文档库 最新最全的文档下载
当前位置:文档库 › Rapid precipitation in Al0.5CrFeCoNiCu HEA

Rapid precipitation in Al0.5CrFeCoNiCu HEA

Rapid precipitation in Al0.5CrFeCoNiCu HEA
Rapid precipitation in Al0.5CrFeCoNiCu HEA

Rapid precipitation in Al0?5CrFeCoNiCu high entropy alloy

N.G.Jones*,K.A.Christofidou and H.J.Stone

The effect of cooling rate on the microstructural evolution of Al0?5CrFeCoNiCu has been studied using differential scanning calorimetry and scanning electron microscopy.As cast Al0?5CrFeCoNiCu contained three phases;Cr–Fe–Co–Ni solid solution dendrites,Cu rich interdendritic material and L12precipitates.During cooling at rates between10and 50u C min21,an additional exothermic event,at y1010u C,was observed in the heat flow curves. Microstructural examination after cooling revealed the presence of two distinct populations of intragranular precipitates not present in the as cast material.Energy dispersive X-ray spectro-scopy indicated that Cu rich precipitates formed within the dendrites,while a Cr–Fe–Co rich phase formed in the interdendritic constituent.Precipitation during cooling at rates approaching 1u C s21indicates that the diffusion kinetics of Al0?5CrFeCoNiCu is not,as previously suggested, sluggish.

Keywords:High entropy alloys,Phase transitions,Kinetics,Precipitation

This paper is part of a special issue on…

Introduction

Multiprincipal element high entropy alloys(HEAs), where each of the major constituents has a concentration between5and35at-%,1offer a new approach in materials development with practically limitless potential combinations.The term‘HEA’was derived from the fact that the theoretical entropy of mixing of a statistically disordered solid solution would be signi?cantly higher than that of a conventional alloy.It was suggested that this high entropy of mixing extended the mutual solubility of different elemental species,stabilising simple struc-tured solid solutions with respect to the formation of intermetallic compounds.1Studies of alloys of this type have identi?ed a number of promising properties, including high strength,1–5good wear characteristics6–10 and excellent corrosion resistance.11–13However,while over1400scienti?c manuscripts have been published in this area to date,much of the underlying science of these materials remains under debate.

One of the key areas of research has been to estab-lish the phase equilibria of these novel materials and determine the extent to which entropic contributions overcome enthalpic effects.The AlCrFeCoNiCu system is probably the most extensively studied and numerous different phases,both solid solution and intermetallic, have been reported.1,14,15The Al0?5CrFeCoNiCu alloy was originally reported to contain only fcc and the related,ordered,L12phases at all temperatures below the solidus.14However,subsequent studies have identi?ed that a Ni–Al based B2phase and a Cr–Co–Fe based s phase precipitate in this alloy during prolonged exposures at temperatures between700and1000u C.15,16 At higher temperatures,two fcc phases exist in equili-brium,indicating the presence of a miscibility gap in the Gibbs energy curve.17As a result,the entopic stabilisation of these phases is reduced,increasing their susceptibility to phase decompositions at lower temperatures.16,17 However,the speed at which these precipitation reactions occur remains unknown.Recently,Ng et al.15suggested that the diffusion kinetics of this alloy was suf?ciently slow that no microstructural evolution occurred when furnace cooled from elevated heat treatment tempera-tures.It was proposed that the timescales required to enable a phase transformation were such that the slow cooling rates employed were equivalent to quenching a conventional alloy.

Diffusional phase transformations require the coop-erative movement of different atomic species through the lattice to enable the elemental redistribution necessary to lower the Gibbs energy of the system. However,the kinetics of long range diffusion is thought to be sluggish i in HEAs,as a result of the complex nature of the multicomponent solid solution phases.1,18 It has been proposed that HEAs have highly distorted lattices,due to the different atomic radii of the constituent elements,and that this can hinder atomic movement through the structure.1,18In addition,it is believed that the local con?guration,bonding and energy at any given lattice site is different in an HEA,

Department of Materials Science and Metallurgy,University of Cambridge, 27Charles Babbage Road,Cambridge CB30FS,UK

*Corresponding author,email ngj22@https://www.wendangku.net/doc/7b11662932.html, i The term sluggish has been widely used in the HEA literature,without definition.Therefore,in the present work,the term is used to indicate anomalously slow diffusion when compared to other metallic systems.

?2014Institute of Materials,Minerals and Mining

Published by Maney on behalf of the Institute

Received18November2014;accepted11January2015

DOI10.1179/1743284715Y.0000000004Materials Science and Technology2014VOL000NO0001

unlike a conventional solid solution,which is dominated by a single element.Therefore,when considering substitutional diffusion through atom–vacancy inter-change,it has been suggested that a moving atom may become trapped if it jumps to a lower energy site or will return to its original position if the target location is a higher energy con?guration.19

Despite the large number of references to the sluggish diffusion characteristics of HEAs and the theories put forward to rationalise this behaviour,very little direct evidence exists to substantiate the claim.To date,only one study has speci?cally investigated this topic,using quasi-binary diffusion couples to assess the diffusion parameters of each of the subspecies in a CrMn 0?5FeCoNi alloy at temperatures between 900and 1100u C.20The temperature normalised activation energies (Q /T x ,where Q is the activation energy and T x is the melting temperature for pure metals and the solidus temperature for alloys)were found to be slightly higher in the HEA than those in either pure metals or a series of Fe–Cr–Ni alloys and this was concluded to provide evidence of the sluggish diffusion effect.20However,the normalised activation energies were not substantially greater than those of the other materials,which is perhaps surprising given the extent to which the sluggish kinetics have been alluded to.Therefore,it is clear that further work is required to establish the diffusion rates in HEAs and understand the in?uence of multiprincipal element solid solutions.

The present work does not attempt to make a direct assessment of the diffusion coef?cients of each species in Al 0?5CrFeCoNiCu,but does provide new information relating to the kinetics of precipitation.In particular,it is shown that when Al 0?5CrFeCoNiCu is cooled from the liquid state at a constant rate,between 10and 50u C min 21,precipitates form that were not present in the as cast material,which solidi?ed on a water cooled copper hearth.These results are in direct contrast to previous assertions and challenge the suggestion that the diffusion kinetics of this particular alloy is sluggish.1,14,15,21

Experimental

A small,40g ingot of Al 0?5CrFeCoNiCu was arc melted from elemental metals with purities of 99?95%or higher on a water cooled Cu hearth under an inert atmosphere.The ingot was inverted and remelted a total of ?ve times to increase the homogeneity of the ?nal material.Differential scanning calorimetry (DSC)was conducted

on 5mm diameter discs using a Netzsch 404high temperature calorimeter under ?owing argon.Samples were heated at a rate of 10u C min 21to a maximum temperature of 1450u C,y 100u C above the liquidus temperature of the material,and held at this temperature for 10min.Cooling from 1450u C was performed at nominal rates of 10,15,20,30,40and 50u C min 21,which were achieved experimentally to within ?1u C min 21until a temperature of 500u C.The DSC samples were sectioned vertically and metallographically prepared using P800–P4000grade silicon carbide paper,followed by polishing using a 0?06m m colloidal silica solution.Microstructural characterisation was performed using backscattered electron imaging (BSEI)in a JEOL 5800scanning electron microscope and an FEI Nova NanoSEM 450.Elemental partitioning information was obtained in the latter instrument using a Bruker XFlash 6solid state energy dispersive X-ray (EDX)detector.

Results

The composition and microstructure of Al 0?5CrFeCo NiCu in the as cast state has been characterised extensively in previous publications.16,17However,for completeness and ease of comparison with the results presented later,BSEI micrographs from the as cast condition are shown in Fig.1.Following arc melting and rapid cooling on a water chilled Cu hearth,a dendritic microstructure is observed,consisting of Cr–Fe–Co–Ni solid solution dendrites (darker contrast)and a Cu rich interdendritic constituent (lighter contrast).Previous work has shown that both of these phases have an fcc crystal structure and in addition,that an L12phase precipitates within the dendrites when cooled through a solvus between 800and 850u C.16,17

A DSC thermogram showing the heat ?ow evolution during the heating,melting and subsequent cooling of the as cast material at 10u C min 21is shown in Fig.2.Upon heating three distinct events were observed;a sigmoid like deviation at a temperature of y 850u C,and two endothermic peaks at y 1125and y 1350u C.The sigmoidal deviation has been associated with the dissolution of the L12precipitates back into solution,while the two large endothermic peaks correspond to the melting of the interdendritic material and the dendrites respectively.16,17

Upon cooling from a liquid state,a large exothermic peak occurred at y 1325u C,corresponding to

the

a 50m m;

b 10m m

1BSEI images of Al 0?5CrFeCoNiCu in as cast state showing dendritic microstructure

Jones et al.Rapid precipitation in Al 0?5CrFeCoNiCu high entropy alloy

2Materials Science and Technology 2014

VOL

000

NO

000

solidi?cation of the dendrites,followed by a smaller event at y 1115u C relating to the freezing of the interdendritic material.As with the heating data,a sigmoidal deviation is observed at y 815u C,which was attributed to the precipitation of the L12phase.However,in contrast to the heating data,an additional exothermic event was observed in the cooling data at a temperature of y 1010u C (see inset of Fig.2).This event suggested that the microstructural state following cool-ing at 10u C min 21is different from that observed in Fig.1,which was rapidly cooled on a water chilled copper heath.

The microstructure obtained following cooling at 10u C min 21is shown in Fig.3.As with the as cast condition,the material had a dendritic microstructure,but the slower cooling rate produced signi?cantly coarser features than those shown in Fig.1,for example,the size of the interdendritic regions.Critically,and in contrast to the as cast material,small precipitates,with a maximum dimension ,4m m,were observed within the lighter contrast interdendritic material.In addition,?ne acicular precipitates were also observed within the dendrites.These are more clearly seen in the higher magni?cation image given in Fig.3b .EDX elemental distribution maps,shown in Fig.4,were obtained from an area containing both dendritic and interdendritic material.The dendrite phase,present in the top left and

bottom right corners of the images,was rich in Cr,Fe and Co,while the interdendritic material,as shown in the centre of the image,was predominantly rich in Cu.The distribution of Ni and Al was more even between these two constituents,with Ni showing slightly higher concentrations in the dendrite regions and Al in the interdendritic material.The elemental partitioning between the dendritic and interdendritic regions is consistent with previous reports of as cast condition material.14,16,17

The precipitates observed within the interdendritic material in Fig.3were also clearly evident in the EDX maps shown in Fig.4.These precipitates were found to be rich in Cr,Fe and Co with extremely limited solubility for Cu.No preferential partitioning of Ni and Al could be determined from the maps obtained,suggesting an approximately even distribution of these elements.Secondary electron imaging showed that the larger circular feature within the interdendritic material at the top of the image was a shrinkage pore and that,therefore,the EDX signal corresponded to the dendrite phase beneath.However,this is a useful observation,as the contrast difference between this area and the smaller precipitates indicated that there is a compositional difference between the two features.In addition,the elemental maps shown in Fig.4indicated that an orientation relationship existed between the precipitates and the Cu rich interdendritic phase.The major axes of the precipitates are y 90u to each other,suggesting a strong orientation relationship with respect to the fcc parent structure.

A high magni?cation BSEI image of the acicular precipitates present within the dendritic material is shown in Fig.5a .A ?ne Widmansta ¨tten structure of high aspect ratio precipitates was observed,all of which were less than 2m m in length.As with the precipitates observed within the interdendritic region,the major axes of these precipitates also appear to be at y 90u to each other,which suggested that they also have a well de?ned orientation relationship with the parent phase.The lighter backscattered contrast suggested that these precipitates have a greater concentration of heavier elements than the Cr–Fe–Co–Ni rich dendrite phase.An EDX map of the distribution of Cu is presented in Fig.5b .Elevated levels of Cu were seen in formations that correlated with the precipitates shown in Fig.5a ,which is consistent with the BSEI

observation.

a 50m m;

b 10m m

3BSEI images of Al 0?5CrFeCoNiCu cooled at 10u C min 21from liquid

state

2DSC thermogram from as cast Al 0?5CrFeCoNiCu during

heating (red)and cooling (blue)at 10u C min 21

Jones et al.Rapid precipitation in Al 0?5CrFeCoNiCu high entropy alloy

Materials Science and Technology 2014

VOL

000

NO

0003

Heat ?ow data was also obtained from samples cooled from the liquid state in the DSC at rates of 15,20,30,40and 50u C min 21.The thermograms corresponding to these experiments are shown in Fig.6,and clearly exhibit the same exothermic event around 1010u C that was observed in Fig.2.It is well known that changing the cooling rate alters both the shape and position of a DSC peak;faster rates result in peaks that have greater amplitude,but which are depressed further from the true transformation temperature.22,23Such trends can be seen clearly for the two solidi?cation events in Fig.6.Therefore,it is interesting to note that the position of the peak around 1010u C increased at faster cooling rates,which can be more clearly seen in the inset of Fig.6.Nevertheless,the presence of this peak suggested that the precipitation of the extra phases observed in Fig.3occurred,even when cooling at a rate close to 1u C s 21.To verify this result,the microstructure of the material cooled at 50u C min 21was examined in the electron microscope.Micrographs obtained by BSEI from the 50u C min 21sample are shown in Fig.7,and revealed a dendritic structure similar in nature and length scale to that of the sample cooled at 10u C min 21.Consistent with the microstructure shown in Fig.3,small pre-cipitates were observed within the interdendritic mate-rial,albeit at a slightly ?ner scale than those observed following cooling at 10u C min 21.EDX maps,as shown in Fig.8,indicated that the elemental partitioning was very similar to that observed in the sample cooled at 10u C min 21.The dendrites were found to be rich in

Cr,

4EDX elemental distribution maps from Al 0?5CrFeCoNiCu cooled at 10u C min 21showing Cr,Fe and Co rich precipitates

within interdendritic

constituent

5a BSEI of microstructure of Al 0?5CrFeCoNiCu cooled at 10u C min 21showing precipitation in both dendritic and inter-dendritic materials and b corresponding Cu EDX map indicating ?ne acicular precipitates within the dendrites Cu rich

Jones et al.Rapid precipitation in Al 0?5CrFeCoNiCu high entropy alloy

4Materials Science and Technology 2014

VOL

000

NO

000

Fe and Co,while the interdendritic material was Cu based and the precipitates within this phase were rich in Cr,Fe and Co.Evidence of the Widmansta ¨tten precipitates within the dendrites was also observed in the BSEI.However,the scale of these precipitates was too ?ne to enable partitioning data to be collected via EDX mapping in an SEM.

Discussion

The observation of precipitates,both within the dendritic and interdendritic material following relatively fast,constant rate cooling,is highly signi?cant,particu-larly given the previous claims of sluggish diffusion in this alloy.The formation of precipitates,such as those seen in Figs.3and 5,requires the coordinated long range diffusion of different atomic species.The fact that pronounced segregation has occurred during such a

short time period clearly indicated that the diffusion kinetics of different atomic species within Al 0?5CrFe CoNiCu are not slow.It could be argued that this result is unsurprising for the interdendritic regions,as this phase is predominantly Cu rich and would therefore be expected to behave as a conventional alloy.However,the same argument cannot be made for the dendritic material,where at least four elements are present in near equiatomic concentrations.

The high temperature phase equilibria of Al 0?5Cr FeCoNiCu is known to consist of two fcc solid solutions,but at temperatures below 1000u C,it has now been established that three other phases can also exist in equilibrium;a Ni–Al based B2,a Cr–Co–Fe based s phase and an L12phase.16Formation of the B2phase has been reported following extended heat treatments at temperatures between 700and 900u C,but was not present when annealed at or above 1000u C.15,16Similarly,the s phase has been observed to form during exposures to temperatures within the range of 700–850u C,but was not present at 900u C.15,16The L12phase is often found in the room temperature microstructure of this alloy,as the solid state ordering transformation appears to be quench insuppressible.17However,it is only in equilibrium below the solvus temperature,which lies between 800and 850u C.16

Given that the additional,exothermic event in the DSC thermograms occurred just above 1000u C (Figs.2and 6),and that the B2phase has been reported to form following a 1h heat treatment at 900u C,15it might be expected that the precipitates observed in Fig.3would correspond to this phase.However,neither of the two precipitate phases observed in the current study have a chemistry remotely similar to that previously reported for the B2phase.16In fact,the precipitates within the interdendritic region have a chemistry that is closer to that reported for the s phase following 1000h exposures and therefore,presumably at equilibrium.16Yet,it seems unlikely that the intragranular precipitates observed within the interdendritic regions are s ,since this phase has a highly complex structure and is more commonly observed to form along grain boundaries.24–26In addition,previous studies of duplex stainless steels have demonstrated that cooling rates §15u C min 21are suf?cient to suppress the formation of s ,27–29and nearly all of the rates considered in the present work were above this

value.

6DSC thermograms illustrating in?uence of cooling rate

on Al 0?5

CrFeCoNiCu

a 50m m;

b 10m m

7BSEI images of Al 0?5CrFeCoNiCu cooled at 50u C min 21from liquid state

Jones et al.Rapid precipitation in Al 0?5CrFeCoNiCu high entropy alloy

Materials Science and Technology 2014

VOL

000

NO

0005

High aspect ratio Widmansta ¨tten plates have pre-viously been observed to form within the similar composition fcc matrices of Al 0?5CrFeCoNiCu 21and Al 0?3CrFeCoNiCu 0?530following furnace cooling from 1100u C.High resolution transmission electron micro-scopy has shown these plates to have elevated Cu contents with an fcc structure.In addition,Cu rich precipitates have been reported to occur in the dendritic regions of Al 0?5CrFeCoNiCu following long duration exposures at 850u C.These precipitates were believed to be the same phase as the interdendritic constituent.16The observation of these two distinct precipitate populations may be rationalised through consideration of the phase equilibria and governing thermodynamics.The Gibbs energy curve for this alloy is known to contain a miscibility gap,17and the equilibrium compo-sitions of the dendritic and interdendritic constituents show a signi?cant divergence between their values at 1000u C,where they are the only stable phases,to 850u C,where four phases are in equilibrium.16Therefore,it is unsurprising that,when rapidly cooled,the solubility limit for certain species in both of the solidi?cation phases may be reached and that intragranular precipita-tion can occur.The miscibility gap in this alloy provides the potential for each of the supersaturated metastable solidi?cation phases to separate,forming precipitates of the other thermodynamically stable phase within itself.If the driving force for such precipitation is related to the level of supersaturation in the parent solid solutions,then the behaviour of the corresponding DSC peak with respect to cooling rate can be rationalised.Slower cooling rates enable each element to diffuse greater

distances,thereby reducing the levels of supersaturation in each parent phase.This reduced supersaturation lowers the Gibbs energy driving precipitation and,as a result,the critical temperature at which the saturation limits were reached would decrease with cooling rate,depressing the onset of precipitation.Precipitates formed in this manner would exhibit a distinct orientation relationship with the parent structure that,in cubic materials,is likely to promote growth along the ,100.due to elastic anisotropy,31as seen in Al 0?3CrFeCo NiCu 0?5.30Clearly,this hypothesis is speculative at present and the crystallography of the precipitates needs to be con?rmed using transmission electron microscopy.Nevertheless,the formation of precipitates in Al 0?5CrFe CoNiCu,when cooled at rates up to 50u C min 21from the liquid state,requires long range diffusion and,contrary to previous suggestions,demonstrates that the kinetics of this alloy can not be considered anomalously sluggish.

Conclusions

The microstructure of an arc melted Al 0?5CrFeCoNiCu high entropy alloy has been characterised using scanning electron microscopy following cooling from the liquid state at rates between 10and 50u C min 21.These microstructures were compared to that of the as cast material,which solidi?ed rapidly on a water cooled Cu hearth.The as cast material,which has been characterised previously,16,17contained three phases:a Cr–Fe–Co–Ni solid solution dendrite phase,Cu rich interdendritic material and L12precipitates that form when cooled through a solvus temperature between 850and 800u

C.

8EDX elemental distribution maps from material cooled at 50u C min 21showing Cr,Fe and Co rich precipitates within

interdendritic constituent

Jones et al.Rapid precipitation in Al 0?5CrFeCoNiCu high entropy alloy

6Materials Science and Technology 2014

VOL

000

NO

000

DSC identi?ed exothermic events associated with solidi?cation of the dendritic and interdendritic consti-tuents as well as the precipitation of the L12phase.In addition,an extra exothermic event was observed around1010u C in the thermograms recorded from the samples cooled between10and50u C min21.Micros-tructural examination identi?ed the formation of new precipitates in both the dendritic and indendritic regions.The precipitates within the dendrites were extremely?ne and had an acicular morphology.EDX analysis suggested that these precipitates were slightly enriched in Cu compared with the surrounding matrix. Within the interdendritic regions,slightly coarser acicular precipitates were observed,rich in Cr,Fe and Co,but depleted in Cu.While the crystal structures of these precipitates were not established,their formation during cooling at rates approaching1u C s21demon-strates that the diffusion kinetics in this alloy is not,as previously reported,sluggish. Acknowledgements

The authors would like to acknowledge support from the EPSRC/Rolls-Royce Strategic Partnership under EP/H500375/1,EP/M005607/1(NGJ and HJS)and EP/ H022309/1(KAC).

References

J.Yeh,S.Chen,S.Lin,J.Gan,T.Chin,T.Shun,C.Tsau and S.

Chang:‘Nanostructured high-entropy alloys with multiple princi-pal elements:novel alloy design concepts and outcomes’,Adv.Eng.

Mater.,2004,6,(5),299–303.

O.N.Senkov,G. B.Wilks,J.M.Scott and D. B.Miracle:‘Mechanical properties of Nb25Mo25Ta25W25and V20Nb20Mo20 Ta20W20refractory high entropy alloys’,Intermetallics,2011,19,

(5),698–706.

Y.J.Zhou,Y.Zhang,Y.L.Wang and G.L.Chen:‘Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties’,Appl.Phys.Lett.,2007,90,(18),181904.

F.J.Wang and Y.Zhang:‘Effect of Co addition on crystal

structure and mechanical properties of Ti0?5CrFeNiAlCo high entropy alloy’,Mater.Sci.Eng.A,2008,A496,(1–2),214–216.

O.N.Senkov,C.Woodward and D.B.Miracle:‘Microstructure and properties of aluminum-containing refractory high-entropy alloys’,JOM,2014,66,(10),2030–2042.

M.-H.Chuang,M.-H.Tsai,W.-R.Wang,S.-J.Lin and J.-W.Yeh:‘Microstructure and wear behavior of Al x Co1?5CrFeNi1?5Ti y high-entropy alloys’,Acta Mater.,2011,59,(16),6308–6317.

C.Y.Hsu,J.W.Yeh,S.K.Chen and T.T.Shun:‘Wear resistance

and high-temperature compression strength of Fcc CuCoNiCr Al0?5Fe alloy with boron addition’,Metall.Mater.Trans.A,2004, 35A,(5),1465–1469.

S.-T.Chen,W.-Y.Tang,Y.-F.Kuo,S.-Y.Chen,C.-H.Tsau,T.-T.

Shun and J.-W.Yeh:‘Microstructure and properties of age-hardenable Al x CrFe1?5MnNi0?5alloys’,Mater.Sci.Eng.A,2010, A527,(21–22),5818–5825.

C.-Y.Hsu,T.-S.Sheu,J.-W.Yeh and S.-K.Chen:‘Effect of iron

content on wear behavior of AlCoCrFe x Mo0?5Ni high-entropy alloys’,Wear,2010,268,(5–6),653–659.

P.K.Huang,J.W.Yeh,T.T.Shun and S.K.Chen:‘Multi-

principal-element alloys with improved oxidation and wear

resistance for thermal spray coating’,Adv.Eng.Mater.,2004,6,

(12),74–78.

Y.Chen,T.Duval,U.Hung,J.Yeh and H.Shih:‘Microstructure

and electrochemical properties of high entropy alloys–a

comparison with type-304stainless steel’,Corros.Sci.,2005,47,

(9),2257–2279.

Y.Chen,U.Hong,H.Shih,J.Yeh and T.Duval:‘Electrochemical

kinetics of the high entropy alloys in aqueous environments–a

comparison with type304stainless steel’,Corros.Sci.,2005,47,

(11),2679–2699.

Y.Hsu,W.Chiang and J.Wu:‘Corrosion behavior of

FeCoNiCrCu x high-entropy alloys in3?5%sodium chloride

solution’,Mater.Chem.Phys.,2005,92,(1),112–117.

C.Tong,Y.Chen,S.Chen,J.Yeh,T.Shun,C.Tsau,S.Lin and S.

Chang:‘Microstructure characterization of Al x CoCrCuFeNi high-

entropy alloy system with multiprincipal elements’,Metall.Mater.

Trans.A,2005,36A,(4),881–893.

C.Ng,S.Guo,J.Luan,S.Shi and C.T.Liu:‘Entropy-driven

phase stability and slow diffusion kinetics in an Al0?5CoCrCuFeNi

high entropy alloy’,Intermetallics,2012,31,165–172.

N.G.Jones,A.Frezza and H.J.Stone:‘Phase equilibria of an

Al0?5CrFeCoNiCu high entropy alloy’,Mater.Sci.Eng.A,2014,

A615,214–221.

N.G.Jones,J.W.Aveson,A.Bhowmik,B.D.Conduit and H.J.

Stone:‘On the entropic stabilisation of an Al0?5CrFeCoNiCu high

entropy alloy’,Intermetallics,2014,54,148–153.

18.J.-W.Yeh:‘Recent progress in high-entropy alloys’,Ann.Chim.–

Sci.Mater.,2006,31,(6),633–648.

M.-H.Tsai and J.-W.Yeh:‘High-entropy alloys:a critical review’,

Mater.Res.Lett.,2014,2,(3),107–123.

K.Y.Tsai,M.H.Tsai and J.W.Yeh:‘Sluggish diffusion in Co–

Cr–Fe–Mn–Ni high-entropy alloys’,Acta Mater.,2013,61,(13),

4887–4897.

C.-W.Tsai,Y.-L.Chen,M.-H.Tsai,J.-W.Yeh,T.-T.Shun and S.-K.

Chen:‘Deformation and annealing behaviors of high-entropy alloy

Al0?5CoCrCuFeNi’,J.Alloys Compd,2009,486,(1–2),427–435.

22.W.J.Boettinger,U.R.Kattner,K.W.Moon and J.H.Perepezko:

‘DTA and heat-flux DSC measurements of alloy melting and

freezing’,960-15;2006,Gaithersburg,MD,NIST.

23.G.Ho¨hne,W.F.Hemminger and H.-J.Flammershei:‘Differential

scanning calorimetry’;2003,Berlin,Spinger.

C.M.F.Rae and R.C.Reed:‘The precipitation of topologically

close-packed phases in rhenium-containing superalloys’,Acta

Mater.,2001,49,(19),4113–4125.

25.E.O.Hall and S.H.Algie:‘The sigma phase’,Metall.Rev.,1966,

11,(1),61–88.

A.K.Sinha:‘Topologically close-packed structures of transition-

metal alloys’,Prog.Mater.Sci.,1972,15,(2),79.

T.H.Chen and J.R.Yang:‘Effects of solution treatment and

continuous cooling on sigma-phase precipitation in a2205duplex

stainless steel’,Mater.Sci.Eng.A,2001,A311,(1–2),28–41.

L.H.Chiu,W.C.Hsieh,and C.H.Wu:‘Cooling rate effect on

vacuum brazed joint properties for2205duplex stainless steels’,

Mater.Sci.Eng.A,2003,A354,(1–2),82–91.

H.Sieurin and R.Sandstro¨m:‘Sigma phase precipitation in duplex

stainless steel2205’,Mater.Sci.Eng.A,2007,A444,(1–2),271–

276.

M.-H.Tsai,H.Yuan,G.Cheng,W.Xu,K.-Y.Tsai,C.-W.Tsai,

W.W.Jian,C.-C.Juan,W.-J.Shen,M.-H.Chuang,J.-W.Yeh and

Y.T.Zhu:‘Morphology,structure and composition of precipitates

in Al0?3CoCrCu0?5FeNi high-entropy alloy’,Intermetallics,2013,

32,329–336.

31.J.F.Nye:‘Physical properties of crystals’;1957,Oxford,Oxford

University Press.

Jones et al.Rapid precipitation in Al0?5CrFeCoNiCu high entropy alloy Materials Science and Technology2014VOL000NO0007

看美国人如何教育小学生

看美国人如何教育小学生 一个经济强国背后的推动力是什么?他们究竟行使一套怎样与众不同的管理 和教育制度? 也许国内的读者会觉得,一个已经读到五年级,马上就要毕业的美国小学生,对其数学能力的要求,仅仅限于加、减、乘、除运算,这未免水平太低了。 我婆婆退休前是搞幼儿教育的,她看到美国小学生整天“都在玩”不免叹气, 她对我说,施嘉特今年五年级,马上就小学毕业了,要是在中国,学生的压力已 经很大,整天埋头做功课。可是你看这孩子,每天放学就出去和一群野孩子打美 式橄榄球、踢足球……疯玩,做作业、弹钢琴的时间那么少,你做母亲的要抓紧啊!我说,施嘉特在学校成绩几乎全A,除了偶尔失手,有时候连着拿几个100分回来。对美国小学生来说,我觉得够了。小学教育不是精英教育,我更注重他运动、课外活动、交友联谊等的全面发展。 当然,婆婆还是不满意,她说美国的功课太松、作业太浅,估计考试也很容易。她强调,我们中国人讲究打基础——扎实的基础。其实,美国人也讲究打基础。只是中国的所谓的“基础”,和美国人的不同罢了。美国人讲究做人的底线, 这种观念就是从小培养起来的。美国小学生要打的基础是做人的自信、诚实、善良、公正、包容,以及独立自主的意识,也就是说,他们从小就学会了美国文化 的核心价值,而不是为这个核心价值服务的知识。 然而,与我婆婆持相同观点的大有人在,更有甚者把美国的中小学教育贬为“一塌糊涂”,其中措辞最激烈、情绪最激动的多是从中国来的中小学教师。他们 得意的是,每年国际数学竞赛名列前茅的都是中国学生,美国的中小学教育简直 无法和中国的相比。有时候,美国中文报纸上还有大标题“数学比一比,美国只能算发展中国家。” 有一次华人聚会,孩子们的父母回忆起自己年轻时的故事,在场的女士坦白,当年找丈夫的标准几乎都是要“学习好”,至于外形、性情、修养都在其次。而眼 下自己的下一代,如果你问她们班上男生谁的学习成绩最好,她们很茫然,但学 校里哪个男生运动最出色,绝对了如指掌。在孩子们眼里。朋友、友情、快乐, 比成绩重要多了。 一位带着9岁儿子来美国的父亲感叹,把儿子交给美国学校真是忧心忡忡, 那是什么样的学校呀!课堂上随意得像自由讨论,可以放声大笑;老师和学生常常坐在地上没大没小,上学就像在玩游戏;每天下午3点就放学;还居然没有统一 的教科书。 只是孩子放学后直奔图书馆,常常背满满一袋书回来,可是没两天就还了。 他又问,借这么多书干吗?儿子回答:“做作业。”然后,看到儿子在电脑上打出作业的题目《中国的昨天和今天》,他惊得差点儿跌地,这都是什么题目?试问哪 位在读博士生敢去做这么大的课题?他责问儿子这是谁的主意,儿子正色道:“老 师说,美国是个移民的国家,每个同学都要写一篇关于自己祖先生活国度的文章,还要根据地理、历史、人文,分析与美国的不同,并阐述自己的观点和看法。”这位父亲没有做声。

美国五大经济指数的基本情况

美国五大经济指数的基本情况 一、先行指数(the Leading Index) 先行指数是先行指标(the Leading Indicators)的合成指数。美国的先行指数由世界大型企业联合会(the Conference-Board)根据下列先行指标编制:(1)周平均制造时间;(2)周平均失业保险申领;(3)生产商新订单(消费品和原料);(4)销售商业绩;(5)生产商新订单(不包括防御设施的资本货物);(6)新建房屋许可;(7)500种普通股票价格;(8)货币供应量M2;(9)10年期国库券利率与联邦基金利率的差值;(10)消费者预期指数。 附:先行指标是指在宏观经济波动达到高峰或低谷前,超前出现的高峰指标或低谷指标。先行指标可以对将来的经济状况提供预示性的信息。先行指标相对于同步指标、滞后指标,是三类经济指标之一。目前许多西方国家都把先行指标作为短期预测的重要依据,但不同国家有不同的先行指标体系,如美国确定的先行指标包括上述10个指标,日本经济企划厅确定的先行指标包括13个指标。先行指标一般主要有货币供应量、股票价格指数等。 同步指标主要包括失业率、国民生产总值等。这些指标反映出的国民经济转折点,大致与总的经济活动的转变时间同时发生。 滞后指标主要有银行短期商业贷款利率、工商业未还贷款等。这些指标反映出的国民经济的转折点,一般要比实际经济活动晚半年。 二、消费者信心指数(the Consumer Confidence Index) 消费者信心指数是反映消费信心强弱的指标,是综合反映并量化消费者对当前经济形势评价和对经济前景、收入水平、收入预期以及消费心理状态的主观感受,预测经济走势和消费趋向的一个先行指标。消费者对经济前景乐观看好,消费信心提升,消费支出则增长;如果消费者对经济的发展和前景缺乏信心,或对经济前景的看法从乐观转向悲观,消费紧缩会接踵而至,直接影响或间接影响为经济发展速度减缓。 消费者信心指数是由满意指数和预期指数构成。满意指数是指消费者对当前经济状况的评价,预期指数表示消费者对未来一段时期经济前景的期望。消费者信心指数是宏观景气监测预警系统中的一项重要内容,其编制和应用在欧美等发达国家己很成熟。美国的消费者信心指数由世界大型企业联合会指出。我国目前也已编制和应用这一指数。 三、CEO信心指数(CEO Confidence Index) 美国CEO信心问卷调查和CEO指数编制,是由世界大型企业联合会于1976年发起,旨在反映CEO对宏观经济的预期。 CEO指数的构成和编制以第季度的CEO信心问卷调查为基础。调查群体为800-1000个美国公司的CEO,从中选择l00-150个有代表性的回复问卷作为样本。调查内容涉及四个常规问题,其中两个是关于宏观经济的态度和预期,两个关于各自所处产业的整体状况态度和预期。此外,在每个季度的调查中还涉及1-2个特殊的附助问题。CEO指数是下列三个答案

ORACLE数据备份与数据恢复方案

O R A C L E数据备份与数据恢 复方案 Prepared on 24 November 2020

摘要 结合金华电信IT系统目前正在实施的备份与恢复策略,重点介绍电信业务计算机管理系统(简称97系统)和营销支撑系统的ORALCE数据库备份和恢复方案。 Oracle数据库有三种标准的备份方法,它们分别是导出/导入 (EXP/IMP)、热备份和冷备份。要实现简单导出数据(Export)和导入数据(Import),增量导出/导入的按设定日期自动备份,可考虑,将该部分功能开发成可执行程序,然后结合操作系统整合的任务计划,实现特定时间符合备份规划的备份应用程序的运行,实现数据库的本级备份,结合ftp简单开发,实现多服务器的数据更新同步,实现数据备份的异地自动备份。 关键字:数据库远程异地集中备份 目录

一、前言 目前,数据已成为信息系统的基础核心和重要资源,同时也是各单位的宝贵财富,数据的丢失将导致直接经济损失和用户数据的丢失,严重影响对社会提供正常的服务。另一方面,随着信息技术的迅猛发展和广泛应用,业务数据还将会随业务的开展而快速增加。但由于系统故障,数据库有时可能遭到破坏,这时如何尽快恢复数据就成为当务之急。如做了备份,恢复数据就显得很容易。由此可见,做好数据库的备份至关重要。因此,建立一个满足当前和将来的数据备份需求的备份系统是必不可少的。传统的数据备份方式主要采用主机内置或外置的磁带机对数据进行冷备份,这种方式在数据量不大、操作系统种类单一、服务器数量有限的情况下,不失为一种既经济又简明的备份手段。但随着计算机规模的扩大,数据量几何级的增长以及分布式网络环境的兴起,将越来越多的业务分布在不同的机器、不同的操作平台上,这种单机的人工冷备份方式越来越不适应当今分布式网络环境。 因此迫切需要建立一个集中的、自动在线的企业级备份系统。备份的内容应当包括基于业务的业务数据,又包括IT系统中重要的日志文件、参数文件、配置文件、控制文件等。本文以ORACLE数据库为例,结合金华电信的几个相关业务系统目前正在实施的备份方案,介绍ORACLE数据库的备份与恢复。 二、金华电信ORACLE数据库的备份与恢复方案 由于金华电信IT系统以前只采用逻辑备份方式进行数据库备份,速度较慢并且数据存储管理都很分散,甚至出现备份数据不完整的现象。为了提高备份数据的效率,提供可靠的数据备份,完善备份系统,保证备份数据的完整性,降低数据备份对网络和服务器的影响,对每个IT系统的备份数据进行集中管理,我们对备份工作进行了改进,将逻辑备份与物理备份相结合,在远程建立了一个异地集中、自动在线的备份系统即网络存储管理系统。(这里用到的物理备份指热备份)其具备的主要功能如下:(1)集中式管理 :网络存储备份管理系统对整个网络的数据进行管理。利用集中式管理工具的帮助,系统管理员可对全网的备份策略进行统一管理,备份服务器可以监控所有机器的备份作业,也可以修改备份策略,并可即时浏览所有目录。所有数据可以备份到同备份服

美国中小学生守则

Classroom Rules: High School Level 高中 1 Arrive on time. 2.Raise your hand before speaking. 3.Listen to others and participate in class discussions. https://www.wendangku.net/doc/7b11662932.html,e the pencil sharpener during noninstructional time. Stay on task. 5.Do your assignments. 6.Bring materials and have them ready. 7.Listen to directions. 8.Cooperate with your group. 9.Pick up after yourself. 10.Leave other people's materials alone. 11.Do not interrupt other students' learning. 12.Keep hands, feet and objects to yourself. 13.Keep your hands clean and take care of personal hygiene in the rest room during breaks. 14.No vandalism. Don't write or carve on your desk or school property. 15.Treat computers with care. elementary school小学 Class Rules 1.No interfering with the teaching and learning of others. 2.Respect personal space, rights and property of others. 3.Follow directions of all your teachers. https://www.wendangku.net/doc/7b11662932.html,e to class prepared with all supplies and homework complete. 5.Raise your hand before you speak during a classroom lesson. 6.Obey all school rules. https://www.wendangku.net/doc/7b11662932.html,plete all assignments neatly and on time. 8.Be quiet in lines, hallways, and restrooms.

数据备份与恢复方案

数据备份与恢复方案 2016年8月 目录 1概述 (1) 2备份需求 (1) 3策略 (1) 3.1备份环境 (1) 3.2备份节点 (1) 3.3备份方案概述 (1) 3.4数据恢复概述 (2) 4方案 (2) 5可能遇到情况及解决方法 (5)

1概述 随着公司信息化系统建设的不断推进,我们对信息系统的实时性要求也会越来越高,系统运行遇到故障时尽快恢复服务对公司的正常运营至关重要; 为最大限度保障云盘用户数据安全性,同时为了能在不可预计灾难情况下,保证云盘的安全快速恢复工作,所以需要对云盘进行数据备份与恢复工作。 方案主要内容:数据备份是指通过软件自动执行或手工操作将服务器重要文件及数据保存到磁盘柜和磁带等存储设备上。主要目的是减少及避免由于服务器软硬件故障造成的数据丢失,确保公司信息系统出现故障时在最短的时间内恢复运行并且重新提供服务。 云盘环境 采用双节点方式部署: 服务器:2台物理服务器均安装CentOS 7.0系统与云盘软件。 数据存储:2台服务器分别为:db_master与db_slave,各挂载3T的FC-SAN存储。 2备份需求 对2台云盘服务器数据进行备份,并验证恢复,保证数据安全性。 3策略 3.1备份环境 需要1台服务器安装CV备份服务器,分别为云盘服务器上安装CV控制台,因考虑备份服务器存放备份文件,故CV备份服务器挂载存储需要大于7T(云盘服务器存储为:800G磁盘+3T存储)。 3.2备份节点 2台生产环境云盘服务器都需要备份/data/data_all、/lefsdata、/usr/local/lefos,同时做好标记,区分开主服务器与副服务器的/data/data_all、/lefsdata、/usr/local/lefos。 3.3备份方案概述 将2台生产服务器安装CV客户端,从CV服务器中检测云盘服务器。检测到后,拷贝数据到CV服务器指定目录下。 3.4数据恢复概述 数据恢复时对应主、副服务器,从CV服务器上进行相关操作,将备份的主服务器与副服务器的/data/data_all、/lefsdata、/usr/local/lefos传输回备份服务器目录位置,检测拷贝后文件的所有者与所有组、权限是否正确,重启所有服务。

对美国新奥尔良意大利广场的调查与介绍

对新奥尔良意大利广场的调查与分析 学院:艺术学院、园林学院 专业年级:08风景园林 姓名:周思 学号:082314045 指导老师:王敏华 2011年3月6日

对新奥尔良意大利广场的调查与分析 内容提要: 本文主要以调查与分析新奥尔良意大利广场为目的,具体介绍了新奥尔良的地理历史和其设计者查尔斯·摩尔的生平,并对其建筑风格是属于后现代主义流派还是新古典主义流派进行了讨论,还肯定了查尔斯·摩尔对于空间的创造能力。除此之外,本文重点介绍了新奥尔良意大利广场的构成和评价。 关键词:新奥尔良意大利广场、查尔斯·摩尔、后现代主义、新古典主义、空间、人文、 一、简介 新奥尔良市意大利广场于1973年建立,花费165万美元,目的是为了表示对居住在该市的美籍意大利人表示尊敬,设计者是美国著名设计大师查尔斯·摩尔。整个广场的造型与古罗马建筑相似,可以说是把古罗马的广场缩影到新奥尔良市,但有许多创新的,现代的东西融汇在里面,可以说是一件举世哗然的作品。 二、关于新奥尔良 新奥尔良(New Orleans)是美国路易斯安那州最大的城市,是美国仅此于纽约的第二大港城。这是美国大陆上最有特色的城市,因为在新奥尔良的街头,你会有疑问,这是美国吗?坐着古老的街车沿圣查尔斯大街从法国区向上城缓缓行驶,人宛如步入时光隧道,从欧陆风情的法国区,到典型美国商业区,再到宛如美国南卡罗来纳州查尔斯顿的橡树大道,还有20世纪初曾经普及的维多利亚式建筑。这些不同的语言、文化、艺术符号交织在一起,汇聚成一座独一无二的新奥尔良市。 三、查尔斯·摩尔和他的建筑风格 (一)生平 查尔斯·摩尔(Charles Moore),1925生于美国密歇根州(Benton Harbor, Michigan),1993年12月去世,享年68岁,伟大的建筑大师,一个标新立异的天才。1949年,查尔斯·摩

美国中小学生课程表

美国中小学生课程表 美国新泽西州克尔尼镇林肯学校2002——2003学年度三年级B班课程表: 每天: 9:00 Reading; 9:45 Specials; 10:30Spelling; 11:15Social studies; 12:00Lunchtime; 1:00English; 1:45Science; 2:30Homework。 3:00Go back home。 副科: 星期一:Music 星期二:Sports 星期三:Art 星期四:Sports 星期五:Computer 7年级(相当于国内初一) 每天的课程会有6节课,分6个科目。每个科目中,也有几种课让学生选择。学生从每个类别中选出一种课程,递交教务处审批,批准后,就会成为学生的课程表了。 1.ART 艺术 I.绘画 II.工艺品 2.GYM/HEALTH 运动和健康教育 3.Language Arts 语文 I.English –0700 中级英语 II.English –0720 中级英语 III.English - 0770, 0780, 0790 英语(针对有特别需求的学生)4.Math 数学 I.2700 Algebra 代数学(专为对代数有特别能力和兴趣的学生设计)II.2710 Algebra 代数学(为中等水平的学生设计)

III.2720 Algebra 代数学(为学代数有困难的学生设计) IV.2730 Algebra 代数学(为有特别需求的学生设计)5.History 历史学 I.Athenian Government 雅典政制 II.Rome 罗马 III.world culture 世界文化 IV.The Vikings 海盗 V.World War II 二战历史 6.Science 科学 I.Family and Consumer Sciences 家庭与消费的科学II.oceans and climates 海洋和气候 另外,学校会要求学生在暑假时候,阅读一些书籍,包括: I.The King of Shadows (作者:Cooper) II.Hope Was Here (作者:Bauer) III.Stargirl (作者:Spinelli) IV.Boy (作者:Dahl)

信息系统数据备份与管理办法

数据备份与恢复管理办法 第一章总则 第一条为加强中国航发湖南动力机械研究所(以下简称“动研所”)信息系统数据的备份与管理,避免信息系统数据的丢失,确保生产、经营、管理等应用系统的安全稳定运行和历史数据的有效保存,特制定本管理办法。 第二条数据是信息系统的基础,是企业的重要资源。数据备份是保证数据安全的有效技术手段,是信息安全体系的重要组成部分。数据备份的内容应包括企业生产、经营、管理等信息系统中的所有关键数据,具体是指计算机和网络设备的操作系统、应用软件、系统数据和应用数据。 第三条数据备份与管理应遵循“统一领导、统一规划、统一标准、统一建设、分级管理”的原则。 第四条本管理办法适用于动研所所有数据备份和恢复操作。 第二章组织机构与职责 第五条信息化技术研究部负责动研所信息系统的数据备份、运行维护与管理。 第六条信息化技术研究部是数据备份的归口管理部门,负责动研所信息系统的数据备份、运行维护与管理工作。 第七条信息化技术研究部设立数据备份岗位,并实行主、副岗制度,具体负责本单位数据备份工作的日常管理,包括检查、监督、考核和统计等工作。 第八条动研所应明确各种信息系统业务主管部门和运行管理部门的责任,已正式投运的信息系统,其数据备份与管理工作由信息化技术研究部负责;正在建设但未经正式验收投运的信息系统,其数据备份与管理工作原则上由该信息系统的业务主管部门委托开发商进行,信息化技术研究部给予必要的配合。 第九条数据备份技术及相关人员上岗前要进行培训,具备必要的技能。设备或技术更新,或者备份策略和恢复预案发生变化后,要及时进行培训。

第三章数据备份 第十条数据备份应根据系统情况和备份内容,采用不同的备份方式: 1.完全备份:对备份的内容进行整体备份。 2.增量备份:仅备份相对于上一次备份后新增加和修改过的数据。 3.差分备份:仅备份相对于上一次完全备份之后新增加和修改过的数据。 4.按需备份:仅备份应用系统需要的部分数据。 具体所采取的备份方式,应能确保真实重现被备份系统的运行环境和数据。 第十一条在规划设计以及新建信息系统时应充分考虑系统的备份需求,填写《数据备份需求登记表》(附录1,)在系统投运前完成备份策略(附录2)和恢复预案的制定并在系统投运后同时开始执行;已投运的信息系统备份需求发生变化时,要及时调整数据备份策略和恢复预案。备份策略和恢复预案的制定与调整需报主管领导批准。 第十二条信息化技术研究部在对计算机和设备进行软件安装、系统升级改造或更改配置时,应进行系统、数据和设备参数的完全备份;系统更新后,应实现数据的迁移或转换,确保历史数据的完整性,并对原系统及其数据进行完全备份。 第十三条数据备份系统的建设应统一纳入信息化发展规划并按分层分级 组织实施。 第十四条数据备份系统及介质的选型要满足各系统的备份策略及保存要求,包括安全可靠性、性能和服务质量、冗余等,确保通过数据备份能及时恢复各种故障情况下造成的数据丢失。 第十五条信息化技术研究部应制定相关运行和维护管理制度,加强对数据备份系统的运行和维护管理,确保数据备份系统可靠运行。 第十六条应对数据备份操作进行记录,填写《数据备份记录表》(附录3),操作可能影响到信息应用系统正常运行的,要报该信息系统业务主管部门和信息化技术研究部审查,并经主管领导批准。 第十七条数据备份工作人员要认真做好数据备份的文档工作,完整地记录备份系统的配置和备份数据源的系统配置;做好备份工作的运行日志和维护日志;建立备份文件档案及档案库,详细记录备份数据的信息。要做好数据备份的文卷管理,所有备份应有明确标识,包括卷名、运行环境、备份人。卷名按统一的规则来命名,即由“系统名称-(数据类型+备份方式+存储介质)-备份时间-序号”组成。 系统名称数据类型备份方式存储介质备份时间序号 ABC 0操作系统0完全备份1光盘YYYYMMDDXXX 1应用软件1增量备份2硬盘

美国各州的缩写及主要城市

一、xx 英文州名(缩写):Alabama (AL) 区号:205–251–256–334 主要xx: 1、xx(Birmingham) 2、xx(Montgomery) 3、xx次维尔(Huntsville) 4、xx(Tuscaloosa) 5、xx(Mobile) 二、xx 英文州名(缩写):Alaska (AK) 区号:907 主要xx: 1、xx(Juneau) 2、安克拉奇(Anchorage) 3、xxxx(Fairbanks) 三、xx 英文州名(缩写):Arizona (AZ) 区号:480–520–602–623–928 主要xx: 1、菲尼克斯[凤凰城](Phoenix)

2、xx(Tucson) 3、xx(Mesa) 四、xx 英文州名(缩写):Arkansas (AR) 区号:501–870 主要xx: 1、xx(Little Rock) 2、菲页维尔(Fayetteville) 五、xx 英文州名(缩写):California (CA) 区号:209–213–310–323–408–415–510–530–559–562–619–626–650–661–707–714–760–805–818–831–858–909–916–925–949 主要xx: 1、萨克拉门托(Sacramento) 2、xx(Sonoma) 3、圣xx(San Jose) 4、xx(Los Angeles) 5、xx(San Diego) 6、旧金山(San Francisco) 六、xx 英文州名(缩写):Colorado (CO)

区号:303–719–720–970 主要xx: 1、xx(Denver) 2、xxxx(Boulder) 3、科罗拉多泉(Clolrado Springs) 七、xx 英文州名(缩写):Connecticut (CT) 区号:203–860 主要xx: 1、xx(Hartford) 八、xx 英文州名(缩写):Delaware (DE) 区号:302 主要xx: 1、多佛(Dover) 2、xx(Wilmington) 3、xx(Newark) 九、xx 英文州名(缩写):Florida (FL) 区号:305–321–352–386–407–561–727–754–772–786–813–850–863–904–941–954

美国中小学生守则中英文对照

美国中小学生守则中英文对照 1. Always refer to a teacher by title and last name. (总是称 呼老师职位或尊姓。) 2. Get to class on time or a little earlier. (按时或稍提前到课 堂。) 3. Raise your hand when you want to ask a question. (提问 时举手。) 4. You may speak to the teacher from your desk while you are seated. (可以在你的座位上与老师讲话。) 5. When you are absent, you must make up the work you have missed. Ask either the teacher or a classmate for the work. (缺席时必须补上所缺课业。向老师或同学请教。) 6. If you expect to be away from school because of an emergency, tell your teacher in advance and ask for the work you will miss. (如果因紧急离开学校,事先告诉你的老师并索取耽误的功课。) 7. All assignments you hand in must be your own work. (交的 所有作业必须是你自己完成的。) 8. Never cheat on a test. (考试不许作弊。) 9. If you are having difficulty with a class, schedule an appointment to see the teacher for help. The teacher will be glad to help you. (如果你上课有困难,约见老师寻求帮助。老

美国新经济的发展及其对我国的启示

美国新经济的发展及其对我国的启示 “新”一词始见于90年代中期的美国,与之伴随的是美国经济123个月的持续增长。美国经济进入巅峰状态之际,新经济潮流迅猛,势不可挡。然而,新世纪开局,美国及世界经济遭遇增长减缓之痛,特别是“9·11”事件的发生将美国经济推进了阶段性调整的灰暗之隅。进入今年,美国经济以强劲之势走出低谷,出人意料地实现高增长,而对其背后成因的重新唤起世人对新经济的兴趣,其未来走向再度成为关注的焦点。依笔者之愚见,新经济只是大潮初起,其生命力蓬勃旺盛,前景看好。同时,新经济的亦对我国提出了诸多严肃的课题。一、与美国经济的起落相伴随1996年12月30日,美国《商业周刊》首次提出“新经济”概念。1997年2月,美国前总统克林顿以官方语言确认了新经济和知识经济的概念。虽然国际上对何为新经济并无统一认识,但综合有关学术资料,可以初步将新经济归纳为:新经济是在经济全球化和信息技术革命的推动下,以生命技术、新能源技术、新材料技术、空间技术、海洋技术、环境技术和管理技术等7大高产业为龙头的经济,其核心是观念的创新、运行模式的创新和技术创新等。新经济作为一种全新的经济技术样式,其对世界经济尤其是美国经济的发展所发挥的举足轻重的作用主要体现在几个方面:首先,高新技术的运用带来劳动生产率的较大提高,弥补了劳动力成本的增加,抑制了通货膨胀,从而减弱了经济增长、通货膨胀间的关联度。其次,利润、信贷和投资成为新经济的重要支撑点,而高科技产品的特点决定了企业在信息充分的条件下,可迅速

进行投资战略调整,增加应对市场供求的灵活度。第三,通胀率和物价水平被控制在较低范围,从而弱化了货币政策干预经济的效能,且政策时滞较前拉长。第四,新经济与传统经济的诸多因素有效结合,提高了传统产业及其产品的高科技含量,并使传统经济的生产、运作、管理模式出现新的变化,较有力地促进了传统产业的发展。新经济的迅速成长,极大地推进了美国制造部门、服务部门和流通部门的发展。1990年到1998年的8年时间里,美GDP增长了26.7%.其间,和电力装备产业产值增加了224%,机械工业增加了107%,商业服务、通讯、流通和产业产值的增幅亦均在42 - 68%之间。2000年,美国GDP达到99657亿美元,在世界经济总量中的比重上升到31.54%.2001年,持续增长近十年的美国经济开始出现周期性调整的迹象,经济增长明显放缓。在此下,作为信息产业经营状况晴雨表的纳斯达克指数出现急剧波动,高新科技企业利润下降、库存增加,企业裁员、倒闭现象急剧上升。而“9·11”事件的发生则使美国经济雪上加霜,导致股市再次暴跌,缩水达65万亿美元,其中在股市重开的第一周,纳指就下跌16.1%.美国经济遭受了有史以来最为严重的创击。但是,“9·11”事件发生后不久,美国经济,其中包括新经济即出现反弹势头。2001年第四季度美国经济增长率由第三季度的负1.3%摸底回升至1.4% ,全年经济增长1.3%.进入今年以来,美国第一季度经济增长率即攀升到 5.8%.美国总统布什年初宣布“美国新经济依然健在”,并且预计在未来11年内,美国劳动生产率可年均增长2.1%,与整个90年代相同。业内专家评称,各种迹象显示,新经济依然生机

美国小学生作文5篇精选合集

美国小学生作文5篇精选合集 ----WORD文档,下载后可编辑修改---- 美国之旅 今年暑假,我怀着激动的心情到美国参加了夏令营。 经过十几个小时的飞行,我终于到达了美国洛杉矶。我寄宿家庭的叔叔、阿姨早就在机场等候着来接我去他们家。一路上我们都好开心。阿姨给我介绍着路上的风景,虽然我不是完全能听懂,但感受到了他们的热情和那里美丽的风景。 到家后,我才知道那天居然是叔叔的生日!家里举办着盛大的生日宴会----来了好多客人,真热闹!大家都对我很热情友好。我感觉就像回到自己的家里一样温馨。 在这次夏令营活动中,我觉得最开心的就是参观全球最大的环球影城和迪士尼乐园。在环球影城里,我看到了巨大的变形金刚。它好高大,好结实,每一处都做得好细致,仿佛就像是从电影屏幕里跑出来一样逼真。电影城里,还有好用多高科技制作出来的画面。那些画面,真让我大饱眼福!在迪士尼乐园里坐过山车,特别刺激。我坐在上面,觉得头昏目眩,就像到了太空一样...... 到美国小学上课也是件让我愉快而难忘的事情。在那所学校里,我认识了好多美国同学,我们一起学习,一起踢足球、做手工,玩各种游戏。美国同学都喜欢阅读,教室的每个角落都是书。他们每天都会阅读各种各样的书籍。大家一起看书,尽情享受着阅读的乐趣。 我还参观了加州大学和伯克利大学。走进那些名牌大学,我很快

就被那浓浓的学习气氛和文化气息包围住了。加州大学的图书馆真让我目瞪口呆。哇!好大的图书馆呀!好多的书啊!走进里面,我仿佛遨游在书的海洋里......图书管理,有许多大哥哥、大姐姐都在安静地看书。看到这情景,我好感动啊!我想:我一定要好好学习,阅读更多的书。 这次开心的美国之旅,开阔了我的眼界,也丰富了我的内心,让我感觉到了世界的美好! 美国印象 每年春节期间,爸爸妈妈都会带我去美国游玩,我真的没有想到,美国的社会是非常的包容开放、文明发达。 我们参观了美国很多世界著名的大学,有波士顿地区的哈佛大学、麻省理工学院,加州地区的斯坦福大学,费城地区的宾夕法尼亚大学,华盛顿地区的华盛顿大学等等。每到一所大学,我们都要找找校门、拍拍照片,作为纪念,但遗憾的是,这个愿望经常落空,不要说大学校门,有时连带校名的标志都难找到。记得第一次参观斯坦福大学时,我们开车不知不觉地就进入了校区,就是找不到校门,后来来到了斯坦福大学著名校友、美国前总统胡佛像的旁边,才发现一个很大的草坪,感觉就是所谓的大学的门口。 我就好奇地问爸爸:“美国的大学为什么没有围墙呢?”爸爸告诉我:美国的很多大学都是社会的精英人士捐款建立,所以用个人的名字来作为大学的校名,这些人都有强烈的社会责任感,捐钱建立大学,传播知识,回馈社会,提倡以开放的观念接受先进的知识文化,

美国经济刺激方案

市场对于美国经济发展前景已经愈发悲观。摩根大通指出,随着美股跌入熊市,市场认为美国经济发生衰退的可能性高达80%;凯投宏观也警告,美国二季度经济恐收缩4%,同时该机构还下调了对2020年美国GDP的预期,为收缩0.6%,而非此前预测的扩张1.8%。 面对经济面临的巨大压力,美国关键性人士在3月底就已签署"史上最大规模"的2万亿美元经济刺激计划,而如今,美联储则又计划再向市场"撒钱"。 2万亿刺激计划之后,美联储再撒2.3万亿美元:不考虑通胀

当地时间4月9日,美联储主席鲍威尔宣布将推出新一轮更大力度的贷款计划,规模高达2.3万亿美元,旨在向企业和财政吃紧的政府提供贷款援助,并表示如果(市场)有需要,美国仍将继续推出纾困计划,并且不会考虑可能引发的通货膨胀等相关问题。受此消息提振,当天道琼斯指数上涨1.22%,标普指数上涨1.44%。 需要注意的是,美联储此轮新的2.3万亿美元"撒钱"计划,距离美国决定性人士3月27日签署2万亿美元经济刺激计划,中间间隔仅不到半个月的时间。而在上一轮2万亿美元计划签署之时,美国关键性人士还公开表示,"这是美国历史上最大的一个经济刺激方案,是有史以来颁布的任何救助法案的两倍"。

然而,仅4天之后,上述关键性人士又计划着再追加2万亿美元的基建法案。 实际上,针对这前后两轮刺激计划,不少投资者就质疑,高额刺激计划会引发通货膨胀。布鲁金斯学会研究高级研究员、哈钦斯金融与货币政策中心主任戴维·韦塞尔(David Wessel)就曾指出,美联储大幅降低了利率、购入了上千亿的国债、推出了一系列贷款计划,在释放出如此庞大的货币量,美联储是否也会担心出现一些常见的副作用,比如通货膨胀、资产价格泡沫?

数据备份与恢复

一、硬盘 1.品牌的认识 Mastor:迈拓 Toshiba:东芝 Hitachi:日立 Seagate:希捷 Western Digital:西部数据 Excel Store:易拓 2.硬盘的标签 S/N:序列号 P/N:序列号 Firmware:固件是硬盘的操作系统 Datecode:数据编码 WWN:信息,扫描可得的硬盘的信息 Barracud:a系列 7200 转速 11 磁头数 3.硬盘的常识 硬盘小孔的作用:1. 散热 2. 盘内与盘外大气压保持相同 硬盘的区分:台式机(3.5寸)、笔记本(2.5寸) 注意:电脑开机后,不能搬动电脑,硬盘高速运转,移动电脑,磁头与磁片相撞会出现痕迹。而移动硬盘,有矫正器,移动时会阻碍与磁片的相撞。 电脑会经常死机,问题可能是硬盘的破坏。 4.硬盘的接口 ATA:并口,拥有带子的传输带 SATA:串口,窄的红色的 SCSI:服务器利用 光钎接口:大数据处理(倍数据) 注意:Jumper Elock:跳线的接口(多个接口,区分主从盘) 5.硬盘的逻辑结构 5.1.磁道

硬盘出厂后,会初始化(低级格式化),出现的同心圆轨迹叫做:磁道 (Track)。磁道从外向内自“0”开始顺序编号,硬盘的每一个盘面有 300 ~ 1024个磁道,新的会有更多。 5.2.柱面 所有的盘面上的同一磁道构成了一个圆柱,就叫做:柱面(Cylinder)。 每个圆柱上的磁头,自上向下从“0”开始编号。 5.3.扇区 操作系统是以扇区存储数据的,每个扇区包括512字节的数据和一些其 他信息。 5.4.容量 硬盘容量 =盘面数 * 柱面数 * 扇区数 *512 (单位:KBMBGBTB)注意:一块磁片有2面,多个磁片相同的磁道号可构成一个个柱面。 磁头的个数 = 盘面的面数 柱面数 = 磁道数 6.硬盘的寻址方式 C/H/S(柱面/磁头/扇区):三维地址模式 LBA(扇区的逻辑块地址):线性寻址,以扇区为单位进行寻址 7.硬盘的分区 7.1.分区格式 FAT:Windows 3.0版本用的文件系统 FAT32:Windows 95 /98 NTFS:新技术文件系统 注意: NTFS与FAT的优势: NTFS支持权限设置,但FAT不行 NTFS分区技术文件支持加密,而FAT不行 NTFS支持磁盘配额,而FAT不行 NTFS支持长文件名,而FAT只支持8.3文件命名(8个文件名字符和3个扩展名字符) 7.2.分区要求 主分区 硬盘逻辑分区一 扩展分区 逻辑分区二

美国城市大小排名

美国城市大小排名: (前五十名) 1)纽约, 纽约(人口8,084,316) 2)洛杉矶, 加利福尼亚(人口3,798,981) 3)芝加哥, 伊利诺伊(人口2,886,251) 4)休斯敦, 得克萨斯(人口2,009,834) 5)费城, 宾夕法尼亚(人口1,492,231) 6)菲尼斯, 亚利桑那(人口1,371,960) 7)圣迭戈, 加利福尼亚(人口1,259,532) 8)达拉斯, 得克萨斯(人口1,211,467) 9)圣安东尼奥, 得克萨斯(人口1,194,222) 10)底特律, 密执安(人口925,051) 11)圣约瑟, 加利福尼亚(人口900,443) 12)印第安纳波利斯, 印第安纳(人口783,612) 13)旧金山, 加利福尼亚(人口764,049) 14)哥伦布, 俄亥俄(人口725,228) 15)奥斯汀, 得克萨斯(人口671,873) 16)巴尔的摩, 马里兰(人口638,614) 17)Milwaukee, 威斯康辛(人口590,895) 18)波士顿, 马萨诸塞(人口589,281) 19)华盛顿, 哥伦比亚特区(人口570,898) 20)帕索, 得克萨斯(人口577,415) 21)西雅图, 华盛顿(人口570,426) 22)丹佛, 科罗拉多(人口560,415) 23)夏洛特, 北卡罗来纳(人口580,597) 24)沃斯堡, 得克萨斯(人口567,516) 25)波特兰, 俄勒冈(人口539,438) 26)奥克拉荷马市, 俄克拉何马(人口519,034) 27)图森, 亚利桑那(人口503,151) 28)新奥尔良, 路易斯安那(人口473,681) 29)拉斯维加斯, 内华达(人口508,604) 30)克利夫兰, 俄亥俄(人口467,851) 31)长滩, 加利福尼亚(人口472,412) 32)亚伯科基, 新墨西哥(人口463,874) 33)堪萨斯城, 密苏里(人口443,471) 34)Fresno, 加利福尼亚(人口445,227) 35)弗吉尼亚海滩, 弗吉尼亚(人口433,934) 36)亚特兰大, 佐治亚(人口424,868) 37)萨加门多, 加利福尼亚(人口435,245) 38)奥克兰, 加利福尼亚(人口402,777) 39)Mesa, 亚利桑那(人口426,841)

英国,美国中小学生 (8页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 英国,美国中小学生 篇一:中国、日本、美国、英国的小学生守则对比 中国、日本、美国、英国的小学生守则对比。看后哑然失笑 ,瞬间从心中升起淡淡的担忧和悲哀。 先看我们最熟悉的中国小学生守则,共10条: 1、热爱祖国,热爱人民,热爱中国共产党。 2、遵守法律法规,增强法律意识。遵守校规校纪,遵守社会公德。 3、热爱科学,努力学习,勤思好问,乐于探究,积极参加社会实践和有益的活动。 4、珍爱生命,注意安全,锻炼身体,讲究卫生。 5、自尊自爱,自信自强,生活习惯文明健康。 6、积极参加劳动,勤俭朴素,自己能做的事自己做。 7、孝敬父母,尊敬师长,礼貌待人。 8、热爱集体,团结同学,互相帮助,关心他人。 9、诚实守信,言行一致,知错就改,有责任心。 10、热爱大自然,爱护自然环境。 再看英国小学生守则,也是10条: 1、平安成长比成功更重要。 2、背心、裤衩覆盖的地方不许别人摸。 3、生命第一,财产第二。

4、小秘密要告诉妈妈。 5、不喝陌生人的饮料,不吃陌生人的糖果。 6、不与陌生人说话。 7、遇到危险可以打破玻璃,破坏家具。 8、遇到危险可以自己先跑。 9、不保守坏人的秘密。 10、坏人可以骗。 日本小学生守则,7条: 1、不迟到;进校后不随便外出。 2、听到集合信号时,迅速在指定场所列队;进教室开门窗要轻;在走廊和楼梯上保持安静,靠右行。 3、上课铃一响即坐好,静等老师来;听课时姿势端正,不讲闲话,勤奋学习。 4、遇迟到、早退、因故未到等情况,必须向老师申明理由,有事事先请假。 5、严格遵守规定的放学时间,延长留校时间要经老师许可。 6、上学放学时走规定的路线,靠右行,不要绕道和买零食。 7、遇地震、火灾等紧急情况时不惊慌,按老师指示迅速行动。 最后看美国的,12条: 1、称呼老师职位或尊姓。 2、按时或稍提前到课堂。 3、提问时举手。 4、可以在你的座位上与老师讲话。 5、缺席时必须补上所缺的课业。向老师或同学请教。 6、如果因紧急事情离开学校,事先告诉你的老师并索取耽误的功课。 7、所有作业必须是你自己完成的。

简析美国经济状况及前景预测

简析美国经济状况及前景预测 一、2010年来美国的经济状况 (一)美国的国内生产总值状况 表格今年一季度美国GDP增长同比1.8%,而去年第四季度GDP增速为3.1%,环比下降40%以上, 从表格中可看出2010年来美国经济处于增长状态,但是GDP增长率下降。(2011年一季度,经季节性调整后,按当年价格计算,美国GDP为37516亿美元,同比增长3.9%,环比增长0.9%,折年率增长1.8%)2011年第一季度GDP同比增长3.9%是2010年三季度来连续第三次增长率下降。 (二)美国的失业就业状况 截至6月4日一周,美国全国领取失业救济的总人数为367.5万,比前一周修正后的数字减少2.1万。这次申请失业救济人数下降表明就业市场正在改善,但是速度很慢。经季节性调整,截至6月11日一周内,美国首次申请失业救济人数比前一周减少1.6万,降至41.4万。这是首次申请失业救济人数在过去三周来的第二次下降,不过该数字已连续10周处于40万水平上方,不及年初的表现。 (三)美国目前存在通胀压力 2010年,美国生产者价格指数(PPI)较上年同比上涨6.9%,其中12月份当月同比上涨6.6%,环比上涨1.0%。2010年,美国城市居民消费价格指数(CPI)较上年同比上涨1.6%,其中12月份当月同比上涨1.5%,环比上涨0.5%。分季度来看,一季度同比上涨2.4%,二季度上涨1.7%,三季度上涨1.2%,四季度上涨1.3%。2011年5月美国生产者物价指数月率增长0.2%,预计增长0.1%。美国5月消费者物价指数月率上升0.7%,升幅为05年9月来最大,美联储将在本月晚些时候的货币政策会议上继续维持5.25%的利率不变,且仍将视通胀为首要威胁。 (四)美国工业生产情况 工业生产是衡量制造业、矿业与公共事业的实质产出重要的经济指标,工作生产指数是反应一个国家经济周期变化的主要标志。下图是美国从2010年9月到2011年5月的工业生产月率。 从上图可以发现美国的工业生产处于波动状态,这也说明美国复苏还处于震荡阶段,经济复苏不稳定。 (五)美国的进出口贸易状况 国际贸易用以衡量美国商品和服务进口与出口的差额。下图是美国各月的国际贸易变化情况。从上图可看出,美国都是处在贸易逆差,贸易逆差进一步扩大。今年四月份较上月贸易逆差增加31.44亿美元,是2010年10月来首次大幅度增加。 (六)美国制造业经济总体保持增长态势,但增速减慢

相关文档
相关文档 最新文档