量m 与两轴间距离d 平方的乘积,写成:

(11)

通过改变待测物体质心与三线摆中心转轴的距离,测量与的关系便可验证转动惯量的平行轴定理。

三、实验内容

ωπ

2T 0=H I gRr

m T 0020

24=

π2

00024m gRr I T H

π=

0m 0T 0I 0I 1T 1I ()2

1

1

2

014I T H gRr m m π+=

1H H H ≈1()[]

2

002102

014I I T m T m m H

gRr I -+=

-=πa I c I 2md I I c a +=a I 2d

1.了解三线摆原理以及有关三线摆实验器材的知识

2.用三线摆测量圆环的转动惯量,并验证平行轴定理

(1)测定仪器常数H、R、r

恰当选择测量仪器和用具,减小测量不确定度。自拟实验步骤,确保三线摆上、下圆盘的水平,使仪器达到最佳测量状态。

(2)测量下圆盘的转动惯量

三线摆上方的小圆盘,使其绕自身转动一个角度,借助线的张力使下圆盘作扭摆运动,而避免产生左右晃动。自己拟定测量下圆盘转动惯量的方法。(3)测量圆环的转动惯量

下圆盘上放上待测圆环,注意使圆环的质心恰好在转动轴上,测量圆环的质量和内、外直径。利用公式求出圆环的转动惯量。

(4)验证平行轴定理

将质量和形状尺寸相同的两金属圆柱体对称地放在下圆盘上。测量圆柱体质心到中心转轴的距离。计算圆柱体的转动惯量。

四、实验仪器

三线摆,米尺,游标卡尺,电子停表等,整体图如下:

五、实验数据

六、思考题

1. 调节三线摆的水平时,是先调节上圆盘水平还是先调节下圆盘水平?

答:先调节上圆盘水平

2.三线摆的振幅受空气的阻尼会逐渐变小,它的周期也会随时间变化吗?

答:不会

3.如何测定任意形状物体对特定轴的转动惯量?

答:可利用平行轴定理,先测定物体绕与特定轴平行的过物体质心的轴的转动惯量J',仪器可用三线摆。

若特定轴与过质心轴的距离为L,则物体绕特定轴转动的转动惯量J=J'+mL^2

三线摆测刚体转动惯量实验报告(带数据)

曲阜师大学实验报告 实验日期:2020.5.24 实验时间:8:30-12:00 :方小柒学号:********** 年级:19级专业:化学类 实验题目:三线摆测刚体转动惯量 一、实验目的: 1.学会用三线摆法测定物体转动惯量原理和方法。 2.学会时间、长度、质量等基本物理量的测量方法以及仪器的水平调节。 二、实验仪器: 三线摆,待测物体(圆环和两个质量和形状相同圆柱),游标卡尺,米尺,电子秒表,水平仪 三、实验原理: 转动惯量是物体转动惯性的量度,物体对某轴的转动惯量越大,则绕该轴转动时,角速度就越难改变。 三线摆装置如图所示,上下两盘调成水平后,两盘圆心在同一垂直线O1O2上。下盘可绕中心轴线O1O2扭转,其扭转周期T和下盘的质量分布有关,当改变下盘的质量分布时,其绕中心轴线O1O2的扭转周期将发生变化。 三线摆就是通过测量它的扭转周期去求任意质量已知物体的转动惯量的。 三摆线示意图 当下盘转动角度θ很小,且略去空气阻力时,悬线伸长不计,扭摆的运动可近似看作简谐运动。根据能量守恒定律和刚体转动定律均可以得出物体绕中心轴OO′的转动惯量: 下盘:J =

下盘+圆环:J1= 圆环:J= J1- J0= (条件:θ≤5°,空气阻力不计,悬线伸长不计,圆环与下盘中心重合) 因此,通过长度、质量和时间的测量,便可求出刚体绕某 轴的转动惯量。 四、实验容: 1.了解三线摆原理以及有关三线摆实验器材的知识。 2.用三线摆测量圆环的转动惯量,并验证平行轴定理 (1)测定仪器常数H、R、r 恰当选择测量仪器和用具,减小测量不确定度。自拟实验步骤,确保三线摆上、下圆盘的水平,是仪器达到最佳测量状态。 (2)测量下圆盘的转动惯量 线摆上方的小圆盘,使其绕自身转动一个角度,借助线的力使下圆盘作扭摆运动,而避免产生左右晃动。自己拟定测量下圆盘转动惯量的方法。 (3)测量圆环的转动惯量 盘上放上待测圆环,注意使圆环的质心恰好在转动轴上,测量圆环的质量和、外直径。利用公式求出圆环的转动惯量。 (4)验证平行轴定理 将质量和形状尺寸相同的两金属圆柱体对称地放在下圆盘上。测量圆柱体质心到中心转轴的距离。计算圆柱体的转动惯量。 五、实验步骤: Ⅰ、流程简述:一、测三线摆空盘的转动惯量: 1.调节仪器:使用水平仪,调整上盘和下盘使它们保持水平。 2.分别测出上盘、下盘的半径r, R,以及两盘之间的高度H。 3.启动振动和测量周期:用秒表测出10次全振动所需的时间,重复5次,计算出平均周期。 4.利用测得周期,带入计算。 5.与圆盘的理论值比较,J 0=m R2/2,求出相对误差。 二、测圆环的转动惯量: 1.把圆环放在下盘中,注意使环的质心恰好在转动轴上,重复以上步骤,测出载有圆环的转动周期,根据公式计算转动惯量。 2.用游标卡尺分别测出圆环的、外半径R和R外,计算理论结果J理论=(R2+ R 外 2)m/2。 3.将实验值和理论值相比较,给出相对误差。 Ⅱ、线上操作:

实验4 用三线摆测定物体的转动惯量

实验4 用三线摆测定物体的转动惯量 [摘要] 转动惯量是表征刚体转动特性的物理量,是刚体转动惯性大小的量度,它与刚体质量的大小、转轴的位置和质量对于转轴的分布等有关。对于形状简单的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量。但对于形状复杂的刚体,用数学方法计算它的转动惯量就非常困难,有时甚至不可能,所以常用实验方法测定。因此,学会测定刚体转动惯量的方法,具有实用意义。测定刚体转动惯量的方法有多种,本实验采用三线扭摆法。 [实验目的、要求] 学会用三线扭摆法测定物体的转动惯量。 [实验原理] 1、定悬盘绕中心轮的转动惯量I。三线摆如 图一所示,有一均匀圆盘,在小于其周界的同心圆 周上作一内接等边三角形,然后从三角形的三个顶 点引出三条金属线,三条金属线同样对称地连接在 置于上部的一个水平小圆盘的下面,小圆盘可以绕 自身的垂直轴转动。当均匀圆盘(以下简称悬盘) 水平,三线等长时,轻轻转动上部小圆盘,由于悬 线的张力作用,悬盘即绕上下圆盘的中心连线轴 00‘周期地反复扭转运动。当悬盘离开平衡位置向 某一方向转动到最大角位移时,整个悬盘的位置也 随着升高h。若取平衡位置的位能为零,则悬盘升 高h时的动能等于零,而位能为: 式中m是悬盘的质量,g是重力加速度。转动的悬盘在达到最大角位移后将向相反的方向转动,当它通过平衡位置时,其位能和平衡动能为零,而转动动能为: 式中I。为悬盘的转动惯量,ω 为悬盘通过平衡位置时的角速度。如果略去摩擦力的影 响,根据机械能守衡定律,E 1=E 2 ,即 mgh(1)若悬盘转动角度很小,可以证明悬盘的角位移与时间的关系可写成: 式中θ是悬盘在时刻t的位移,θ 是悬盘的最大角位移即角振幅,T是周期。

三线摆测量物体的转动惯量实验过程分析和实验数据处理

三线摆测物体的转动惯量 7.预习思考题回答 (1)用三线摆测刚体转动惯量时,为什么必须保持下盘水平? 答:扭摆的运动可近似看作简谐运动,以便公式推导,利用根据能量守恒定律和刚体转动定律均可导出物体绕中心轴的转动惯量公式。 (2)在测量过程中,如下盘出现晃动,对周期有测量有影响吗?如有影响,应如何避免之? 答:有影响。当三线摆在扭动的同时产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差,其误差的大小是与晃动的轨迹以及幅度有关的。 (3)三线摆放上待测物后,其摆动周期是否一定比空盘的转动周期大?为什么? 答:不一定。比如,在验证平行轴定理实验中,d=0,2,4,6cm 时三线摆周期比空盘小;d=8cm 时三线摆周期比空盘大。 理论上,22010002 [()]04x gRr I I I m m T m T H π=-= +-> 所以2 2 000()0m m T m T +->= 〉0/T T > 1<,并不能保证0/1T T >,因此放上待测物后周期不一定变大。 (4)测量圆环的转动惯量时,若圆环的转轴与下盘转轴不重合,对实验结果有何影响? 答:三线摆在扭摆时同时将产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差。 8.数据记录及处理 表 1 待测刚体的有关尺寸数据的记录及简单计算 g(重力加速度)= 9.793 m/s 2 m 0(圆盘) = 380 g m 1(圆环) = 1182 g m 21(圆柱)= 137 g m 22(圆柱)= 137 g x(两圆柱离中心距离)= 4.50 cm

三线摆测转动惯量数据处理

三线摆测转动惯量 1. 实验数据记录: r = = 4.451cm R ==9.336cm H 0= 44.20cm 下盘质量m 0=1022g 待测圆环质量m=370g 圆柱体质量m ’=138g 表1 累积法测周期 表2 长度测量 2.数据处理: 3222232 000222 01022109.80119.33610 4.45110 1.3906 4.6131044 3.141644.2010m gRr I T kg m H π-----??????==?=?????3222232 011 222()(1022370)109.80119.33610 4.45110 1.3756 6.1471044 3.141644.2010m m gRr I T kg m H π-----++??????==?=?????3210 1.53410I I I kg m -=-=?? 322 224321237010()(7.475 5.010)10 1.4981022 m I R R kg m ---?=+=?+?=??理论

3 3 (1.534 1.498)10100%100% 2.4%1.49810 I I E I ----?= ?=?=?理论理论 5223 00 2232 (2')(10222138)9.80119.336 4.45110 1.3442 4.6131044 3.141644.20 8.61010x x m m gRr I T I H kg m π---++?????=-=?-???=?? 22 3243244211'''13810 5.5451013810 1.48210 4.391022 x x I m x m R kg m -----=+=???+????=?? 1 1 '8.610 4.3922100%100% 1.9%' 4.39 x x x x I I E I -?-= ?=?= 1. 三线摆测量物体转动惯量实验中,测量量较多,为了保证测量精度,请学生对于长度量能用游标卡尺测量的就要用游标卡尺测量,比如悬孔间距、圆环内外直径、小圆柱直径、放置小圆柱体两小孔间距等; 2. 在记录圆盘、圆环、圆柱体质量时,要补0保留到小数点后1位,比如圆环上的钢印数字为370,那么在记录圆环的质量时就记为370.0g ,以免减少有效数字。

实验一测量刚体的转动惯量

实验一 测量刚体的转动惯量 转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小和转轴位置。对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。 转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。 【实验目的】 1.学习用恒力矩转动法测定刚体转动惯量的原理和方法。 2.观测转动惯量随质量、质量分布及转动轴线的不同而改变的状况,验证平行轴定理。 3.学会使用智能计时计数器测量时间。 【实验原理】 1、恒力矩转动法测定转动惯量的原理 根据刚体的定轴转动定律: βJ M = (1) 只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。 设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M μ的作用下,实验台将以角加速度β1作匀减速运动,即: 11βμJ M =? (2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为T= m (g - a)。若此时实验台的角加速度为β2,则有a= R β2。细线施加给实验台的力矩为T R= m (g -R β2) R ,此时有: 212)(ββμJ M R R g m =?? (3) 将(2)、(3)两式联立消去M μ后,可得: 1 221)(βββ??=R g mR J (4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有: 3 442)(βββ??=R g mR J (5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为: 123J J J ?= (6) 测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。 2、β的测量 实验中采用智能计时计数器计录遮挡次数和相应的时间。固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计下遮档次数k 和相应的时间t 。若从第一次挡光(k =0,t =0)开始计次,计时,且初始角速度为ω0,则对于匀变速运动中测量得到的任意两组数据(k m ,t m )、(k n ,t n ),相

实验3.1 三线摆法测量物体的转动惯量讲义和表格

实验 三线摆法测量物体的转动惯量 转动惯量是刚体转动惯性大小的量度,是表征刚体特征的一个物理量。转动惯量的大小除与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定轴的转动惯量。但是工程实践中,我们常常碰到大量的形状复杂,且质量分布不均匀刚体,理论计算将极其复杂,通常采用实验方法来测定。 转动惯量的测量,一般都是使刚体以一定的形式运动。通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。测量刚体转动惯量的方法有多种,三线摆法具有设备简单、直观、测试方便的优点。 一.实验目的 1. 学会用三线摆测量物体的转动惯量。 2. 学会用积累放大法测量周期运动的周期。 3. 验证转动惯量的平行轴定理。 二. 实验仪器 DH4601转动惯量测试仪,计时器,圆环,圆柱体,游标卡尺,米尺,水准仪 三. 实验原理 图1是三线摆实验装置的示意图。上、下圆盘均处于水平,悬挂在横梁上。三个对称分布的等长悬线将两圆盘相连。上圆盘固定,下圆盘转动角很小,且略去空气阻力时,扭摆的运动可以近似的看作简谐运动。根据能量守恒定律和刚体的转动定律均可以导出物体绕中心轴OO ’的转动惯量(推导过程见附录): 2 00 2004T H gRr m I π= (1-1) 式中各物理量的含义如下: 0m 为下盘的质量 r 、R 分别为上下悬点离各自圆盘中心的距离 0H 为平衡时上下盘间的垂直距离 0T 为下盘作简谐运动的周期,g 为重力加速度。 将质量为m 的待测圆环放在下盘上,并使待测圆环的转轴与OO ’轴重合。测出此时摆运动的周期1T 和上下圆盘间的垂直距离H 。那么,可以求得待测刚体和下圆盘对中心转轴 图1 三线摆实验示意图

用三线摆测量转动惯量

用三线摆测转动惯量 转动惯量是刚体转动惯性的量度,它与刚体的质量分布和转轴的位置有关。对于形状简单的均匀刚体,测出其外形尺寸和质量,就可以计算其转动惯量。对于形状复杂、质量分布不均匀的刚体,通常利用转动实验来测定其转动惯量。为了便于与理论计算值比较,实验中的被测刚体均采用形状规则的刚体。 一、实验目的 1. 加深对转动惯量概念和平行轴定理等的理解; 2. 了解用三线摆测转动惯量的原理和方法; 3. 掌握周期等量的测量方法 二、实验仪器 DHTC-1A 三线摆实验仪、DHTC-3B 多功能计时器、水准仪、卷尺、游标卡尺、物理天平及待测物体等。 三、实验原理 一、三线摆介绍 图1是三线摆示意图。上、下圆盘 均处于水平,悬挂在横梁上。横梁由立 柱和底座(图中未画出)支承着。三根 对称分布的等长悬线将两圆盘相连。拨 动转动杆就可以使上圆盘小幅度转动, 从而带动下圆盘绕中心轴OO '作扭摆 运动。当下圆盘的摆角θ很小,并且忽 略空气摩擦阻力和悬线扭力的影响时, 根据能量守恒定律或者刚体转动定律都 可以推出下圆盘绕中心轴OO '的转动 惯量0J 为 (1) 式中,m 0为下圆盘的质量;r 和R 分别为上下悬点离各自圆盘中心的距离;H 0为平衡时上下圆盘间的垂直距离;T 0为下圆盘的摆动周期,g 为重力加速度。阿克苏地区的重力加速度为9.8015ms -2。 将质量为m 的待测刚体放在下圆盘上,并使它的质心位于中心轴OO '上。 图1 三线摆示意图 2 00200T H 4gRr m J π=

测出此时的摆动周期T 和上下圆盘间的垂直距离H ,则待测刚体和下圆盘对中心轴的总转动惯量J 1为 2 201T H 4gRr )m m (J π+= (2) 待测刚体对中心轴的转动惯量J 与J 0和J 1的关系为 J= J 1-J 0 (3) 利用三线摆可以验证平行轴定理。平行轴定理指出:如果一刚体对通过质心的某一转轴的转动惯量为J c ,则这刚体对平行于该轴、且相距为d 的另一转轴的转动惯量J x 为 J x =J c +md 2 (4) 式中,m 为刚体的质量。 实验时,将二个同样大小的圆柱体放置在对称 分布于半径为R 1的圆周上的二个孔上,如图2所 示。测出二个圆柱体对中心轴OO '的转动惯量J x 。 如果测得的J x 值与由(4)式右边计算得的结果比 较时的相对误差在测量误差允许的范围内(≤5%), 则平行轴定理得到验证。 四、实验任务 1、用三线摆测定下圆盘对中心轴OO '的转动惯量和圆柱体对其质心轴的 转动惯量。要求测得的圆柱体的转动惯量值与理论计算值(21mr 2 1 J = ,r 1为圆 柱体半径)之间的相对误差不大于5%。 2、用三线摆验证平行轴定理。 五、实验注意事项 1、测量前,根据水准泡的指示,先调整三线摆底座台面的水平,再调整三线摆下圆盘的水平。测量时,摆角θ尽可能小些,以满足小角度近似。防止三线摆在摆动时发生晃动,以免影响测量结果。 2、测量周期时应合理选取摆动次数。对三线摆,测得R 、r 、m 0和H 0后,由(1)式推出J 0的相对误差公式,使误差公式中的2?T 0/ T 0项对?J 0/J 0的影响比其它误差项的影响小作为依据来确定摆动次数。估算时,?m 0取0.02g ,时间测量误差?t 取0.03s ,?R 、?r 和?H 0可根据实际情况确定。 图2 二孔对称分布

三线摆测量物体的转动惯量实验过程分析和实验数据处理

三线摆测量物体的转动惯量实验过程分析和实验数据处理

三线摆测物体的转动惯量 7.预习思考题回答 (1)用三线摆测刚体转动惯量时,为什么必须保持下盘水平? 答:扭摆的运动可近似看作简谐运动,以便公式推导,利用根据能量守恒定律和刚体转动定律均可导出物体绕中心轴的转动惯量公式。 (2)在测量过程中,如下盘出现晃动,对周期有测量有影响吗?如有影响,应如何避免之? 答:有影响。当三线摆在扭动的同时产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差,其误差的大小是与晃动的轨迹以及幅度有关的。 (3)三线摆放上待测物后,其摆动周期是否一定比空盘的转动周期大?为什么? 答:不一定。比如,在验证平行轴定理实验中,d=0,2,4,6cm 时三线摆周期比空盘小;d=8cm 时三线摆周期比空盘大。 理论上,22010002 [()]04x gRr I I I m m T m T H π=-= +-> 所以2 2 000()0m m T m T +->=〉000//()T T m m m >+ 00/()1m m m +<,并不能保证0/1T T >,因此放上待测物后周期不一定变大。 (4)测量圆环的转动惯量时,若圆环的转轴与下盘转轴不重合,对实验结果有何影响? 答:三线摆在扭摆时同时将产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差。 8.数据记录及处理 g(重力加速度)= 9.793 m/s 2 m 0(圆盘) = 380 g m 1(圆环) = 1182 g m 21(圆柱)= 137 g m 22(圆柱)= 137 g x(两圆柱离中心距离)= 4.50 cm

《用三线摆法测定物体的转动惯量》简明实验报告

《用三线摆法测定物体的转动惯量》的示范报告 一、教学目的: 1、学会用三线摆测定物体圆环的转动惯量; 2、学会用累积放大法测量周期运动的周期; 4、学习运用表格法处理原始数据,进一步学习和巩固完整地表示测量结果; 5、学会定量的分析误差和讨论实验结果。 二、实验仪器: 1.FB210型三线摆转动惯量测定仪 2.米尺、游标卡尺、水平仪、小纸片、胶带 3.物理天平、砝码块、各种形状的待铁块 三、实验原理 通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 四、实验内容 1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量。 2.用三线摆验证平行轴定理。实验步骤要点如下: (1)调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三个旋钮,改变三悬线的长度,直至下盘水平。 (2)测量空盘绕中心轴OO?转动的运动周期T0:设定计时次数,方法为按“置数”键后,再按“下调”或“上调”键至所需的次数,再按“置数”键确定。轻轻转动上盘,带动下盘转动,这样可以避免三线摆在作扭摆运动时发生晃动。注意扭摆的转角控制在5o左右,摆动数次后,按测试仪上的“执行”键,光电门开始计数(灯闪)到给定的次数后,灯停止闪烁,此时测试仪显示的计数为总的时间,从而摆动周期为总时间除以摆动次数。进行下一次测量时,测试仪先按“返回”键。 (3)测出待测圆环与下盘共同转动的周期T1:将待测圆环置于下盘上,注意使两者中心重合,按同样的方法测出它们一起运动的周期T 1。 (4)测出上下圆盘三悬点之间的距离a和b,然后算出悬点到中心的距离r和R(等边三角形外接圆半径) (5)其它物理量的测量:用米尺测出两圆盘之间的垂直距离H0和放置两小圆柱体小孔间距2x;用游标卡尺测出待测圆环的内、外直径2R1、2R2。 (6)用物理天平测量圆环的质量。 五、实验数据记录与处理: 1.实验数据记录

实验2 刚体转动惯量的测定

实验2 刚体转动惯量的测量 [预习思考题] 1.实验中的刚体转动惯量实验仪是由哪几部分组成的? 2.实验中可以通过什么方法改变转动力矩? 3.实验中刚体转动过程的角加速度如何测得? 转动惯量是描述刚体转动中惯性大小的物理量,对于绕定轴转动的刚体,它为一恒量,以J表示,即 ∑= i i i r m J2 式中,m i为刚体上各个质点的质量,r i为各个质点至转轴的距离。由此可见,物体的转动惯量J与刚体的总质量、质量分布及转轴的位置有关。对于几何形状规则、对称和质量分布均匀的刚体,可以通过积分直接计算出它绕某定轴的转动惯量。对于形状复杂或非匀质的任意物体,则一般要通过实验来测定,例如,机械零件、电机的转子、炮弹等。 测定物体的转动惯量有多种实验方法,主要分为扭摆法和恒力矩转动法两类。本实验介绍用塔轮式转动惯量仪测定的方法,是使塔轮以一定形式旋转,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。该方法属于恒力矩转动法。 转动惯量是研究、设计、控制转动物体运动规律的重要参数,实验测定刚体的转动惯量具有十分重要的意义,是高校理工科物理实验教学大纲中的一个重要基本实验。 一、实验目的 1.学习用转动惯量仪测定刚体的转动惯量。 2.研究作用于刚体上的外力矩与角加速度的关系。 3.验证转动定律及平行轴定理。 二、实验仪器 IM-2刚体转动惯量实验仪及其附件(霍尔开关传感器、砝码等)和MS-1型多功能数字毫秒仪。 三、仪器介绍

1.滑轮 2.滑轮高度和方向调节组件 3.挂线 4.塔轮组 5.铝质圆盘承物台 6.样品固定螺母 7.砝码 8.磁钢 9.霍尔开关传感器 10.传感器固定架 11.实验样品水平调节旋钮(共3个) 12.毫秒仪次数预置拨码开关,可预设1-64次 13.次数显示屏 14.时间显示屏 l5.次数+1查阅键 16.毫秒仪复位键 17.+5V 电源接线柱 18.电源GND (地)接线柱 19.INPUT 输入接线柱 20.输入低电平指示 21.次数-1查阅键 图4-3-1 IM-2刚体转动惯量实验仪和MS -1型多功能数字毫秒仪结构示意图 IM-2刚体转动惯量实验仪主要由绕竖直轴转动的铝质圆盘承物台、绕线塔轮、霍尔开关传感器、磁钢、滑轮组件、砝码等组成。 样品放置在铝质圆盘承物台上,承物台上有许多圆孔,可用于改变样品的转轴位置。绕线塔轮是倒置的塔式轮,分为四层,自上往下半径分别为3cm 、2.5cm 、2cm 、1.5cm 。磁钢随转动系统转动,每半圈经过霍尔开关传感器一次,传感器输出低电平,通过连线送到多功能数字毫秒仪。传感器红线接毫秒仪+5V 电源接线柱,黑线接电源GND (地)接线柱,黄线接INPUT 输入接线柱。 MS -1型多功能数字毫秒仪通过预置拨码开关预置实验所需感应次数。每轮实验开始前通过复位键清0,直到输入低电平信号触发计时开始,次数显示屏从0次开始计时,直至达到预置次数停止。计时停止后,方能查阅各次感应时间。 四、实验原理 1. 任意样品的转动惯量测定 设转动惯量仪空载(不加任何样品)时的转动惯量为J 1,称为系统的本底转动惯量,转动惯量仪负载(加上样品)时的转动惯量为J 2,根据转动惯量的可加性,则样品的转动惯量J x 为 21x J J J =- 2. 系统的转动惯量测定 1)刚体的转动定律 刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比,这个关系称为刚体的转动定律。 M J β= 利用转动定律,测得刚体转动时的合外力矩及该力矩作用下的角加速度,则可计算

大学物理实验《用三线摆测量刚体的转动惯量》

图1三线摆实验装置示意图 图2 三线摆原理图 实验七 用三线摆测量刚体的转动惯量 【实验目的】 1. 学会正确测量长度、质量和时间。 2. 学习用三线摆测量圆盘和圆环绕对称轴的转动惯量。 【实验器材】 三线摆仪、米尺、游标卡尺、数字毫秒计、气泡水平仪、物理天平和待测圆环等。 【实验原理】 转动惯量是刚体转动时惯性大小的量度,它与刚体的质量分布和转轴的位置有关。对于质量分布均匀、外形不复杂的刚体,测出其外形尺寸及质量,就可以计算出其转动惯量;而对于外形复杂、质量分布不均匀的刚体,其转动惯量就难以计算,通常利用转动实验来测定。三线摆就是测量刚体转动惯量的基本方法之一。 图1是三线摆实验装置示意图。三线摆是由上、下两个匀质圆盘,用三条等长的摆线(摆线为不易拉伸的细线)连接而成。上、下圆盘的系线点构成等边三角形,下盘处于悬挂状态,并可绕OO ‘ 轴线作扭转摆动,称为摆盘。由于三线摆的摆动周期与摆盘的转动惯量有一定关 系,所以把待测样品放在摆盘上后,三线摆系统的摆动周期就要相应的随之改变。这样,根据摆动周期、摆动质量以及有关的参量,就能求出摆盘系统的转动惯量。 设下圆盘质量为0m ,当它绕OO ' 扭转的最大角位移为o θ时,圆盘的中心位置升高h ,这时 圆盘的动能全部转变为重力势能,有: gh m E P 0= (g 为重力加速度)

当下盘重新回到平衡位置时,重心降到最低点,这时最大角速度为0ω,重力势能被全部转变为动能,有: 2002 1ωI E K = 式中0I 是下圆盘对于通过其重心且垂直于盘面的OO ‘ 轴的转动惯量。 如果忽略摩擦力,根据机械能守恒定律可得: 20002 1ωI gh m = (1) 设悬线长度为l ,下圆盘悬线距圆心为R 0,当下圆盘转过一角度0θ时,从上圆盘B 点作下圆盘垂线,与升高h 前、后下圆盘分别交于C 和C 1,如图2所示,则: 1 2 !21)()(BC BC BC BC BC BC h +-= -= 因为 2 2 2 2 2 )()()()(r R AC AB BC --=-= 所以 1 2 102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-= θθ 在扭转角0θ很小,摆长l 很长时,sin 2 2 θθ≈ ,而BC+BC 1≈2H ,其中 H=2 2)(r R l -- 式中H 为上下两盘之间的垂直距离,则 H Rr h 220θ= (2) 由于下盘的扭转角度0θ很小(一般在5度以内),摆动可看作是简谐振动。则圆盘的角位移与时间的关系是 t T 0 02sin π θθ= 式中,θ 是圆盘在时间t 时的角位移,0θ是角振幅,0T 是振动周期,若认为振动初位相是零,则角速度为: )cos 2()()()(022********θRr r R C A B A BC -+-=-=

刚体转动惯量的测定-样本

第一章 刚体转动惯量的测定 刚体的转动惯量是描述刚体转动惯性大小的物理量,转动惯量不仅取决于刚体的总质量,还与刚体的形状、质量分布以及转轴位置有关。对于质量分布均匀、具有规则几何形状的刚体,可以通过数学方法计算出它绕给定转动轴的转动惯量。对于质量分布不均匀、没有规则几何形状的刚体,通常采用实验的方法来进行测定。在生物医学工程方面利用转动惯性混合或分离混合液具有十分重要的意义。 实验上测定刚体转动惯量的方法很多,如三线摆法、扭摆法、复摆法、恒力矩转动法等。本实验采用恒力矩转动法测定转动惯量。 一. 实验目的 1. 掌握恒力矩转动法测定刚体转动惯量的原理和方法; 2. 观测转动惯量随刚体质量、质量分布以及转轴的不同而改变的状况; 3. 研究外力矩与刚体角加速度的关系,验证刚体转动定律和平行轴定理。 二. 实验器材 ZKY-WZS 刚体转动惯量试验仪,圆盘1个、圆环1个、圆柱2个,砝码托1个,5g 砝码1个,10g 砝码4个,细线,水准器,螺丝刀,钢卷尺1个,游标卡尺1把,数字天平1台公用。 三. 实验原理 1. 恒力矩转动法测定转动惯量 根据刚体的定轴转动定律:刚体绕定轴转动时,刚体的角加速度α与它所受的合外力矩M 成正比,与刚体的转动惯量J 成反比: M J α= (1) 只要测定刚体在转动时所受的合外力矩M 及在该力矩作用下刚体转动的角加速度α,就可以计算出该刚体的转动惯量J 。 设空载物盘转动惯量为1J ,给一初始角速度,在摩擦力矩M μ的作用下,载物盘将以角加速度1α作减速运动,这里近似取摩擦力与速度成正比关系,则有: 211M kv r kr K J μωωα=?===? (2) 式中ω、α为即时角速度、角加速度,在下面实验中取平均值。 将质量为m 的砝码用细线绕在半径为R 的载物盘塔轮上,让砝码下落,系统在恒外力矩作用下将作加速运动。若砝码的加速度为a ,则细线所受张力为()T m g a =?。设此时载物盘的角加速度为2α,则有2a R α=。细线施加给载物盘的力矩为 2()M TR mR g R α==? (3) 此时合力矩有: 2212()M M mR g R kr J μαωα?=??= (4) 当(2)、(4)两式中角速度ω相等可联立消去M μ,可得载物盘转动惯量:

刚体转动惯量的测定_实验报告

实验三刚体转动惯量的测定 转动惯量是刚体转动中惯性大小的量度。它与刚体的质量、形状大小和转轴的位置有关。形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。 实验目的: 1、理解并掌握根据转动定律测转动惯量的方法; 2、熟悉电子毫秒计的使用。 实验仪器: 刚体转动惯量实验仪、通用电脑式毫秒计。 仪器描述: 刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。塔轮上有五个不同半径(r)的绕线轮。砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。 实验原理: 空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1: J1 = J –J o (1) 由刚体的转动定律可知:

T r – M r = J α (2) 其中M r 为摩擦力矩。 而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o 未加试件,未加外力(m=0 , T=0) 令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2 m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得 J o = 21 2212mr mgr ααααα--- (6) 测出α1 , α2,由(6)式即可得J o 。 2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8) ∴ J = 23 4434mr mgr ααααα--- (9) 注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。 3. 测量的原理 设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 2 2 1t α (10) 测得与θ1 , θ2相应的时间t 1 , t 2 由 θ1=ωo t 1 + 2121t α (11) θ2=ωo t 2 + 2 22 1t α (12) 得 22112 22112) (2t t t t t t --= θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2) ∴ []2 2 11222112)1()1(2t t t t t k t k ----= πα (14) k 的取值不局限于固定的k 1 , k 2两个,一般取k =1 , 2 , 3 , …,30,…

《用三线摆法测定物体的转动惯量》简明实验报告.

4π 2 H 《用三线摆法测定物体的转动惯量》的示范报告 一、教学目的: 1、学会用三线摆测定物体圆环的转动惯量; 2、学会用累积放大法测量周期运动的周期; 4、学习运用表格法处理原始数据,进一步学习和巩固完整地表示测量结果; 5、学会定量的分析误差和讨论实验结果。 二、实验仪器: 1.FB210 型三线摆转动惯量测定仪 2.米尺、游标卡尺、水平仪、小纸片、胶带 3.物理天平、砝码块、各种形状的待铁块 三、实验原理 gRr J = J - J = [(m + m )T 2 - m T 2 ] 1 0 0 1 0 0 通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 四、实验内容 1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量。 2.用三线摆验证平行轴定理。实验步骤要点如下: (1) 调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三个旋钮,改变三悬线的长 度,直至下盘水平。 (2) 测量空盘绕中心轴 OO 转动的运动周期 T 0:设定计时次数,方法为按“置数”键后,再按“下调”或“上 调”键至所需的次数,再按“置数”键确定。轻轻转动上盘,带动下盘转动,这样可以避免三线摆在作扭摆运 动时发生晃动。注意扭摆的转角控制在 5o 左右,摆动数次后,按测试仪上的“执行”键,光电门开始计数(灯 闪)到给定的次数后,灯停止闪烁,此时测试仪显示的计数为总的时间 ,从而摆动周期为总时间除以摆动 次数。进行下一次测量时,测试仪先按“返回”键。 (3) 测出待测圆环与下盘共同转动的周期 T 1:将待测圆环置于下盘上,注意使两者中心重合,按同样 的方法测出它们一起运动的周期 T 1。 (4) 测出上下圆盘三悬点之间的距离 a 和 b ,然后算出悬点到中心的距离 r 和 R (等边三角形外接圆半 径) (5) 其它物理量的测量:用米尺测出两圆盘之间的垂直距离 H 0 和放置两小圆柱体小孔间距 2x ;用游标 卡尺测出待测圆环的内、外直径 2R 1、2R 2。 (6) 用物理天平测量圆环的质量。 五、实验数据记录与处理: 1.实验数据记录 r = 3 a = 3.870 ± 0.002 cm , R = 3 b = 7.150 ± 0.002 cm 3 3 H 0 = 54.60 ± 0.05 cm , 下盘质量 m 0 =499.68 ± 0.10 g 待测圆环质量 m =192.260 ± 0.020 g 累积法测周期数据记录参考表格 下盘 下盘加圆环 摆动 50 次 所需 时间 50T (s ) 1 2 3 4 5 平均 71.68 72.06 71.88 71.65 71.62 71.78 1 2 3 4 5 平均 74.28 74.16 74.15 74.22 74.13 74.19 周 期 T 0=1.44 ± 0.01 s T 1= 1.48±0.01 s

三线摆法测定物体的转动惯量

三线摆法测定物体的转动惯量 加灰色底纹部分是预习报告必写部分 一、调整三线摆装置 (1)调整底座水平。 (2)调整下盘水平。 (3)调整底板左上方的光电传感接收装置,使下圆盘边上的挡光杆能自由往返通过光电门槽口。 二、测量周期0T 和1T 、x T (1)接通FB213型数显计数计时毫秒仪的电源,预置20次(N )。 (2)拨动上圆盘的“转动手柄”,带动下圆盘绕中心轴'OO 作微小扭摆运动。摆动稳定

后,按毫秒仪上的“执行”键,开始计时,计时结束,毫秒仪显示出累计20个(N 个)周期的时间。重复以上测量5次,将数据记录到表1中。 (3)将圆环放在下圆盘上,使两者的中心轴线相重叠,按(2)的方法测定摆动周期1T 。 (4)将二小圆柱体对称放置在下圆盘上,用上述同样的方法测定周期x T 。 (5)测出上下圆盘三悬点之间的距离a 和b ,然后算出悬点到中心的距离r 和R 。 (6)其它物理量的测量: 【 数 据 与 结 果】 == a r 33 == b R 3 3 下盘质量=0m 待测圆环质量=m 圆柱体质量=m' =0H 1.根据以上数据,求出以下值 待测圆环的实验值:])[(42002102 01T m T m m H gRr I I I -+=-=π实验 待测圆环的理论值 :)(2 2221R R m I +=理论 圆环的百分比:%100I I ?-= 理论 理论 实验I E 平行轴定理实验值:??????-+=02204)'2(21I T H gRr m m I x x π实验, 平行轴定理理论值:22 2 1 x m'R m'x I +=理论; 平行轴百分比:%100I I ?-= 理论 理论 实验I E

大学物理实验用三线摆测量刚体的转动惯量

大学物理实验用三线摆测量刚体的转动惯量 Prepared on 22 November 2020

图1三线摆实验装置示意图 图2 三线摆原理图 实验七 用三线摆测量刚体的转动惯量 【实验目的】 1. 学会正确测量长度、质量和时间。 2. 学习用三线摆测量圆盘和圆环绕对称轴的转动惯量。 【实验器材】 三线摆仪、米尺、游标卡尺、数字毫秒计、气泡水平仪、物理天平和待测圆环等。 【实验原理】 转动惯量是刚体转动时惯性大小的量度,它与刚体的质量分布和转轴的位置有关。对于质量分布均匀、外形不复杂的刚体,测出其外形尺寸及质量,就可以计算出其转动惯量;而对于外形复杂、质量分布不均匀的刚体,其转动惯量就难以计算,通常利用转动实验来测定。三线摆就是测量刚体转动惯量的基本方法之一。 图1是三线摆实验装置示意图。三线摆是由上、下两个匀质圆盘,用三条等长的摆线(摆线为不易拉伸的细线)连接而成。上、下圆盘的系线点构成等边三角形,下盘处 于悬挂状态,并可绕OO ‘轴线作扭转摆动,称为摆盘。由于三线摆的摆动周期与摆盘的

转动惯量有一定关系,所以把待测样品放在摆盘上后,三线摆系统的摆动周期就要相应的随之改变。这样,根据摆动周期、摆动质量以及有关的参量,就能求出摆盘系统的转动惯量。 设下圆盘质量为0m ,当它绕OO '扭转的最大角位移为o θ时,圆盘的中心位置升高h ,这时圆盘的动能全部转变为重力势能,有: gh m E P 0= (g 为重力加速度) 当下盘重新回到平衡位置时,重心降到最低点,这时最大角速度为0ω,重力势能被全部转变为动能,有: 式中0I 是下圆盘对于通过其重心且垂直于盘面的OO ‘轴的转动惯量。 如果忽略摩擦力,根据机械能守恒定律可得: 20002 1ωI gh m = (1) 设悬线长度为l ,下圆盘悬线距圆心为R 0,当下圆盘转过一角度0θ时,从上圆盘B 点作下圆盘垂线,与升高h 前、后下圆盘分别交于C 和C 1,如图2所示,则: 因为 22222)()()()(r R AC AB BC --=-= 所以 1 2 102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-= θθ 在扭转角0θ很小,摆长l 很长时,sin 2 2 θθ≈ ,而BC+BC 12H ,其中 H=22)(r R l -- 式中H 为上下两盘之间的垂直距离,则 H Rr h 220θ= (2) 由于下盘的扭转角度0θ很小(一般在5度以内),摆动可看作是简谐振动。则圆盘的角位移与时间的关系是

实验七 用三线摆法测定物体的转动惯量

实验七 用三线摆法测定物体的转动惯量 转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。转动惯量的大小除与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。如果刚体形状简单,且质量分布均匀,可直接计算出它绕特定轴的转动惯量。但在工程实践中,我们常碰到大量形状复杂、且质量分布不均匀刚体,理论计算将极为复杂,通常采用实验方法来测定。 转动惯量的测量,一般都是使刚体以一定的形式运动。通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。测量刚体转动惯量的方法有多种,三线摆法是具有较好物理思想的实验方法,它具有设备简单、直观、测试方便等优点。 一 实 验 目 的 (1)学会用三线摆测定物体的转动惯量。 (2)学会用秒表测量周期运动的周期。 (3)验证转动惯量的平行轴定理。 二 实 验 原 理 图1是三线摆实验装置的示意图。上、下圆盘均处于水平,悬挂在横梁上。三个对称分布的等长悬线将两圆盘相连。上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴O O '的转动惯量(推导过程见本实验附录)。 2 2 004T H gRr m I π= (1) 式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别为上下悬点离各自圆盘中心的距离;0 H 为平衡时上下盘间的垂直距离;T 0为下盘作简谐运动的周期,g 为重力加速度(在杭州地区g =9.793m/s 2 )。 将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与O O '轴重合。测出此时下盘运动周期1T 和上下圆盘间的垂直距离H 。同理可求得待测刚体和下圆盘对中心转轴O O '轴的总转动惯量为: 2 1 2 014)(T H gRr m m I π+= (2) 如不计因重量变化而引起的悬线伸长, 则有0 H H ≈。那么,待测物体绕中心轴O O '的转动惯量为: ])[(42 002 102 01T m T m m H gRr I I I -+π= -= (3) 因此,通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 用三线摆法还可以验证平行轴定理。若质量为m 的物体绕过其质心轴的转动惯量为c I ,当转轴平行移动距离x 时(如图2所示),则此物体对新轴O O '的转动惯量为2 ' mx I I c oo +=。这一结论称为转动惯量的平行轴定理。 实验时将质量均为m',形状和质量分布完全相同的两个圆柱体对称地放置在下圆盘上(下盘有对称的两排小孔)。按同样的方法,测出两小圆柱体和下盘绕中心轴O O '的转动周期x T ,则可求出每个柱体对中心转轴O O '的转动惯量: ?? ? ???-π+= 022 04)'2(21I T H gRr m m I x x (4) 如果测出小圆柱中心与下圆盘中心之间的距离x 以及小圆柱体的半径x R ,则由平行轴定理可求得 2 2 2 1x x m'R m'x I'+ = (5) 比较x I 与x I'的大小,可验证平行轴定理。 三 实 验 仪 器 三线摆(包含米尺、游标卡尺、物理天平以及待测物体)和秒表。 四 实 验 内 容 1.测定圆环对通过其质心且垂直于环面轴的转动惯量 (1)调整底座水平:调整底座上的三个螺钉旋钮,直至底板上水准仪中的水泡位于正中间。 (2)调整下盘水平:调整上圆盘上的三个旋钮(调整悬线的长度),改变三悬线的长度,直至下盘水 图1 三线摆实验装置图

测量刚体的转动惯量实验报告及数据处理

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小 和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组 砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB=

总误差:,ux= m ,u rx==% R=± urx=% 计算转动惯量的结果表示: ,总误差:uJ=,相对不确定=uJ/J 圆环:,同上. (2)实验测量计算的误差: 根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,

相关文档
相关文档 最新文档