文档库 最新最全的文档下载
当前位置:文档库 › 材料力学习题第6章

材料力学习题第6章

材料力学习题第6章
材料力学习题第6章

材料力学习题

第6章

6-1作图示各杆的扭矩图。

6-2如图,轴的转速为450rpm,最大切应力为45MPa,试求轴传递的功率。

6-3画出各杆横截面上的切应力分布图。

6-4直径50mm的圆轴,扭矩2.15kN·m,求在距离横截面中心10mm处的切应力,并求横截面上最大切应力。

6-5实心轴和空心轴通过牙嵌式离合器连接在一起,已知轴的转速n=100rpm,传递功率P=7.5KW,最大切应力为40MPa,试选择实心轴直径d1和内外径之比为1/2的空心轴外径D2。

6-6用横截面ABE,CDF和包含轴线的纵向面ABCD从受扭圆轴(图a)中截出一部分如图b所示,根据切应力互等定理,纵向截面上的切应力τ′将产生一个力偶矩,试问这个力偶矩与这一截出部分上的哪个力偶矩平衡?

6-7 直径50mm的钢圆轴,其横截面上的扭矩T=1.5KN·m,求横截面上的最大切应力。

6-8圆轴的直径d= 50mm ,转速为120rpm ,若该轴横截面上的最大切应力等于60MPa ,问所传递的功率是多少kW?

6-9圆轴的粗段外径为100mm ,内径为80mm ,细段直径为80mm ,在轮A处由电动机带动,输入功率P1=150kW,在轮B ,C处分别负载P2=75kW,P3=75kW ,已知轴的转速为300rpm。

1)作扭矩图;

2)求该空心轴及实心轴的最大切应力。

6-10一直径为d=50mm的圆轴,其两端受力矩为1kN·m的外力偶作用而发生扭转,轴材料的切变模量G=8 ×104MPa.试求:1.横截面上ρA=d/4处的切应力和切应变;2. 最大切应力和和单位长度扭转角。

6-11材料相同的一根空心圆轴和一根实心圆轴.它们的横截面面积相同,扭矩相同,试分别比较这两根轴的最大切应力和单位长度扭转角。

6-12一电机轴的直径d= 40mm ,转速n=1400rpm ,功率为30kW ,.切变模量G=8×104MPa。试求此轴的最大切应力和单位长度扭转角。

6-13空心圆轴的外径D=100mm ,内径d=50mm ,已知间距为L=2.7m的两横截面的相对扭转角Ф=1.8°,材料的切变模量G = 80GPa ,求:1.轴内最大切应力;2.当轴以n=80rpm的速度旋转时,轴传递的功率。

6-14全长为L,两端面直径分别为d1,d2的圆锥形杆,其两端各受一矩为M的集中力偶作用,试求杆的总扭转角。

6-15 一根轴转速360rpm,传递功率150kW,切变模量80GPa,设计其直径,使切应力不超过50MPa,并且在2.5m长度内扭转角不超过3°。

6-16图示矩形截面杆受M=3kN·m的一对外力偶作用,材料的切变模量G=80GPa。求:1.杆内最大切应力的大小,位置和方向;2.横截面短边中点的切应力;3.单位长度扭转角。

6-17图示一个T形薄壁截面杆,长L=2m,在两端受扭转力偶作用,杆的扭矩为T=0.2kN·m,材料的切变模量 G=8×104MPa求此杆在自由扭转时的最大切应力及扭转角。

6-18图示一等厚闭口薄壁杆,两端受扭转力偶作用,杆的最大切应力为60MPa.求:1.确定其扭转力偶矩;2.若在杆上沿母线切开一条缝,试问开口后扭转力偶矩是多少?

材料力学第六章复习题

材料力学第六章复习题

————————————————————————————————作者:————————————————————————————————日期: 1

1 第六章 弯曲应力 1.图示梁的材料为铸铁,截面形式有四种如图: 最佳形式为 。 2.为了提高梁的承载能力,对同一梁、相同的均布载荷q ,下列哪一种支承条件下,梁的强度最好: 正确答案是 。 3.设计钢梁时,宜采用中性轴为( )的截面;设计铸铁梁时,宜采用中性轴为( )的截面。 正确答案是 。 (A) 对称轴 (B) 偏于受拉边的非对称轴 (C) 偏于受压边的非对称轴 (D) 对称或非对称轴 4.梁在弯曲时,横截面上正应力沿高度是按 分布的;中性轴上的正应力为 ; 矩形截面梁横截面上剪应力沿高度是按 分布的,中性轴上的剪应力为 。 5.矩形截面梁若 max Q 、m ax M 和截面宽度b 不变, 而将高度增加一倍,则最大弯曲正应力为原来的 倍,最大弯曲剪应力为原来的 倍。 6.图示正方形截面简支梁,若载荷不变, 而将边长增加一倍,其则最大弯曲正应力为原来的 倍, 最大弯曲剪应力为原来的 倍。 q (((( ( q l ( q l l 3l ( q l l l ( q l q l a a

1 7.下图所示的梁跨中截面上A 、B 两点的应力A σ= ; A τ= ; B τ= 。 8.图示T 字形截面梁。若已知A —A 截面上、下表面处沿x 方向的线应变分别是 0004.0-='ε, 0002.0=''ε,则此截面中性轴位置=c y h (C 为形心) 9.铸铁丁字形截面梁的许用应力分别为:许用拉应力 [ t σ] = 50MPa ,许用压应力[ c σ ] = 200 MPa 。则 上下边缘距中性轴的合理比值为 21/y y 为多少?(C 为形心) 10.⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。若材料的拉伸许用应力[]MPa l 40=σ,压缩许用应 力 []MPa c 160=σ,截面对形心轴z c 的惯性矩410180cm zc =I ,cm h 64.91=,试计算该 梁的许可载荷P 。 11.正方形截面简支梁,受有均布载荷作用如图,若[σ ] = 6 [ τ ] ,证明当梁内最大正应力和最大剪应力同 时达到许用应力时,l / a = 6 0.l l q B A 0. z c z y 1 y 2 C P P A A εε x y y h A-z C P B 2P 1400 C A 600 y c z c 50 150 C 50

工程力学--材料力学(北京科大、东北大学版)第4版第七章习题答案

工程力学--材料力学(北京科大、东北大学版)第4版第七章习题答案

第七章 习题 7-1 直径d=2cm的拉伸试件,当与杆轴成斜截面上的切应力 时,杆表面上将出现滑移线。求此时试件的拉力P。 7-2在拉杆的某一斜截面上,正应力为,切应力为。试求最 大正应力和最大切应力。 7-3 已知应力状态如图a、b、c所示,求指定斜截面ab上的应力,并画在单元体上。 7-4已知应力状态如图a、b、c所示,求指定斜截面ab上的应力,并画在单元体上。 7-5求图示各单元体的三个主应力,最大切应力和它们的作用面方位,并画在单元体图上。 7-6 已知一点为平面应力状态,过该点两平面上的应力如图所示,求及 主应力、主方向和最大切应力。

7-7 一圆轴受力如图所示,已知固定端横截面上的最大弯曲应力为 40MPa,最大扭转切应力为30 Mpa,因剪力而引起的最大切 应力为6kPa. (1)用单元体画出在A、B、C、D各点处的应力状态;(2)求A点的主应力和最大切应力以及它们的作用面的方位。 7-8 求图示各应力状态的主应力、最大切应力以及它们的作用面的方位。 7-9 设地层为石灰岩,波松比,单位体积重。试计 算离地面400m深处的压应力。

7-10 图示一钢制圆截面轴,直径d=60mm,材料的弹性模量E=210Gpa。 波松比,用电测法测得A点与水平面成方向 的线应变,求轴受的外力偶矩m。 7-11 列车通过钢桥时,在大梁侧表面某点测得x和y向的线应变 ,材料的弹性模量E=200Gpa, 波松比,求该点x、y面的正应力和。 7-12 铸铁薄壁管如图所示,管的外直径D=200mm,壁厚t=15mm,内压p=4MPa,轴向压力P=200Kn,许用应力,波 松比,试用第二强度理论校核该管的强度。

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学习题第六章应力状态答案详解.

第6章 应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是(A )。 20 (MPa ) 20 d (A )a 点;(B )b 点;(C )c 点;(D )d 点 。 2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。 (A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。 3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。 (A )AC AC /2,0ττσ== ; (B )AC AC /2,/2ττ σ==; (C )AC AC /2,/2 ττσ==;(D )AC AC /2,/2ττσ=-=。 4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关于它们的正确性,现有四种答案,正确答案是( D )。

(b) (a) (A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的; (C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。 5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是(D )。 τ (a) (b) (c) (A )三种应力状态均相同;(B)三种应力状态均不同; (C)(b)和(c)相同;(D)(a )和(c)相同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是(B )。 (A) (B) (D) (C) 解答: max τ发生在 1 σ成45的斜截面上 7、广义胡克定律适用范围,有下列四种答案,正确答案是(C )。 (A)脆性材料;(B)塑性材料; (C)材料为各向同性,且处于线弹性范围内;(D)任何材料; 8、三个弹性常数之间的关系:/[2(1)] G E v =+适用于(C )。 (A)任何材料在任何变形阶级;(B)各向同性材料在任何变形阶级; (C)各向同性材料应力在比例极限范围内;(D)任何材料在弹性变形范围内。

材料力学习题册答案-第2章-拉压

第二章 轴向拉压 一、 选择题 1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) A.平动 B.转动 C.不动 D.平动加转动 2.轴向拉伸细长杆件如图2所示,则正确的说法是 ( C ) A.1-1、2-2面上应力皆均匀分布 B.1-1、2-2面上应力皆非均匀分布 C. 1-1面上应力非均匀分布,2-2面上应力均匀分布 D.1-1 面上应力均匀分布,2-2面上应力非均匀分布 F P P 1 1 2 2 图1 图2 3.有A 、B 、C 三种材料,其拉伸应力-应变实验曲线如图3所示,曲线( B )材料的弹性模量E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。 A B C 图3 ε σ B A C 图4 p α h b a 图5 4.材料经过冷却硬化后,其( D )。 A .弹性模量提高,塑性降低 B .弹性模量降低,塑性提高 C .比利极限提高,塑性提高 D .比例极限提高,塑性降低 5.现有钢铸铁两种杆件,其直径相同。从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A )。 A .1杆为钢,2 杆为铸铁 B .1杆为铸铁,2杆为钢 C .2杆均为钢 D .2杆均为铸铁 6.如图5所示木接头,水平杆与斜杆成角,其挤压面积A 为( A )。 A .bh B .bh tg C .bh/cos D .bh/(cos -sin ) 7.如图6所示两板用圆锥销钉联接,则圆锥销钉的受剪面积为( C ),计算挤压面积为 ( D ) A . B . C . D (3d+D )

二、填空题 1.直径为d 的圆柱体放在直径为D =3d ,厚为t 的圆基座上,如图7所示低级对基座的支反力均匀分布,圆柱承受轴向压力P ,则基座剪切面的剪力 。 F F h h D d 图6 P d t D 图7 2.判断剪切面和挤压面应注意的是:剪切面是构件的两部分有发生 相对错动 趋势的平面;挤压面是构件 相互挤压 的表面。 三、试画下列杆件的轴力图 2 3 1 1 2 F F F F 3 + -解: 2KN 1 1 2 2 3 3 18KN 3KN 25KN 10KN + -15KN 10KN 解: 四、计算题 1.作出图示等截面直杆的轴力图,其横截面积为,指出最大正应力发生的截面,并计 算相应的应力值。 4KN 10KN 11KN 5KN A B C D 解:+ + -轴力图如下: 4KN 5KN

材料力学习题第12章资料

材料力学习题 第12章 12-1一桅杆起重机,起重杆AB的横截面积如图所示。钢丝绳的横截面面积为10mm2。起重杆与钢丝的许用σ,试校核二者的强度。 力均为MPa [= ] 120 12-2重物F=130kN悬挂在由两根圆杆组成的吊架上。AC是钢杆,直径d1=30mm,许用应力[σ]st=160MPa。BC是铝杆,直径d2= 40mm, 许用应力[σ]al= 60MPa。已知ABC为正三角形,试校核吊架的强度。 12-3图示结构中,钢索BC由一组直径d =2mm的钢丝组成。若钢丝的许用应力[σ]=160MPa,横梁AC单位长度上受均匀分布载荷q =30kN/m作用,试求所需钢丝的根数n。若将AC改用由两根等边角钢形成的组合杆,角钢的许用应力为[σ] =160MPa,试选定所需角钢的型号。 12-4图示结构中AC为钢杆,横截面面积A1=2cm2;BC杆为铜杆,横截面面积A2=3cm2。[σ]st = 160MPa,[σ]cop [F。 = 100MPa,试求许用载荷] 12-5图示结构,杆AB为5号槽钢,许用应力[σ] = 160MPa,杆BC为b h= 2的矩形截面木杆,其截面尺寸为b = 5cm, h = 10cm,许用应力[σ] = 8MPa,承受载荷F = 128kN,试求: (1)校核结构强度;(2)若要求两杆的应力同时达到各自的许用应力,两杆的截面应取多大? 12-6图示螺栓,拧紧时产生?l = 0.10mm的轴向变形,试求预紧力F,并校核螺栓强度。已知d1=8mm, d2=6.8mm, d3=7mm, l1=6mm, l2=29mm, l3=8mm; E=210GPa, [σ]=500MPa。 12-7图示传动轴的转速为n=500r/min,主动轮1输入功率P1=368kW,从动轮2和3分别输出功率P2=147kW 和P3=221kW。已知[σ]=212MPa,[ ?]=1?/m, G =80GPa。 (1)试按第四强度理论和刚度条件确定AB段的直径d1和BC段的直径d2。

材料力学习题与答案

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等

外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相

材料力学第六章习题选及其解答

6-2. 用积分法求图示各梁的挠曲线方程、自由端的挠度和转角。设EI=常量。 解:(1)列弯矩方程 ?? ?∈---=∈-=) 2,[ )()(] ,0[ )(222221111a a x a x P Px x M a x Px x M (2)挠曲线近似微分方程 ?? ?---==-==) ()('')(''222221 111a x P Px x M EIy Px x M EIy (3)直接积分两次 ?????? ? +---=+-=2 222221211)(2 2'2 'C a x P x P EIy C x P EIy ??? ??? ? ++---=++-=2 2232322111311)(666 D x C a x P x P EIy D x C x P EIy (4)确定积分常数 边界条件: 0' ,0 :2222===y y a x 光滑连续条件: '' , :212121y y y y a x x ==== 求解得积分常数 3 212 212 7 2 5Pa D D Pa C C - === = 梁的挠曲线方程和转角方程是 b)

?????? ?+---=+-=2 22 2222 2112 5)(22'252'Pa a x P x P EIy Pa x P EIy ??? ??? ?-+---=-+-=3 2 2323223123112725)(662 7256Pa x Pa a x P x P EIy Pa x Pa x P EIy (5)自由端的挠度和转角 令x1=0: EI Pa y EI Pa y 25' ,272 13 1= - = 6-4. 求图示悬臂梁的挠曲线方程,自由端的挠度和转角。设EI=常量。求解时应 注意CB 段内无载荷,故CB 仍为直线。 解:(1)求约束反力 Pa M P R A A == (2)列AC 段的弯矩方程 ],0( )(a x Pa Px x M ∈-= (3)挠曲线近似微分方程 Pa Px x M EIy -==)('' (4)直接积分两次 D Cx x Pa x P EIy C Pax x P EIy ++- = +-=2 32 2 6 2' a) M A

习题解答[第七章]

7-1 两端铰支的圆截面受压钢杆(Q235钢),已知m d m l 05.0,2==(图7-10),材料的弹性模量GPa E 200=。试求该压杆的临界力。 解:kN l EI F cr 4.151) 21() 64 05 .0(10200) (2 4 9 22 2 =?????= =ππμπ 题7-1图 7-2 图7-11所示压杆为工字形钢,已知其型号为I 18、杆长m l 4=、材料弹性模量GPa E 200=,试求该压杆的临界力。 解:查表得I18,4 8 4 8 10 122101660m I m I y x --?=?= 所以取y I 计算 kN l EI F cr 5.150) 41(10 12210200) (2 8 92 22 =?????= = -π μπ 题7-2图 7-3 图7-12所示为三个支承情况不同的圆截面压杆,已知各杆的直径及所用材料均相同,问哪个杆的临界力最大? 题7-3图 解:2 2 22 1) (l EI l EI F cr πμπ= = 2 2 2 2 2 2 28.0) 6.1 7.0() (l EI l EI l EI F cr ππμπ? =?= = 2 2 2 2 2 2 323.1) 8.17.0() (l EI l EI l EI F cr ππμπ? =?= =

所以第三种情况的临界应力最大。 7-4 一矩性截面压杆,在图7-13所示平面内两端均为铰支,出平面内两端均不能转动(图示为在平面内的支承情况),已知b 5.2h =,问压力F 逐渐增大时,压杆将于哪个平面内失稳? 解: (1) 图示平面内 2 4 22 3 2 2 2 13.1) 1(12) (l Eb l bh E l EI F cr ππμπ? =??= = (2) 出平面内 2 4 22 3 2 2 2 28.0) 5.0(12) (l Eb l hb E l EI F cr ππμπ? =?? == 所以出平面内容易失稳。 题7-4图 7-5 图7-14所示为槽形型钢受压杆,两端均为球铰。已知槽钢的型号为16a ,材料的比例极限MPa p 200=σ ,弹性模量GPa E 200=。试求可用欧拉公式计算临界力的最小长度。 解:查表得[16a 的i y =1.83cm=0.0183m p cr i l E E σμπλ πσ≤== 2 2 2 2 ) ( 2 2 σ πλE ≥ 6 9 22 10 20010 2000183.0???? =≥πσ πp E i l l min =1.82m 题7-5图 7-6 图7-15所示结构由两根圆截面杆组成,已知两杆的直径及所用的材料均相同,且两杆均为大柔度杆,问:当F (方向垂直向下)从零开始逐渐增加时,哪个杆首先失稳?(只考虑在平面内) 解: 60sin 45sin NBC NAB F F = F F F NBC NAB =+0 60 cos 45 cos F F F F NBC NAB 535.0656.0== cr AB AB cr F h EI l EI F 5.05.0) (2 2 2 2 =? == ?πμπ 题7-6图

材料力学习题第13章

材料力学习题 第13章 13-1 冲床的最大冲力为400kN ,被冲剪钢板的剪切极限应力MPa 360=b τ,冲头材料的 M P a 440][=σ,试求在最大冲力作用下所能冲剪的圆孔的最小直径和板的最大厚度。 13-2 图示凸缘联轴节传递扭矩m k N 35M ?=,直径为mm 121=d 的螺栓分布在mm 150=d 的圆周上。材料的MPa 90][=τ,试校核螺栓的剪切强度。 13-3 两块钢板用七个铆钉联接如图所示。已知钢板的厚度,m m 6=δ宽度mm 200=b ,铆钉直径mm 18=d 。材料的许用应力,MPa 160][=σ,MPa 100][=τMPa 240][=bs σ载荷F 的=150kN ,试校核此接头强度。 13-4 图示装置中,键的长度l =35mm ,许用切应力MPa 100][=τ,许用挤压应力MPa 220][=bs σ,试求允许作用在手柄上的力F 的最大值。 13-5 夹剪如图,销钉C 的直径d =5mm ,剪断一根与销钉直径相同的铜丝时,需加力F =0.5kN ,求铜丝与销钉横截面上的平均切应力各为多少? 13-6 图示摇臂,承受载荷F 1与F 2作用。试确定轴销B 的直径d 。已知载荷F 1=50kN ,F 2=35.4kN ,许用切应力MPa 100][=τ,许用挤压应力MPa 240][=bs σ。 13-7 试校核图示铆接接头的强度。铆钉与板件的材料相同,许用正应力MPa 160][=σ,许用切应力MPa 120][=τ,许用挤压应力MPa 340][=bs σ,载荷k N 230=F 。 13-8 图示两根矩形截面木杆,用两块钢板连接在一起,承受轴向载荷F =45kN 作用。已知木杆的截

材料力学 第七章

7-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。由于实用的原因,图中的角 限于范围内。作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应力分别与相应的许用应力比较。现设胶合缝的许用切应力为许 用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。为了使杆能承受最大的荷载F,试问角的值应取多大? 解:按正应力强度条件求得的荷载以表示: 按切应力强度条件求得的荷载以表示,则 即: 当时,,, 时,,, 时,,

时,, 由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。 若按胶合缝的达到的同时,亦达到的条件计算 则 即: , 则 故此时杆件承受的荷载,并不是杆能承受的最大荷载。 返回 7-2(7-7)试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。 解:

= 由应力圆得 返回 7-3(7-8)各单元体面上的应力如图所示。试利用应力圆的几何关系求:(1)指定截面上的应力; (2)主应力的数值; (3)在单元体上绘出主平面的位置及主应力的方向。

解:(a),,, , (b),,,, (c) , , ,

(d),,,,, 返回 7-4(7-9) 各单元体如图所示。试利用应力圆的几何关系求: (1)主应力的数值; (2)在单元体上绘出主平面的位置及主应力的方向。 解:(a),,, (b),,, (c) ,,,

(d) , , , 返回 7-5(7-10)已知平面应力状态下某点处的两个截面上的应力如图所示。试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的 夹角值。 解:由已知按比例作图中A,B两点,作AB的垂直平分线交 轴于点C,以C为圆心,CA或CB为半径作圆,得 (或由 得 半径) (1)主应力

材料力学习题册答案_第6章_弯曲变形

第六章弯曲变形 一、是非判断题 1.梁的挠曲线近似微分方程为EIy’’=M(x)。(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是 否相同无关。(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。(√)8.弯矩突变的截面转角也有突变。(×) 二、选择题 1. 梁的挠度是(D) A 横截面上任一点沿梁轴线方向的位移 B 横截面形心沿梁轴方向的位移 C横截面形心沿梁轴方向的线位移

D 横截面形心的位移 2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。 A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C 转角和挠度的正负号均与坐标系有关 D 转角和挠度的正负号均与坐标系无关 3. 挠曲线近似微分方程在(D)条件下成立。 A 梁的变形属于小变形 B 材料服从胡克定律 C 挠曲线在xoy平面 D 同时满足A、B、C 4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。 A 挠度最大 B 转角最大 C 剪力最大 D 弯矩最大 5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F,二者的(B)不同。 A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。为减小最大挠度,则下列方案中最佳方案是(B) A 梁长改为l /2,惯性矩改为I/8 B 梁长改为3 l /4,惯性矩改为I/2 C 梁长改为5 l /4,惯性矩改为3I/2 D 梁长改为3 l /2,惯性矩改为I/4 7. 已知等截面直梁在某一段上的挠曲线方程为: y(x)=Ax2(4lx - 6l2-x2),则该段梁上(B)

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

材料力学扭矩习题

第六章 圆轴的扭转 习题解析 6-1 试述绘制扭矩图的方法和步骤。 答:首先求任意截面的扭矩,一般步骤为:“假截留半,内力代换,内外平衡”。熟练后也可用简捷方法计算而无须画出分离体受力图。 取平行于轴线的横坐标表示横截面的位置,用纵坐标表示扭矩的代数值,画出各截面扭矩的变化图,即为扭矩图。 6-2 为什么空心轴比实心轴能充分发挥材料的作用? 答:空心圆轴比实心轴能充分发挥材料的作用,其原因在于圆轴扭转时,横截面上应力呈线性分布,越接近截面中心,应力越小,那里的材料就没有充分发挥作用。做成空心轴,使得截面中心处的材料安置到轴的外缘,材料得到了充分利用。而且也减轻了构件的自重。 6-3 已知圆杆横截面上的扭矩,试画出截面上与T 对应的切应力分布图。 图6-1 题6-3图 解:截面上与T 对应的切应力分布图如下: 图6-2 6-4 用截面法求图6-3所示各杆在1-1、2-2、3-3截面上的扭矩。 图6-3 题6-4图 解:a)采用截面法计算扭矩(见图6-4)。 取1-1截面左侧外力偶矩计算,可得m kN T ?-=-311。 取2-2截面左侧外力偶矩计算,由平衡方程 062122=+?-+-T m kN )(,可得

m kN T ?=-322。 取3-3截面右侧外力偶矩计算,可得m kN T ?=-133。 图6-4 b) 采用截面法计算扭矩(见图6-5)。 取1-1截面左侧外力偶矩计算,可得m kN T ?-=-511。 取2-2截面左侧外力偶矩计算,由平衡方程05522=+?+-T m kN )(,可得 m kN T ?-=-1022。 取3-3截面右侧外力偶矩计算,由平衡方程03333=+?+-T m kN )( ,可得m kN T ?-=-633。 图6-5 6-5 如图6-6所示,作各杆的扭矩图。

材料力学习题册答案_第7章_应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

材料力学习题

材料力学习题 第2章 2-1 试求出图示各杆件中Ⅰ—Ⅰ截面上的内力。 2-2图示矩形截面杆,横截面上正应力沿截面高度线性分布,截面顶边各点处 的正应力均为MPa 100max =σ,底边各点处的正应力均为零。杆件横截面上存在何种内 力分量,并确定 其大小(C 点为截面形心)。 2-3 试指出图示各单元体表示哪种应力状态。 2-4 已知应力状态如图所示(应力单位为MPa ),试用解析法计算图中指定 截面的应力。

2-5 试作应力圆来确定习题2-4图中指定截面的应力。 2-6已知应力状态如图所示(应力单位为MPa ),试用解析法求:(1)主应力及主方向;(2)主切应力及主切平面;(3)最大切应力。 2-7 已知应力状态如习题2-6图所示,试作应力圆来确定:(1)主应力及主方向; (2)主切应力及主切平面;(3)最大切应力。 2-8已知构件内某点处的应力状态为两种应力状态的叠加结果,试求叠加后所得 应力状态的主应力、主切应力。 2-9图示双向拉应力状态,σ σσ==y x 。试证明任一斜截面上的正应力均等 于σ,而切应力为零。 2-10 已知K 点处为二向应力状态,过K 点两个截面上的应力如图所示(应力单位为MPa )。试分 别用解析法与图解法确定该点的主应力。 2-11 一点处的应力状态在两种坐标系中的表示方法分别如图 a)和b)所示。试确定未 知的应力分量

y y x xy '''σττ、、的大小与方向。 2-12 图示受力板件,试证明尖角A 处各截面的正应力与切应力均为零。 2-13 已知应力状态如图所示(单位为MPa ),试求其主应力及第一、第二、第三不变量321I I I 、、。 2-14 已知应力状态如图所示(单位为MPa ),试画三向应力圆,并求主应力、最大正应力与最大切应力。 第3章 3-1 已知某点的位移分量u = A , v = Bx +Cy +Dz , w = Ex 2+Fy 2+Gz 2+Ixy +Jyz +Kzx 。A 、B 、C 、D 、E 、F 、G 、I 、J 、K 均为常数,求该点处的应变分量。 3-2 已知某点处于平面应变状态,试证明2222,,Bxy y Ax y Bx Axy xy y x +===γεε(其中,B A 、 为任意常数) 可作为该点的三个应变分量。 3-3 平面应力状态的点O 处x ε=6×10-4 mm/m ,y ε=4×10-4 mm/m , xy γ=0;求:1)平面内以y x ''、方向的线应变;2)以x '与y '为两垂 直线元的切 应变;3)该平面内的最大切应变及其与x 轴的夹角。 3-4 平面应力状态一点处的x ε= 0,y ε= 0,xy γ=-1×10-8rad 。试求:1)平面内以y x ''、方向的线应变;2)以x '与y '为两垂直线元的切应变;3)该平面 内的最大切 应变及其与x 轴的夹角。

材料力学习题册答案-第7章+应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大内力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

材料力学第二章习题【含答案】

浙江科技学院2015-2016学年第一学期考试试卷 A 卷 考试科目材料力学考试方式闭完成时限 2 小时拟题人陈梦涛审核人批准人2015 年9 月17 日建工学院2014 年级土木工程专业 一、单项选择题(每小题3分,计30分) 1. 对于塑性材料来说,胡克定律(Hooke's law)使用的范围是。 A. p σσ <; B. p σσ >; C. s σσ <; D. s σσ > 2.实心圆截面杆直径为D,受拉伸时的绝对变形为mm l1 = ?。仅当直径变为2D时,绝对变形l?为。 A.1mm B.1/2 mm C.1/4 mm D.2mm 3. 下列有关受压柱截面核心的说法中,正确的是。 A.当压力P作用在截面核心内时,柱中只有拉应力。 B.当压力P作用在截面核心内时,柱中只有压应力。 C.当压力P作用在截面核心外时,柱中只有压应力。 D.当压力P作用在截面核心外时,柱中只有拉应力。 4. 构件的强度、刚度和稳定性。 A.只与材料的力学性质有关; B.只与构件的形状尺寸关; C.与二者都有关; D.与二者都无关。 5. 如右图所示,设虚线表示为单元体变形后的形状,则该单元体的剪 应变为。 A. α; B.π/2-α; C.π/2-2α; D.2α 6. 图示一杆件的拉压刚度为EA,在图示外力作用下其 应变能U的下列表达式是。 7.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中。 A.A 和L 均为初始值; B.A 和L 均为瞬时值; C.A 为初始值,L 为瞬时值; D.A 为瞬时值,L 均为初始值。 8. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上。 题5图 题6图

材料力学第六章复习题

第六章 弯曲应力 1.图示梁的材料为铸铁,截面形式有四种如图: 最佳形式为 。 2.为了提高梁的承载能力,对同一梁、相同的均布载荷q ,下列哪一种支承条件下,梁的强度最好: 正确答案是 。 3.设计钢梁时,宜采用中性轴为( )的截面;设计铸铁梁时,宜采用中性轴为( )的截面。 正确答案是 。 (A) 对称轴 (B) 偏于受拉边的非对称轴 (C) 偏于受压边的非对称轴 (D) 对称或非对称轴 4.梁在弯曲时,横截面上正应力沿高度是按 分布的;中性轴上的正应力为 ; 矩形截面梁横截面上剪应力沿高度是按 分布的,中性轴上的剪应力为 。 5.矩形截面梁若 max Q 、m ax M 和截面宽度b 不变, 而将高度增加一倍,则最大弯曲正应力为原来的 倍,最大弯曲剪应力为原来的 倍。 6.图示正方形截面简支梁,若载荷不变, 而将边长增加一倍,其则最大弯曲正应力为原来的 倍, 最大弯曲剪应力为原来的 倍。 (A) (B) (C) (D) (C) (B) (D)

7.下图所示的梁跨中截面上A 、B 两点的应力A σ= ; A τ= ; B τ= 。 8.图示T 字形截面梁。若已知A —A 截面上、下表面处沿x 方向的线应变分别是 0004.0-='ε, 0002.0=''ε,则此截面中性轴位置=c y h (C 为形心) 9.铸铁丁字形截面梁的许用应力分别为:许用拉应力 [ t σ] = 50MPa ,许用压应力[c σ] = 200 MPa 。则 上下边缘距中性轴的合理比值为 21/y y 为多少?(C 为形心) 10.⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。若材料的拉伸许用应力[]MPa l 40=σ,压缩许用应 力 []MPa c 160=σ,截面对形心轴z c 的惯性矩410180cm zc =I ,cm h 64.91=,试计算该 梁的许可载荷P 。 11.正方形截面简支梁,受有均布载荷作用如图,若[ σ ] = 6 [ τ ] ,证明当梁内最大正应力和最大剪应力同 时达到许用应力时,l / a = 6 x A-A B c

材料力学性能习题

第一章 1什么是材料力学性能?有何意义? 2金属拉伸试验经历哪几个阶段?拉伸试验可以测定哪些力学性能? 3 不同材料的拉伸曲线相同吗?为什么? 4塑性材料和脆性材料的应力应变曲线有何不同? 5 弹性变形的实质是什么? 6弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里?7比例极限、弹性极限、屈服极限有何异同? 8你学习了哪几个弹性指标? 9弹性不完整性包括哪些方面? 10 什么是滞弹性?举例说明滞弹性的应用? 11内耗、循环韧性、包申格效应? 12什么是屈服强度?如何度量屈服强度? 13如何强化屈服强度? 14屈服强度的影响因素有哪些? 15 屈服强度的实际意义? 16真实应力应变曲线与工程应力应变曲线有何不同?有何意义? 17 什么是应变硬化指数n?有何特殊的物理意义?有何实际意义? 18 什么是颈缩?颈缩条件、颈缩点意义? 19 抗拉强度σb和实际意义。 20塑性及其表示和实际意义; 21静力韧度的物理意义。 22 静拉伸的断口形式; 23静拉伸断口三要素及其意义; 24解理断裂及其微观断口特征; 25解理面、解理刻面、解理台阶、河流花样; 26解理舌、二次解理、撕裂棱; 27穿晶断裂、沿晶断裂;脆性断裂、韧性断裂; 28微孔聚集断裂及其微观断口特征。 第二章 1应力状态软性系数α及其意义; 2压缩、弯曲、扭转各有什么特点? 3 缺口试样在弹性状态和塑性状态下的应力分布特点; 4缺口效应及其产生原因; 5缺口强化; 6缺口敏感度; 7什么是金属硬度?意义何在? 8硬度测试方法有几种(三类)?有何不同? 9金属硬度测试的意义(或者硬度测试为什么广泛应用)? 10布氏硬度原理; 11布氏硬度的相似原理; 12布氏硬度的特点和适用范围;

相关文档
相关文档 最新文档