文档库 最新最全的文档下载
当前位置:文档库 › 三态门电路实验报告

三态门电路实验报告

三态门电路实验报告
三态门电路实验报告

实验二(1)三态门电路设计

班级姓名学号

一、实验目的

熟悉QuartusII仿真软件的基本操作,并用VHDL/Verilog语言设计一个三态门。

二、实验内容

1、熟悉QuartusII软件的基本操作,了解各种设计输入方法(原理图设计、文本设计、波形设计)

2、用VHDL语言设计一个三态门,最终在FPGA芯片上编程指令译码器,并验证逻辑实现。

三、实验方法

1、实验方法:

采用基于FPGA进行数字逻辑电路设计的方法。

采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。

2、实验步骤:

1、新建,编写源代码。

(1).选择保存项和芯片类型:【File】-【new project wizard】-【next】(设置文件路径+设

置project name为stm)-【next】(设置文件名zlym.vhd—在【add】)-【properties】

(type=AHDL)-【next】(family=FLEX10K;name=EPF10K10TI144-4)-【next】-【finish】

(2).新建:【file】-【new】(第二个AHDL File)-【OK】

2、写好源代码,保存文件(stm.vhd)。

3、编译与调试。确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译。编译结果有一个警告,文件编译成功。

4、波形仿真及验证。新建一个vector waveform file。按照程序所述插入EN,A以及dataout)四个节点(EN,A为输入节点,dataout为输出节点)。(操作为:右击-【insert】-【insert node or bus】-【node finder】(pins=all;【list】)-【>>】-【ok】-【ok】)。任意设置EN,A的输入波形…点击保存按钮保存。然后【start simulation】,出name dataout的输出图。

5、时序仿真。暂时不知道什么是时序仿真

6、FPGA芯片编程及验证

选择pins,连接计算机到实验箱,操作。

四、实验过程

3、编译过程

a)源代码如图(VHDL设计)

b)编译、调试过程

确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译。编译结果有四个警告,文件编译成功。

c)结果分析及结论

结果正确,

4、波形仿真

a)波形仿真过程(详见实验步骤)

b)波形仿真波形图

c)结果分析及结论

0-10ns:EN=0 A=0 dataout=z

10-20ns: EN=0 A=1 dataout=z

20-30ns: EN=1 A=1 dataout=1

30-40ns: EN=1 A=0 dataout=0

通过波形图可以得出实验结果正确

5、时序仿真

a)时序仿真过程

做好上述步骤后,编译【classic timing analysis】-在compilation report中选择【timing analysis】-【tpd】(引脚到引脚的延时)

b)时序仿真图

b)结果分析及结论

A引脚到dataout引脚的实际p2p时间为6.568ns,二EN引脚到dataout引脚的实际p2p时间为6,542ns。A比EN慢0.026ns,可由于结果是由时间长的那个决定,故整体为6.568ns。tpd (引脚到引脚的延时)

6、Programming芯片编程

a)芯片编程过程

写好代码和得到波形图后,【Assignments】-【Pins】-连接端口。设置好两入一出(如Input: pin_87 Input: pin_88, Output: pin_06),从计算机连接数据线到EPF10K20TI144_4的FPGA 试验箱。连接电源,开始按开关。找到pin 87,88,06的位置,改变87,88的开关状态(开,开)、(关,开)、(开,关)、(关,关)。看06灯的亮熄情况并记录。

b)编程芯片验证结果

0代表不灯亮,1代表灯亮。

c)结果分析与结论

由逻辑关系得的上述结果。结果正确。

五、实验结论(实验总结与实验心得)

第二次实验使用这个软件明显熟练了,而且对时序仿真与波形仿真有了初步认识。

实验二(2)2选1多路复用器

班级计科1504姓名张洁学号201508010402

一、实验目的

熟悉QuartusII仿真软件的基本操作,并用VHDL/Verilog语言设计一个三态门。

二、实验内容

1、熟悉QuartusII软件的基本操作,了解各种设计输入方法(原理图设计、文本设计、波形设计)

2、用VHDL语言设计一个2选1多路复用器,最终在FPGA芯片上编程指令译码器,并验证逻辑实现。

三、实验方法

7、实验方法:

采用基于FPGA进行数字逻辑电路设计的方法。

采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。

8、实验步骤:

2、新建,编写源代码。

(1).选择保存项和芯片类型:【File】-【new project wizard】-【next】(设置文件路径+设

置project name为exy)-【next】(设置文件名zlym.vhd—在【add】)-【properties】

(type=AHDL)-【next】(family=FLEX10K;name=EPF10K10TI144-4)-【next】-【finish】

(2).新建:【file】-【new】(第二个AHDL File)-【OK】

2、写好源代码,保存文件(exy.vhd)。

3、编译与调试。确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译。编译结果有一个警告,文件编译成功。

4、波形仿真及验证。新建一个vector waveform file。按照程序所述插入EN,A[7].B[7]以及dataout[7])四个节点(EN,A[7],B[7]为输入节点,dataout为输出节点)。(操作为:右击-【insert】-【insert node or bus】-【node finder】(pins=all;【list】)-【>>】-【ok】-【ok】)。任意设置EN,A的输入波形…点击保存按钮保存。然后【start simulation】,出name dataout的输出图。

5、时序仿真。暂时不知道什么是时序仿真

6、FPGA芯片编程及验证

选择pins,连接计算机到实验箱,操作。

四、实验过程

9、编译过程

a)源代码如图(VHDL设计)

b)编译、调试过程

确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译。编译结果有四个警告,文件编译成功。

c)结果分析及结论

结果正确,

10、波形仿真

a)波形仿真过程(详见实验步骤)

b)波形仿真波形图

c)结果分析及结论

0-10ns:EN=0 dataout=B

10-20ns: EN=0 dataout=B

20-30ns: EN=1 dataout=A

30-40ns: EN=1 dataout=A

通过波形图可以得出实验结果正确

10、时序仿真

c)时序仿真过程

做好上述步骤后,编译【classic timing analysis】-在compilation report中选择【timing analysis】-【tpd】(引脚到引脚的延时)

b)时序仿真图

d)结果分析及结论

EN引脚到dataout引脚的实际p2p时间比A,B引脚到dataout引脚的实际p2p时间长。由于结果是由时间长的那个决定,故整体为9.726ns。

tpd (引脚到引脚的延时)

11、Programming芯片编程

b)芯片编程过程

写好代码和得到波形图后,【Assignments】-【Pins】-连接端口。设置好三入一出(如Input:

pin_87 Input: pin_88,Input: pin_89 Output: pin_06),从计算机连接数据线到EPF10K20TI144_4的FPGA试验箱。连接电源,开始按开关。找到pin 87,88,06的位置,改变87,88,89的开关状态。看06灯的亮熄情况并记录。

b)编程芯片验证结果

0代表不灯亮,1代表灯亮。

c)结果分析与结论

由逻辑关系得的上述结果。结果正确。

五、实验结论(实验总结与实验心得)

这一次的实验题目相比较来说比较简单易懂,而且在前面实验做铺垫的情况下,做起来比较顺手。感觉自己有了一点进步。

基本门电路实验报告处理

43121556423156实验三:基本门电路及触发器 实 验 室: 实验台号: 日 期: 2016.10.7 专业班级: 姓 名: 学 号: 一、 实验目的 1.了解TTL 门电路的原理,性能好使用方法,验证基本门电路逻辑功能。 2.掌握门电路的设计方法。 3.验证J-K 触发器的逻辑功能。 4.掌握触发器转换的设计方法。 二、实验内容 (一)验证以下门电路的逻辑关系 1. 用与非门(00)实现与门逻辑关系:F=AB 2. 异或门(86): (二):门电路的设计(二选一) 1.用74LS00和74LS86 设计半加器. 2.用TTL 与非门设计一个三人表决电路。 A B C 三个裁判,当表决某个提案时,多数人同意提案为通过。 (1为同意,0为不同意) 要求:用74LS00和 74LS10芯片。 (三)验证JK 触发器的逻辑关系 1.J-K 触发器置位端、复位端及功能测试。 图3-1 JK 触发器(74LS112)和D 触发器(74LS74) 2、设计J-K 触发器转化成D 触发器的电路 利用与非门和J-K 触发器设计并测试逻辑功能。 B A B A B A F ⊕=+=n n n n n n n B A B A B A S ⊕=+=' n n n B A C ='

A B F 三、实验原理图 图3-2与门电路 图3-3 异或门电路 图3-4半加器 四、实验结果及数据处理 1. 直接在实验原理图上标记芯片的引脚。 2. 写出实验结果。 (1)与门、异或门实验结果表(用数字万用表测量高低电平1、0的电压值。) (2)半加器实验结果 (3) 表决电路结果 =1A B F

电力电子电路分析与仿真实验报告模板

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号:

年月日 实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个

平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图:

五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

西安交通大学 非线性电路实验报告

Duffing 方程及其在信号检测中的应用 李禹锋 (西安交通大学电力设备电气绝缘国家重点实验室,陕西西安710049) 摘要:在工程领域中,在噪声环境下对信号进行检测一直都是研究的重点课题。混沌理论表明一类混沌系统在一定条件下对小信号具有参数敏感性,同时对噪声具有免疫力,因此使得它在信号检测中非常具有发展潜力。为此,本文分析了Duffing 方程的动力学特性,研究了利用Duffing 方程来进行微弱信号检测的原理和过程,并在Matlab 平台下进行了仿真实验。结果表明,可以利用Duffing 方程在噪声背景下进行信号的检测。 关键词:混沌理论;信号检测; Duffing 方程;仿真研究 1 引言 在噪声背景中检测微弱的有用信号是工程应用中的一个重要内容,前人已经开展了大量的研究工作。传统的基于线性理论的信号检测方法由于对噪声背景下的输出信噪比难以提高而存在一定局限性,尤其在对强噪声背景下的微弱信号检测更是受到了限制。然而很多研究证明,利用“混沌振子对周期小信号具有敏感依赖性,而对噪声具有免疫性”的特点,从噪声背景中提取微弱的周期信号是一种行之有效的方法,引起了人们极大的兴趣[1]。 在众多的信号检测中,正弦或余弦信号的检测占有极其重要的地位,在许多领域中有着极其广泛的应用。本文采用余弦小信号作为检测对象,在Matlab 平台下,对Duffing 方程及其在信号检测中的应用进行了初步探讨。 2 基于Duffing 方程的信号检测 2.1 Duffing 方程的数学模型及分析 Duffing 方程已被证明是混沌系统,大量学者对其进行过许多研究,研究它的动力学行为可以揭示系统的各种性质。Duffing 系统所描述的非线性动力学系统表现出丰富的非线性动力学特性,目前已成为研究混沌现象的常用模型[2]。 霍尔姆斯型Duffing 方程为: 232()()cos()d x dx k x t x t t dt dt γω+-+=(1) 式中,cos()t γ为周期策动力;k 为阻尼比;-x (t )+x 3(t )为非线性恢复力[3]。其状态方程为: dx y dt =(2) 3cos()dy ky x x t dt γω=-+-+(3) 在k 固定的情况下,系统状态随γ的变化出现变化,具体分析如下: (1)当策动力γ为0时,计算得到相平面中结点为(0,0)和鞍点为(±1,0)。系统

北航电子电路设计数字部分实验报告

电子电路设计数字部分实验报告 学院: 姓名:

实验一简单组合逻辑设计 实验内容 描述一个可综合的数据比较器,比较数据a 、b的大小,若相同,则给出结果1,否则给出结果0。 实验仿真结果 实验代码 主程序 module compare(equal,a,b); input[7:0] a,b; output equal; assign equal=(a>b)1:0; endmodule 测试程序

module t; reg[7:0] a,b; reg clock,k; wire equal; initial begin a=0; b=0; clock=0; k=0; end always #50 clock = ~clock; always @ (posedge clock) begin a[0]={$random}%2; a[1]={$random}%2; a[2]={$random}%2; a[3]={$random}%2; a[4]={$random}%2; a[5]={$random}%2; a[6]={$random}%2; a[7]={$random}%2; b[0]={$random}%2; b[1]={$random}%2; b[2]={$random}%2; b[3]={$random}%2; b[4]={$random}%2;

b[5]={$random}%2; b[6]={$random}%2; b[7]={$random}%2; end initial begin #100000 $stop;end compare m(.equal(equal),.a(a),.b(b)); endmodule 实验二简单分频时序逻辑电路的设计 实验内容 用always块和@(posedge clk)或@(negedge clk)的结构表述一个1/2分频器的可综合模型,观察时序仿真结果。 实验仿真结果

非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告 篇一:非线性电路混沌实验报告 近代物理实验报告 指导教师:得分: 实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节 实验者:班级材料0705学号 XX67025 姓名童凌炜 同组者:班级材料0705学号 XX67007 姓名车宏龙 实验地点:综合楼 404 实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌 实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括: 1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结 1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系 1.3, 100kHz正弦波振荡波作为参考信号 2. 低频信号发生器 用以输出正弦波信号,提供给约结作为交流 信号 3. 数字示波器 用以测量结电压、超流、混沌特性和参考信号等各个

物理量的波形 实验目的: 1. 了解混沌的产生和特点 2. 掌握吸引子。倍周期和分岔等概念 3. 观察非线性电路的混沌现象 实验原理简述: 混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。混沌的最本质特征是对初始条件极为敏感。 1. 非线性 线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。除此之外,非线性关系还具有某些不同于线性关系的共性: 1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移 1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因 2. 倍周期,分岔,吸引子,混沌 借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。 虫口方程如下:xn?1???xn(1?xn)

门电路实验报告

实验报告实验课题:门电路 实验目的: 常用腔I ri m路邂样功能扯其精试n也. 订件电路蔓圖实脸箱的结构、茶本功能和僅用有氐 掌握电路连接、排除故障和调试的方法。 实验仪器与器材: 1、数字电子技术实验系统 2、741^00典2输入与非门「I片 74LSI1三3输入与门1片 74LS04反和器 1片 741SH6 V^2输人异或门1片74LS32四2输入界或门1片 实验内容及步骤: TTL门电路逻辑功能验证 按图1-1在实验系统(箱)上找到相应的门电路。并把输入端按实验箱的逻辑开关,输出端按发光二极管如图1-2所示TTL与门电路逻辑功能验证接线图。 按状态表1-1中“与门”一栏输入A、B(0,1信号,观察输出结果()看LED备用发光二极管,如灯亮为1,灯灭为0)填入表1-1中,并用万用表测量0、1电平值。 按同样的方法,验证“或门” 74LS32…等的逻辑功能,并把结果填入表1-1中

图1-2TTL门电路实验流程图 实验数据记录及处理结果: 数据了记录自行完成 理论知识挺弄拐的.们实劭实行起來的确密纠斛的*做了好爭次总定有轲題?焉来

懂得了从电路图到真实电路的基 发現电线育 廉足坏抻的.做电蹬实检.还a 需啖多些经检呐? 五、实验总结 通过这次试验,我了解了用仪器拼接电路的基本情况。 本过程。在连接的时候,很容易因为线或者门出现问题。 H 次实验除珅下杲很豆杂”程是线路tt 较離连?实验所用到的关锭器件也不龙好找。 理论知识挺容易的+ (I 」实际实杠血來时例侥纠塔的.做了好茲挟总是育何遥*门来 发现电线件一棍呈坏抻的.做电賂实龄T 还定斋味幸映绅輪呐=

集成门电路功能测试(三态门)

集成门电路功能测试实验报告 一实验内容 1 三态门的静态逻辑功能测试。 2 动态测试三台门。并画出三态门的输出特性曲线。输入为CP矩形波。 3 测试三态门的传输延迟时间。 4 动态测试三态门的电压传输特性曲线。输入为三角波。 二实验条件 硬件基础实验箱,函数信号发生器,双踪示波器,数字万用表,74LS125。 三实验原理 1 首先测试实验箱上提供的频率电源参数是否正确。 打开实验箱电源,把分别把5MHz的脉冲接入红表笔上,黑表笔接地。观察示波器显示波形的频率是否为5MHz,经过观察计算,波形频率接近5M。误差很小,从下图可以看出,ch1为输入波形一个周期占四个格子,可计算得到f=5MHz。 2 三态门的静态逻辑功能测试。(后面四个实验都是通过示波器在同一时刻测试 3动态测试三台门。并画出三态门的输出特性曲线。输入为CP矩形波。 使能端无效是波形:

使能端有效时输出波形 4 测试三态门的传输延迟时间。 通过测量同一时刻的输入输出波形,可以观察到三态门的输出延迟。得到波形图为

CH1,CH2分别为输入输出波形,可以看出在上升沿的输出延迟为10ns 然而下降沿的时候的截图已经丢失了,依稀记得在实验时候,测得是数据下降沿的输出延迟与上升沿的不一致,并且比上升沿的短。为9.6ns,其传输延迟为两个延迟的平均值9.8ns。 5 测试三态门的电压传输特性曲线。输入为三角波。 得到输入输出波形为:CH1为输入,CH2为输出。

得到阀值电压为0.92V。 四总结 这次实验基本上和上次实验的方法一样,没遇到什么大的问题。就是还是粗心。五评价 实验效果挺好。巩固了对逻辑器件的功能测试的方法和操作。

电子科技大学 模拟电路实验报告01

模拟电路实验报告 实验一常用电子测量仪器的使用 1.实验目的 (1)了解双踪示波器、函数信号发生器、晶体管毫伏表、直流稳压电源的工作原 理和主要技术指标。 (2)掌握双踪示波器、晶体管毫伏表、直流稳压电源的正确使用方法。 2.实验原理 示波器是电子测量中最常用的一种电子仪器,可以用它来测试和分析时域信号。示波器通常由信号波形显示部分、垂直信道(Y通道)、水平信道(X通道)三部分组成。YB4320G是具有双路的通用示波器,其频率响应为0~20MHz。 为了保证示波器测量的准确性,示波器内部均带有校准信号,其频率一般为1KHz,即周期为1ms,其幅度是恒定的或可以步级调整,其波形一般为矩形波。在使用示波器测量波形参数之前,应把校准信号接入Y轴,以校正示波器的Y轴偏转灵敏度刻度以及扫描速度刻度是否正确,然后再来测量被测信号。 函数信号发生器能产生正弦波、三角波、方波、斜波、脉冲波以及扫描波等信号。由于用数字LED显示输出频率,读数方便且精确。 晶体管毫伏表是测量正弦信号有效值比较理想的仪器,其表盘用正弦有效值刻度,因此只有当测量正弦电压有效值时读数才是正确的。晶体管毫伏表在小量程档位(小于1V)时,打开电源开关后,输入端不允许开路,以免外界干扰电压从输入端进入造成打表针的现象,且易损坏仪表。在使用完毕将仪表复位时,应将量程开关放在300V挡,当电缆的两个测试端接地,将表垂直放置。 直流稳压电源是给电路提供能源的设备,通常直流电源是把市电220V的交流电转换成各种电路所需要的直流电压或直流电流。一般一个直流稳压电源可输出两组直流电压,电压是可调的,通常为0~30V,最大输出直流电流通常为2A。 输出电压或电流值的大小,可通过电源表面旋钮进行调整,并由表面上的表头或LED显示。每组电源有3个端子,即正极、负极和机壳接地。正极和负极就像我们平时使用的干电池一样,机壳接地是为了防止外部干扰而设置的。 如果某一电路使用的是正、负电源,即双电源,此时要注意的是双电源共地的接法,以免造成短路现象。 数字万用表可用于交、直流电压测量、交、直流电流测量,电阻测量,一般晶体管的测量等。一般的数字万用表交流电压挡的频率相应范围为45Hz~500Hz,用

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

数电实验实验报告

数字电路实验报告

实验一 组合逻辑电路分析 一.试验用集成电路引脚图 74LS00集成电路 74LS20集成电路 四2输入与非门 双4输入与非门 二.实验内容 1.实验一 自拟表格并记录: 2.实验二 密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开。否则,报警信号为“1”,则接通警铃。试分析密码锁的密码ABCD 是什么? X1 2.5 V A B C D 示灯:灯亮表示“1”,灯灭表示“0” ABCD 按逻辑开关,“1”表示高电平,“0”表示低电平

ABCD 接逻辑电平开关。 最简表达式为:X1=AB ’C ’D 密码为: 1001 A B C D X1 X2 A B C D X1 X2 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 三.实验体会: 1.分析组合逻辑电路时,可以通过逻辑表达式,电路图和真值表之间的相互转换来到达实验所要求的目的。 2.这次试验比较简单,熟悉了一些简单的组合逻辑电路和芯片 ,和使用仿真软件来设计和构造逻辑电路来求解。 实验二 组合逻辑实验(一) 半加器和全加器 一.实验目的 1. 熟悉用门电路设计组合电路的原理和方法步骤 二.预习内容 1. 复习用门电路设计组合逻辑电路的原理和方法步骤。 2. 复习二进制数的运算。 3. 用“与非门”设计半加器的逻辑图。 4. 完成用“异或门”、“与或非”门、“与 非”门设计全加器的逻辑图。 5. 完成用“异或”门设计的3变量判奇 电路的原理图。 三.元 件参考 U1A 74LS00D U1B 74LS00D U1C 74LS00D U1D 74LS00D U2A 74LS00D U2B 74LS00D U2C 74LS00D U3A 74LS20D X1 2.5 V X2 2.5 V VCC 5V A B C D

三态输出电路

三态输出电路 就是具有高电平、低电平和高阻抗三种输出状态的门电路,又称三态门输出电路。在固态机互联板电路,“I/O”板电路中,除了以上几种组合门电路,三态门电路也是必不可少的。 一、电路组成 三态门电路主要有TTL三态门电路和CMOS三态门电路. 不难看出,二种输出三态门电路都是在普通门电路的基础上附加控制电路而构成. 二、工作原理 (1)TTL三态门电路工作原理图1给出了三态门的电路结构图及图形符号。其中控制端·EN为低电平时(面=口/,P点为高电平,二极管D截止,电路工作状态和普通的与非门没有区别。这时Y=·A’B,可能是高电子也可能是低电平,视A、B的状态而定。而当控制端EN为高电平时(EN=1),P点为低电平,它控制T1发射极,把VBl钳位在1V,使T,、T5载止。同时二极管D导通,T4的基极电位被钳在1V,使T4载止。由于T4、T5同时载止,所以输出端呈高阻状态o (2)图2中是将CMOS反相器的输出端同一个模拟开关相串联,即可组成三态门。图中T,、T2组成反相器,TG和反相器3组成模拟开关,其工作原理是:当控制端电压Ve =1时,由于模拟开关断开,输出端与电源Vm,输出端与地都相当于开路,故呈现高阻抗状态。当Ve=OV时,模拟开关闭合,输出电压VY取决于反相器的输入电压。若V4= OV,则T1截止,T2导通,VY=VDD,输出高电平;若Va=1,则Tl导通,T2载止,VY=OV,输出低电平。 上述电路中,控制端EN为低电平时与非门处于工作状态,所以该电路为低电平有效同样还有高电平有效控制电路。 三、三态门电路的应用 (1)多路信号分时传递 在一些复杂的数字系统(象固态机的互联板,U0板等)中,为了减少各个单元电路之间连线的数目,希望能在同一条导线上分时传递若干个门电路的输出信号。这时可采用图3所示的连接方式。图中G1-Gn。均为三态与非门。只要在工作时控制各个门的En端轮流等于“1”,而且任何时候仅有一个等于“1”就可以把各个门的输出信号轮流送到公共的传输线一总线上而互不干扰。 (2)用作双向传输的总线接收器 利用三态输出门电路还能实现数据的双向传输。固态机数据传送这种功能也是常用的。 在图4电路中,当E。=1时,C:工作而C2为高阻抗,数据D。经C1反相后送到总线上去。当皿=0时,C2工作而C1为高阻抗,来自总线的数据经C2反相后由D,送出。 三态输出门电路(TS(Three-state output Gate)门)

完整版模拟电子电路实验报告

. 实验一晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R 和R组成的分压电路,并在发射极中接有电阻R,以稳定放大器的静态工EB1B2作点。当在放大器的输入端加入输入信号u后,在放大器的输出端便可得到一i个与u相位相反,幅值被放大了的输出信号u,从而实现了电压放大。0i 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R和R 的电流远大于晶体管T 的 B2B1基极电流I时(一般5~10倍),则它的静态工作点可用下式估算B教育资料.. R B1U?U CCB R?R B2B1 U?U BEB I??I EC R E

)R+R=UU-I(ECCCCEC电压放大倍数 RR // LCβA??V r be输入电阻 r R/// R=R/beiB1 B2 输出电阻 R R≈CO由于电子器件性能的分散性比较大,因此在设计和制作晶 体管放大电路时, 为电路设计提供必离不开测量和调试技术。在设计前应测量所用元器件的参数,还必须测量和调试放大器的静态工作点和各要的依据,在完成设计和装配以后,因此,一个优质放大器,必定是理论设计与实验调整相结合的产物。项性能指标。除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。消除干扰放大器静态工作点的测量与调试,放大器的测量和调试一般包括:与自激振荡及放大器各项动态参数的测量与调试等。、放大器静态工作点的测量 与调试 1 静态工作点的测量1) 即将放大的情况下进行,=u 测量放大器的静态工作点,应在输入信号0 i教育资料. . 器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位U、U和U。一般实验中,为了避 ECCB免断开集电极,所以采用测量电压U或U,然后算出I的方法,例如,只要 测CEC出U,即可用E UU?U CECC??II?I,由U确定I(也可根据I),算出CCC CEC RR CE同时也能算出U=U-U,U=U-U。EBEECBCE为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I(或U)的调整与测试。 CEC静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u的负半周将被削底,O 如图2-2(a)所示;如工作点偏低则易产生截止失真,即u的正半周被缩顶(一 O般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端 加入一定的输入电压u,检查输出电压u的大小和波形是否满足要求。如不满Oi

电路实验报告

实验一电路元件伏安特性的测试 一、实验目的 1.学会识别常用电路元件的方法 2.掌握线性电阻、非线性电阻元件伏安特性的测试方法 3.熟悉实验台上直流电工仪表和设备的使用方法 二、原理说明 电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。 万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。 1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。 图1-1 元件的伏安特性 2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。 3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。二极管的电阻值随电压或电流的大小、方向的改变而改变。它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电流增加很小,粗略地可视为零。发光二极管正向电压在0.5~2.5V 之间时,正向电流有很大变化。可见二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。 4.稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特殊,如图1-1(d)所示。给稳压二极管加反向电压时,其反向电流几乎为零,但当电压增加到某一数值时,电流将突然增加,以后它的端电压将维持恒定,不再随外加反向电压的升高而增大,这便是稳压二极管的反向稳压特性。实际电路中,可以利用不同稳压值的稳压管来实现稳压。注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。

三态逻辑与非门基本输出状态及其应用电路解析

三态逻辑与非门基本输出状态及其应用电路解析 我们常说三态门,那么三态门到底是什么呢?三态又指的是哪三态呢?别急,接下来我会你具体讲解什么是三态门,以及它的应用电路解析。 什么是三态门?三态门,是指逻辑门的输出除有高、低电平两种状态外,还有第三种状态——高阻状态的门电路高阻态相当于隔断状态。三态门都有一个EN控制使能端,来控制门电路的通断。可以具备这三种状态的器件就叫做三态(门,总线,。..。..)。 举例来说: 内存里面的一个存储单元,读写控制线处于低电位时,存储单元被打开,可以向里面写入;当处于高电位时,可以读出,但是不读不写,就要用高电阻态,既不是+5v,也不是0v 计算机里面用1和0表示是,非两种逻辑,但是,有时候,这是不够的, 比如说,他不够富有但是他也不一定穷啊,她不漂亮,但也不一定丑啊, 处于这两个极端的中间,就用那个既不是+也不是―的中间态表示,叫做高阻态。 高电平,低电平可以由内部电路拉高和拉低。而高阻态时引脚对地电阻无穷,此时读引脚电平时可以读到真实的电平值。 高阻态的重要作用就是I/O(输入/输出)口在输入时读入外部电平用. 1. 三态门的特点 三态输出门又称三态电路。它与一般门电路不同,它的输出端除了出现高电平、低电平外,还可以出现第三个状态,即高阻态,亦称禁止态,但并不是3个逻辑值电路。 2. 三态逻辑与非门 三态逻辑与非门如图Z1123所示。这个电路实际上是由两个与非门加上一个二极管D2组成。虚线右半部分是一个带有源泄放电路的与非门,称为数据传输部分,T5管的uI1、uI2称为数据输入端。而虚线左半部分是状态控制部分,它是个非门,它的输入端C称为控制端,或称许可输入端、使能端。 当C端接低电平时,T4输出一个高电平给T5 ,使虚线右半部分处于工作状态,这样,电

电子电路实验三-实验报告

电子电路实验三-实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验三负反馈放大电路 实验报告 一、实验数据处理 1.实验电路图 根据实际的实验电路,利用Multisim得到电路图如下: (1)两级放大电路 (2)两级放大电路(闭环)

(3)电流并联负反馈放大电路 2.数据处理 (1)两级放大电路的调试 第一级电路:调整电阻参数,使得静态工作点满足:IDQ约为2mA,UGDQ<-4V。记录并计算电路参数及静态工作点的相关数据(IDQ,UGSQ,UA,US、UGDQ)。 IDQ UGSQ UA US UGDQ 2.014mA-1.28V 5.77V7.05V-6.06V 第二级电路:通过调节Rb2,使得静态工作点满足:ICQ约为2mA,UCEQ=2~3V。记录电路参数及静态工作点的相关数据(ICQ,UCEQ)。 ICQ UCEQ 2.003mA 2.958V 输入正弦信号Us,幅度为10mV,频率为10kHz,测量并记录电路的电压放大倍数 A u1=U o1 U s 、A u= U o U s 及输入电阻Ri和输出电阻Ro。 Au1Au Ri Ro 0.783-152.790.75kΩ 3227.2Ω (2)两级放大电路闭环测试 在上述两级放大电路中,引入电压并联负反馈。合理选取电阻R的阻值,使得闭环电压放大

倍数的数值约为10。 输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。 Ausf Rif Rof -9.94638.2Ω232.9Ω(3)电流并联负反馈放大电路 输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。 Ausf Rif Rof 8.26335.0Ω3280.0Ω 3.误差分析 利用相对误差公式: 相对误差=仿真值?实测值 实测值 ×100% 得各组数据的相对误差如下表: 仿真值实测值相对误差 /% IDQ/mA 2.077 2.014 3.13 UA/V 5.994 5.770 3.88 UGDQ/V-5.994-6.060-1.09 ICQ/mA 2.018 2.0030.75 UCEQ/V 2.908 2.958-1.69 Au10.7960.783 1.66 Au-154.2-152.70.98 Ri/ kΩ90.7690.750.01

电路实验报告1--叠加原理

电路实验报告1-叠加原理的验证 所属栏目:电路实验- 实验报告示例发布时间:2010-3-11 实验三叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路, 按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。

门电路逻辑功能及测试实验报告记录

门电路逻辑功能及测试实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

深圳大学实验报告实验课程名称:数字电路实验 实验项目名称:门电路逻辑功能及测试学院:信息工程学院 报告人:许泽鑫学号:201 班级:2班同组人: 指导教师:张志朋老师 实验时间:2016-9-27 实验报告提交时间:2016-10-11

一、实验目的 (1)熟悉门电路逻辑功能,并掌握常用的逻辑电路功能测试方法。 (2)熟悉RXS-1B数字电路实验箱。 二、方法、步骤 1.实验仪器及材料 1)RXS-1B数字电路实验箱 2)万用表 3)器件 74LS00四2输入与非门1片 74LS86四2输入异或门1片 2.预习要求 1)阅读数字电子技术实验指南,懂得数字电子技术实验要求和实验方 法。 2)复习门电路工作原理及相应逻辑表达式。 3)熟悉所用集成电路的外引线排列图,了解各引出脚的功能。 4)学习RXB-1B数字电路实验箱使用方法。 3.说明 用以实现基本逻辑关系的电子电路通称为门电路。常用的门电路在逻辑功能上有非门、与门、或门、与非门、或非门、与或非门、异或门等几种。 非逻辑关系:Y=A 与逻辑关系:Y=A B + 或逻辑关系:Y=A B 与非逻辑关系:Y=A B + 或非逻辑关系:Y=A B + 与或非逻辑关系:Y=A B C D ⊕ 异或逻辑关系:Y=A B

三、实验过程及内容 任务一:异或门逻辑功能测试 集成电路74LS86是一片四2输入异或门电路,逻辑关系式为1Y=1A ⊕1B ,2Y=2A ⊕2B , 3Y=3A ⊕3B ,4Y=4A ⊕4B ,其外引线排列图如图1.3.1所示。它的1、2、4、5、9、10、12、13号引脚为输入端1A 、1B 、2A 、2B 、3A 、3B 、4A 、4B ,3、6、8、11号引脚为输出端1Y 、2Y 、3Y 、4Y ,7号引脚为地,14号引脚为电源+5V 。 (1)将一片四2输入异或门芯片74LS86插入RXB-1B 数字电路实验箱的任意14引脚的IC 空插座中。 (2)按图1.3.2接线测试其逻辑功能。芯片74LS86的输入端1、2、4、5号引脚分别接至数字电路实验箱的任意4个电平开关的插孔,输出端3、6、8分别接至数字电路实验箱的电平显示器的任意3个发光二极管的插孔。14号引脚+5V 接至数字电路实验箱的+5V 电源的“+5V ”插孔,7号引脚接至数字电路实验箱的+5V 电源的“⊥”插孔。 (3)将电平开关按表1.3.1设置,观察输出端A 、B 、Y 所连接的电平显示器的发光二极管的状态,测量输出端Y 的电压值。发光二极管亮表示输出为高电平(H ),发光二极管不亮表示输出为低电平(L )。把实验结果填入表1.3.1中。 图1.3.1 四2输入异或门74LS86外引线排列图 1A 1B 1Y 2A 2B 74LS86 V CC 4B 4A 4Y 3B 4A 3Y 1 2 3 4 5 14 13 12 11

电子电路实验二 实验报告

实验二单管放大电路 实验报告 一、实验数据处理 1.工作点的调整 调节RW,分别使I =1.0mA,2.0mA,测量VCEQ的值。 CQ 2.工作点对放大电路的动态特性的影响 分别在ICQ=1.0mA,2.0mA情况下,测量放大电路的动态特性(输入信号vi是幅度为5mV,频率为1kHz的正弦电压),包括测量电压增益,输入电阻,输出电阻和幅频特性。 幅频特性:ICQ=1.0mA

得到幅频特性曲线如下图: ICQ=2.0mA 频率f/Hz 28 80 90 200 400 680 电压增益 18.60 47.10 51.69 88.63 116.44 128.31 |Av| 频率 0.4 0.6 0.8 1.2 2.0 2.5 f/MHz 电压增益 138.33 132.58 126.12 111.39 86.87 74.43 |Av| fL 245Hz fH 1.6MHz 得到的幅频特性曲线如下图: (注:电压增益均取绝对值,方便画图) 3.负反馈电阻对动态特性的影响 改接CE与RE2并联,测量此时放大电路在ICQ=1.0mA下的动态特性(输入信号及测试内容同上),与上面测试结果相比较,总结负反馈电阻对电路动态特性的影响。 电压增益Av 输入电阻Ri 输出电阻Ro -6.46 10792Ω3349Ω 幅频特性: 频率f/Hz 10 27 80 230 400 680 电压增益 3.83 5.61 6.25 6.41 6.42 6.43 |Av| 频率 0.1 0.5 0.7 1.0 2.0 2.8 f/MHz 电压增益 5.61 5.56 5.50 5.39 4.83 4.36

逻辑门电路实验报告(精)

HUBEI NORMAL UNIVERSITY 电工电子实验报告 电路设计与仿真—Multisim 课程名称 逻辑门电路 实验名称 2009112030406 陈子明 学号姓名 电子信息工程 专业名称 物理与电子科学学院 所在院系 分数

实验逻辑门电路 一、实验目的 1、学习分析基本的逻辑门电路的工作原理; 2、学习各种常用时序电路的功能; 3、了解一些常用的集成芯片; 4、学会用仿真来验证各种数字电路的功能和设计自己的电路。 二、实验环境 Multisim 8 三、实验内容 1、与门电路 按图连接好电路,将开关分别掷向高低电平,组合出(0,0)(1,0)(0,1)(1,1)状态,通过电压表的示数,看到与门的输出状况,验证表中与门的功能: 结果:(0,0)

(0,1) (1,0) (1,1) 2、半加器 (1)输入/输出的真值表

输入输出 A B S(本位和(进位 数)0000 0110 1010 1101 半加器测试电路: 逻辑表达式:S= B+A=A B;=AB。 3、全加器 (1)输入输出的真值表 输入输出

A B (低位进 位S(本位 和) (进位 数) 0 0 0 0 0 00110 01010 01101 10010 10101 11001 11111(2)逻辑表达式:S=i-1;C i=AB+C i-1(A B) (3)全加器测试电路:

4、比较器 (1)真值表 A B Y1(A>B Y2(A Y3(A=B 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 (2)逻辑表达式: Y1=A;Y2=B;Y3=A B。 (3)搭接电路图,如图: 1位二进制数比较器测试电路与结果:

电子电路综合实验报告

电子电路综合实验报 课题名称:简易晶体管图示仪 专业:通信工程 班级: 学号: 姓名: 班内序号:

一、课题名称: 简易晶体管图示仪 二、摘要和关键词: 本报告主要介绍简易晶体管的设计实现方法,以及实验中会出现的问题及解决方法。给出了其中给出了各个分块电路的电路图和设计说明,功能说明,还有总电路的框图,电路图,给出实验中示波器上的波形和其他一些重要的数据。在最后提到了在实际操作过程中遇到的困难和解决方法,还有本次实验的结论与总结。 方波、锯齿波、阶梯波、特征曲线。 三、设计任务要求: 1. 基本要求:⑴设计一个阶梯波发生器,f≥500Hz,Uopp≥3V,阶数N=6; ⑵设计一个三角波发生器,三角波Vopp≥2V; ⑶设计保护电路,实现对三极管输出特性的测试。 2. 提高要求:⑴可以识别NPN,PNP管,并正确测试不同性质三极管; ⑵设计阶数可调的阶梯波发生器。 四、设计思路: 本试验要求用示波器稳定显示晶体管输入输出特性曲线。我的设计思路是先用NE555时基振荡器产生的方波和带直流的锯齿波。然后将产生的方波作为16进制计数器74LS169的时钟信号,74LS169是模16的同步二进制计数器,可以通过四位二进制输出来计时钟沿的个数,实验中利用它的三位输出为多路开关CD4051提供地址。CD4051是一个数据选择器,根据16进制计数器74LS169给出的地址进行选择性的输出,来输出阶梯波,接入基极。由双运放LF353对NE555产生的锯齿波进行处理,产生符合要求的锯齿波作为集电极输入到三极管集电极。最后扫描得到NPN的输出特性曲线。总体结构框图:

五、分块电路和总体电路的设计: ⑴用NE555产生方波及锯齿波,电路连接如下。 图2.方波产生电路 NE555的3口产生方波,2口产生锯齿波,方波振荡器周期T=3 R1+R2 C1,占空比D= R1+R2 /(R1+2R2),为使阶梯波频率足够大,选C1=0.01uF,同时要产生锯齿波,方波的占空比应尽量大,当R1远大于R2时,占空比接近1,选R1为20kΩ,R2为100Ω。 ⑵阶梯波电路: 用NE555时基振荡器产生的方波作为16进制计数器74LS169的时钟信号,74LS169是模16的同步二进制计数器,可以通过四位二进制输出来计时钟沿得个数,实验中利用它的三位输出为多路开关CD4051的输入Qa、Qb、Qc提供地址。直流通路是由5个100Ω的电阻组成的电阻分压网络以产生6个不同的电压值,根据16进制计数器74LS169给出的地址进行选择性的输出,而它的管脚按照一定的顺序接入5个等值电阻然后在第一个电阻接入5V 的电压,原本是管脚接7个电阻可以产生8阶阶梯波,将三个管脚短接,即可产生6阶,这里选择了4,2,5接地,使输出为6阶阶梯波,以满足基本要求中的阶梯波幅度大于3V的要求。另一路信号通道的输入则接被显示的信号;通过地址信号Qa、Qb、Qc对两回路信号同步进行选通。这样,用示波器观察便可得到有6阶的阶梯波。 仿真时在Multisim上没有现成元件CD4051,这里选择了与它功能相近的8通道模拟多路复用器ADG528F代替。它是根据A1、A2、A3口的输入来选择输出S1-S8中各路电压值。

相关文档
相关文档 最新文档