文档库 最新最全的文档下载
当前位置:文档库 › 6-08.资料-用均值不等式中等号成立的条件证题

6-08.资料-用均值不等式中等号成立的条件证题

6-08.资料-用均值不等式中等号成立的条件证题
6-08.资料-用均值不等式中等号成立的条件证题

湖南省新宁县第一中学李水平专用教案 第六章—不等式

18

资料2:用均值不等式中等号成立的条件证题 我们知道,均值不等式)0,,,(212121 n n n n a a a a a a n

a a a ≥+++中等号成立的充要条件为.21n a a a === 下面举例说明它在证明条件等式和不等式方面的应用.

例1 设.1:,111,R ,2222=+=-+-∈b a a b b a b a 求证且

证明:由平均值不等式,得

212)1(12

22222

b a b a b a -+=-+≤- ① 212)1(12

22222

a b a b a b -+=-+≤- ② ①+②,得 12121112

2222

2=-++-+≤-+-a b b a a b b a ③ 由题设知③式中等号成立,其充要条件为

.1,1,12222=+∴-=-=b a a b b a 且

例2 已知α、β为锐角,且.2,1cos sin sin cos 2424πβαβ

αβα=+=+求证 证明:αββ

αββα2224224cos 2sin sin cos 2sin sin cos =?≥+ ① αββ

αββα2224224sin 2cos cos sin 2cos cos sin =?≥+ ② ①+②,得.1cos sin sin cos 2424≥+β

αβα ③ 由题设知,③式中等号成立,其充要条件为.c o s c o s

s i n s i n s i n c o s 224224ββαββα==且

湖南省新宁县第一中学李水平专用教案 第六章—不等式 19 2

sin cos ,,cos sin sin cos 2222π

βαβ

αβαβ

αβα=+∴=∴==∴为锐角且 例3 已知求证且,1,R ,,,2121=+++∈+n n a a a a a a

2

11232222121≥++++++a a a a a a a a a n n 证明:由,121=+++n a a a 引入参数+∈R t ,有,21t ta ta ta n =+++ 故1

232222121a a a a a a a a a n n ++++++ t a a t a a a a a t a a a a a t a a a n n n 2)]([)]([)]([11

2323222212121-++++++++++++=

)(22)(221t t t a a a t n -=-+++≥ 当且仅当)(,),(),(1322211a a t a a a t a a a t a n n +=+=+= 时,等号成立. 将上述n 个不等式相加,得

.,2

1)4121(2)(2.4

1,21.

)(212322*********证毕因此有=-=-≥++++++==∴+++=+++t t a a a a a a a a a t t t a a a a a a n n n n

关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法 不等式恒成立问题,在高中数学中较为常见。这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。 不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。 下面我们一起来探讨其中一些典型的问题 一、一次函数型——利用单调性求解 例1、若不等式对满足的所有实数m都成立,求x的取值范围。 若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。 分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。 解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立, 设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有: 此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。 给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于 ⅰ),或ⅱ) 可合并成 同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1 125()()4 a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ≥++ 3. 设,,(0,),a b c ∈+∞求证:222 b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222 a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:222 1x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥ 7. (2010辽宁)已知,,a b c 均为正实数,证明:22221 11()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。

变式:求函数291(0)122 y x x x =+<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若22 41x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。 11. 设设1x >-求函数211 x x y x ++=+的最小值。 12. (2010山东高考)若任意0x >,231 x a x x ≤++恒成立,求a 的取值范围. 13. 求函数22233(1)22 x x y x x x -+=>-+的最大值。 类型三、应用题 1.(2009湖北)围建一个面积为2 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45/m 元,新墙的造价为180/m 元,设利用旧墙的长度为x (单位:m )。 (1)将y 表示为x 的函数(y 表示总费用)。 (2)试确定x ,使修建此矩形场地围墙的总费用最少。并求出最小总费用。 2.(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x 层(10x ≥),则每平方米的平均建筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,

不等式恒成立或有解问题的解决策略

不等式恒成立或有解问题的解决策略 恒成立与有解问题的解决策略大致分四类: ①构造函数,分类讨论; ②部分分离,化为切线; ③完全分离,函数最值; ④换元分离,简化运算; 在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界. 一般地,不等式恒成立、方程或不等式有解问题设计独特,试题形式多样、变化众多,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养起到了积极的作用,成为高考的一个热点. 【考点突破】 【典例1】(2018届石家庄高中毕业班教学质量检测)已知函数()()()121x f x axe a x =-+-. (1)若1a =,求函数()f x 的图象在点()0,(0)f 处的切线方程; (2)当0x >时,函数()0f x ≥恒成立,求实数a 的取值范围. 【解析】(Ⅰ)若1a =,则)12(2)(--=x xe x f x ,4)('-+=x x e xe x f 当0=x 时,2)(=x f ,3)('-=x f , ………﹝导数的几何意义的应用﹞ 所以所求切线方程为23+-=x y 。 (Ⅱ)思路一:()()()121x f x axe a x =-+-,)1(2)1()('+-+=a e x a x f x , 由条件可得,首先0)1(≥f ,得01 1 >-≥ e a , 令()'()(1)2(1)x h x f x a x e a ==+-+,则 '()(2)0x h x a x e =+>恒为正数,所以()'()h x f x =单调递增,………﹝高阶导数的灵活应用﹞ 而02)0('<--=a f ,0222)1('≥--=a ea f ,所以)('x f 存在唯一根0(0,1]x ∈,使得函数)(x f 在),0(0x 上单调递减,在)(0∞+x 上单调递增, ………﹝极值点不可求,虚拟设根﹞

利用均值不等式证明不等式

1,利用均值不等式证明不等式 (1)均值不等式:设12,,...,n a a a 是n 个正实数,记 12111n n n H a a a = ++???+ n G = 12n n a a a A n ++???= n Q =它们分别称为n 个正数的调和平均数,几何平均数,算术平均数,平方平均数。有如下关系: n n n n H G A Q ≤≤≤.等号成立的充要条件是12n a a a ==???=。 先证n A n =当n=k+1n a ≤≤ 1 111= i k i k a A +==+ +∑∑ 111 111(1)(11).1k i i i i k i i i i k k k a a a a k k a A a k k k k ====++? ? ? ? ? ? ?=+-+-==+ ? ? ? ? ? ?? ? ? ??? ∑ 1111 1.1k k k k k k k k k A G a n k A G +++++∴≥==+所以对时亦成立。原不等式成立。 . n n A G ≥证法二:用反向数学归纳法证明:

20,n n n n n A G A G =-=≥≥当时,成立。 ++k N ∈k k 1假设:n=2()时成立,当n=2时: ++++1 +1 1 ++ = =.i i i i i i a a a A G ===≥ ≥=∑∑∑k 1 k k 1 k k 1k 12222k k 2k 1 222 2 2 2 +,k N ?∈k 即,对当n=2时,结论成立。 假设1 t t tA G t ++证法三:0.k b = >令: 111)k k k k k k b b b ----+ +≥11 k k k k b b --即:k kb 且:11112211[(1)]n n n k n n k k k n k k k k k A b b b kb k b a G b --===-==≥--== 12n ===.n n G A a a a ∴≤等号成立当且仅当: 上述不等式在数学竞赛中应用极为广泛,好的、难的不等式问题往往只需用它们即可解决,而无需过分追求所谓更“高级”的不等式,这是应该引起我们注意的。 例1:求证下列不等式: (1) ()1 3a a b b + ≥-,(0)a b >>

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

2020高考数学复习--专题05 导数与函数不等式恒成立、有解(存在性)-用思维导图突破导数压轴题

专题05 导数与函数不等式恒成立、有解(存在性)(训练篇B ) -用思维导图突破解导数压轴题 1. 已知函数. (1)讨论的单调性; (2)当时,证明. 解 (1)的定义域为,. 若,则当时,,故在单调递增. 若,则当时,; 当时,. 故在单调递增,在单调递减. (2)由(1)知,当时,在取得最大值,最大值为 . 所以等价于,即. 设,则, 当时,; 当时,. 所以在单调递增,在单调递减.故当时,取得最大值,最大值为.所以当时. 从而当时,,即. 2. 已知函数,设. (1)求的极小值; ()2(1)2lnx ax a x f x =+++()f x 0a <3()24f x a ≤--()f x (0,)+∞'1(1)(21)()221x ax f x ax a x x ++= +++=0a ≥(0,)x ∈+∞()0f x '>()f x (0,)+∞0a <1(0,)2x a ∈- ()0f x '>x ∈1(,)2a -+∞()0f x '<()f x 1(0,)2a -1(,)2a -+∞0a <()f x 12x a =- 11()214)21(ln f a a a =----3(4)2a f x ≤--13(12441)2a ln a a ---≤--1(02121)a ln a -++≤()ln 1 g x x x =-+1()1g x x '= -(0,1)x ∈()0g x '>(1,)x ∈+∞()0g x '<()g x (0,1)(1,)+∞1x =()g x (1)0g =0x >()0g x ≤0a <10,2a ->1(02121)a ln a -++≤3(4)2a f x ≤--()()e x f x x a x a =-++()() g x f x '=()g x

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

2018年高考备考+均值不等式和柯西不等式+含历年高考真题

1 成立。 5、(2012 福建)已知函数 f(x)=m-| x-2|, m € R,且 f(x+2)》0解集为[-1,1]. 1 丄 丄 (1)求 m 的值; (2)若 a,b,c € R 且a + + 3c =m,求证:a + 2b +3c >9 1、(2008 江苏)设 a , b , c 为正实数,求证: 3 a 11 — 3 + abc 》2*; 3 . c b 3 2、(2010辽宁理数) 已知a,b, c 均为正数,证明: b 2 丄I )2 6.3,并确定a,b,c 为何值时,等号 b c 3、(2012江苏理数) 1 已知实数x , y 满足:|x y| -,|2x 3 y| 5 求证:|y| 18 - 4、( 2013新课标n ) 设a,b,c 均为正数,且a b c 1,证明: 1 (i )ab bc ca 一 3 2 a (n )— b b 2 c 2 1. c a

(n) a b c d 是 a b cd 的充要条件. 6、(2011浙江)设正数x, y, z 满足2x 2y z 1. (i)若 ab cd ,贝U a b c d ; ⑴求3xy yz zx 的最大值; (2)证明: 3 1 xy 1 1 1 yz 1 xz 125 26 7.(2017全国新课标II 卷)已知a 0,b 0,a b 2。证明: (1) (a b)(a 5 b 5) 4 ; (2) a b 2。 8.(2017 天津)若 a,b R , ab 0,则 a 4 4 b 4 1 -的最小值为 9. 【2015咼考新课标 ab 2,理24】设a, b, c, d 均为正数,且a c d ,证明:

常用均值不等式及证明证明

常用均值不等式及证明证明 这四种平均数满足Qn An Gn H ≤≤≤n + ∈R n a a a 21、、、Λ,当且仅当n a a a 21===Λ时取“=”号 仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2) 由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b ,有ab 2b a 22 ≥+ (当且仅当a=b 时取“=”号), ab 20b ,a 22>> (4)对实数a,b ,有 ()()b a b b a --a ≥ (5)对非负实数a,b ,有 02a 22≥≥+ab b

(8)对实数a,b,c ,有 ac bc ab c b a 222++≥++ (10)对实数a,b,c ,有 3 3 a abc c b ≥++ 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、 柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设A ≥0,B ≥0,则()()B n n nA A B A 1-n +≥+ 注:引理的正确性较明显,条件A ≥0,B ≥0可以弱化为A ≥0,A+B ≥0 当n=2时易证; 假设当n=k 时命题成立,即 那么当n=k+1时,不妨设 1 a +k 是 1 21a ,,a ,a +k Λ中最大者,则 1211k ka +++++≥k a a a Λ 设 k a a a +++=Λ21s 用归纳假设 下面介绍个好理解的方法 琴生不等式法 琴生不等式:上凸函数()n x x x x f ,,,,21Λ是函数()x f 在区间(a,b) 内的任意n 个点,

不等式有解和恒成立问题

不等式有解和恒成立问题 Prepared on 24 November 2020

不等式有解和恒成立问题 知识点的罗列,文字不宜太多,简洁明了最好) ? 知识点一:不等式恒成立问题 ? 知识点二:不等式有解问题 分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题) 含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。 注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的) 一、不等式有解问题 例题:当m 为何值时,2211223 x mx x x +-<-+对任意的x ∈R 都成立 解法1:二次函数法: 移项、通分得: 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<< 解法2:分离参数法: 注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么: 注意到,在上式中我们用到了这样一个性质: 总结:解决恒成立问题的方法:二次函数法和分离参数法 变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目) 【试题来源】(上海2016杨浦二模卷) 【题目】设函数x x g 3)(=,x x h 9)(=,若b x g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】:因为b x g a x g x f +++= )()1()(是实数集上的奇函数,所以1,3=-=b a . )1 321(3)(+-=x x f ,)(x f 在实数集上单调递增.

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

均值不等式【高考题】

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21()21(x y y x +++ 的最小值是【 】 A .3B .27C .4D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则 若的最大值为【 】 A. 2B. 23 C. 1D. 2 1 练习1.若0x >,则2x x +的最小值为. 练习2.设,x y 为正数, 则14()()x y x y ++的最小值为【 】 A.6 B.9C. 12D. 15 练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2B .3C .6D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =吨. 练习5.求下列函数的值域: (1)22 213x x y += (2)x x y 1+= 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0B.4C.2D.1 例3、已知0,0,01,a b c a b c >>>++=且则111(1)(1)(1)a b c ---最小值为【 】 A. 5 B.6 C.7 D.8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是. 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为. 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+B .31+C .3D .4 练习1.已知54x <,求函数14245 y x x =-+-的最大值. 练习2.函数1(3)3 x x x +>-的最小值为【 】 A. 2B. 3C. 4D.5 练习3.函数232(0)x x x +>的最小值为【 】 A.39323923952392

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

2021高三数学人教B版一轮学案:第二章第十二节第1课时不等式恒成立与有解问题含解析

第十二节导数破解疑难优质课 第1课时不等式恒成立与有解问题 1.“恒成立问题”与“有解问题”的区别 (1)两者在量词上的区别 恒成立问题中使用的量词是全称量词,如“任意、所有、全部、均、恒、总、都”等;而有解问题中使用的量词是特称量词,如“存在、至少一个、有解”等. (2)两者在等价转换上的区别 恒成立问题的转化: ①f(x)>0恒成立?f(x)min>0;f(x)<0恒成立?f(x)max<0. ②f(x)>a恒成立?f(x)min>a;f(x)g(x)恒成立?[f(x)-g(x)]min>0;f(x)0有解?f(x)max>0;f(x)<0有解?f(x)min<0. ②f(x)>a有解?f(x)max>a;f(x)g(x)有解?[f(x)-g(x)]max>0;f(x)

考向一 不等式恒成立问题 方法1 分离参数法 【例1】 (2020·石家庄质检)已知函数f (x )=ax e x -(a +1)(2x -1). (1)若a =1,求函数f (x )的图象在点(0,f (0))处的切线方程; (2)当x >0时,函数f (x )≥0恒成立,求实数a 的取值范围. 【解】 (1)若a =1,则f (x )=x e x -2(2x -1). 即f ′(x )=x e x +e x -4,则f ′(0)=-3,f (0)=2, 所以所求切线方程为3x +y -2=0. (2)由f (1)≥0,得a ≥1e -1 >0,则f (x )≥0对任意的x >0恒成立可转化为a a +1 ≥2x -1x e x 对任意的x >0恒成立. 设函数F (x )=2x -1x e x (x >0), 则F ′(x )=-(2x +1)(x -1)x 2e x . 当00; 当x >1时,F ′(x )<0. 所以函数F (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以 F (x )max =F (1)=1e . 于是a a +1≥1e ,解得a ≥1e -1 .

高考备考 均值不等式和柯西不等式 含历年高考真题

1、(2008江苏)设a ,b ,c 为正实数,求证: 333111a b c +++abc ≥. 2、(2010辽宁理数)已知c b a ,,均为正数,证明:36 )111(2222≥+++++c b a c b a ,并确 定c b a ,,为何值时,等号成立。 3、(2012江苏理数)已知实数x ,y 满足:1 1|||2|3 6 x y x y +<-<,,求证:5 ||18 y <. 4、(2013新课标Ⅱ)设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 5、(2012福建)已知函数f (x )=m -|x -2|,m ∈R,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值; (2)若a ,b ,c ∈R,且1a + 12b + 1 3c =m ,求证:a + 2b +3c ≥9 6、(2011浙江)设正数z y x ,,满足122=++z y x . (1)求zx yz xy ++3的最大值; (2)证明: 26 125 111113≥+++++xz yz xy 7. (2017全国新课标II 卷) 已知3 3 0,0,2a b a b >>+=。证明: (1)5 5 ()()4a b a b ++≥; (2)2a b +≤。 8.(2017天津) 若,a b ∈R ,0ab >,则4441 a b ab ++的最小值为___________. 9. 【2015高考新课标2,理24】设,,,a b c d 均为正数,且a b c d +=+,证明: (Ⅰ)若ab cd >+> (Ⅱ)>是a b c d -<-的充要条件. 10. 【2015高考福建,理21】选修4-5:不等式选讲 已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4. (Ⅰ)求a b c ++的值; (Ⅱ)求2221 14 9 a b c ++的最小值. 11.【2015高考陕西,理24】(本小题满分10分)选修4-5:不等式选讲

相关文档
相关文档 最新文档