文档库 最新最全的文档下载
当前位置:文档库 › 数值分析-5常微分方程数值解法

数值分析-5常微分方程数值解法

5

第5 章

常微数

常微分方程数值解法

本章内容

511.1 光波的特性5.1 引言5.2 Euler 方法1.2 光波在介质界面上的反射和折射5.3 Runge-Kutta 方法5.41.3 光波在金属表面上的反射和折射5.4 单步法的收敛性和稳定性5.5 线性多步法

2

本章要求

主要内容:尤拉方法、改进的尤拉方法、龙格库塔方法、亚当?—

姆斯方法。

?基本要求

–(1)掌握尤拉法。

–(2)会用龙格─库塔法。了解截断误差,稳定性,收敛性的含义。?重点、难点

重点难点

–重点:尤拉方法的思想;

–难点:龙格─库塔法。

难点龙格库塔法

3

51

5.1

引言 待求解的问题:常微分方程的定解问题

)

[]

?着重考察:一阶方程的初值问题

(511)00

(,,()y f x y x a b y x y ′=∈?

=?(5.1.1)(5.1.2)

解的存在唯一性(“常微分方程”理论):只要f (x ,y )

在[a ,b ]×R 1上连续,且关于y 满足Lipschitz 条件,即存在与x ,y 无关的常数L 使

对任意定义在[a ,b ]上的y 1(x )和y 2(x )都成立,则上述初值1212|(,)(,)|||

f x y f x y L y y ?≤?4

问题存在唯一解。

51

如何求解

5.1

引言

:(常微分方程理论)

表达式,而是函数表,无法用解析解法。数值解法:求解所有的常微分方程

计算解函数y (x )在一系列节点a =x 0

...1n i x =≈)

,,()

(y y i i 节点间距为步长,通常采用等距节点,)1,...,0(1?=?=+n i x x h i i i 即取h i =h (常数)。

步进式:根据已知的或已求出的节点上的函数值计算当前节点上的函数值,一步一步向前推进。因此只需建立由已知的或已求出的节点上的函值,步步向前推进。因此只需建立由已知的或已求出的节点上的函数值求当前节点函数值的递推公式即可。这种计算公式称为差分格式。5

515.1

引言

初值问题

6

7

52Euler

(,)

(5.1.1)y f x y a x b

′=≤≤?5.2.1Euler 格式

5.2 Euler

方法00

()

(5.1.2)

y x y =?

?(511)1(5.1

.1)n n x x +对微分方程两端从到进行积分

11(,())n n x x y dx f x y x dx

++′=

右端积分用

n

n

x x ∫

1()()(,())n x y x y x f x y x dx

+?=左矩形数值求积公式

1n

n n x +∫

()(,())

g x f x y x =令′2

()

()()()()2

b

a

g g x dx b a g a b a ξ=?+?∫

??=得

11)(,())

((,()) n n n n n n n n x x f x y x y y f x y x h ++=(5.2.1)

8

52Euler

方法5.2 Euler

11()=(,)n n

n n n n n

y y y x f x y x x ++?′=

?1(,) 0,1,...

n n n n y y h f x y n +=+=(5.2.1)

每步计算故也称为E l 单步法

式(5.2.1)称为Euler 格式。

y n +1只用到y n ,故也称为Euler 单步法。公式右端只含有已知项y n ,所以又称为显格式的单步法。

9

52Euler

几何意义

5.2 Euler

方法称为欧拉折线法

10

52Euler

5.2 Euler

方法欧拉折线法

()

y y x =y

1

n p +n

p ()

1n p x +x

n

x 1

n x +从上述几何意义上得知,由Euler 法所得的折线明显偏

离了积分曲线,可见此方法非常粗糙。

11

52Euler

显然这种近似有一定误差

5.2 Euler

方法显然,这种近似有一定误差,而且步长越大,误差越大,)如何估计这种误差y (x n +1) ?y n +1?

定义在假设y n =y (x n ),即第n 步计算是精确的前提下,考虑公式或方法本身带来的误差:R n =y (x n +1)?y n +1,称为局部截断误差。

说明

12

52Euler

截断误差:实际上,y (x n )≈y n ,y n 也有误差,它对y n +1的误差也有

5.2 Euler

方法影响,见下图。但这里不考虑此误差的影响,仅考虑方法或公式本身带来的误差,因此称为方法误差或截断误差。

局部截断误差的分析:由于假设y n =y (x n ),即y n 准确,因此分析局部截断误差时将x 和都用点x 上的信息来表示,工具:y (n +1)y n +1n Taylor 展开。

)欧拉法的局部截断误差:

23

h y ′′′=?=1112

()[()()()()] (,)]n n n n n n n n R y x y y x hy x x O h x y ++++++?3

2

()

h O h =R n +1的主项

(5.2.3)

13

52Euler

方法定义若某算法的局部截断误差为O (h p +1),则称该算法有p

5.2 Euler

阶精度。

)

Euler 法具有阶精度()。

2

12()h n n R y x +′′≈1在第二章讨论牛顿插值公式时介绍了差商

的概念和性质,各阶差商可以近似各阶导数,具有不同的精度,且可以用函数值来表示。

上一章中数值微分的方法之一

在x n 点用一阶向前差商近1()()

n n y x y x x +?′≈

就是用差商近似导数.

似一阶导数

()n y h

1()()()

n n n y x y x hy x +′≈+E l ’th d

11 ()()(,)

n n

n n n n n y x y y x y y h f x y ++↑≈≈=+Euler’s method 14

52Euler

5.2.2后退的Euler 格式

5.2 Euler

方法=(,)().y f x y y x ′′微分方程的本质特征:方程中含有导数项方法消除导数项——差x n +1点向后差商近似导数利用方法消除导数项差离散化商代替导数

11()()

()n n n y x y x y x h

++?′≈

h 11()()() ()n n n y x y x hy x x y ++′≈+↑≈1111()(,)

n n

n n n n n y y x y y h f x y ++++≈=+(5.2.5)

隐式或后退Euler 公式

15

52Euler

)?(521)5.2 Euler

方法1111(,(,)

n n n n n n n n y y h f x y y y h f x y ++++=+?

=+?(5.2.5)

(5.2.1)式(5.2.5)中由于未知数y n +1同时出现在等式的两边,故

E l 公式而(521)E l 公式称为隐式Euler 公式,而式(5.2.1)称为显式Euler 公式。隐式公式不能直接求解,一般需要用Euler 显式公式得到初值,然后用Euler 隐式公式迭代求解。因此隐式公式较显式公式计算复杂,但稳定性好(后面分析)。

式较式公式算16

52Euler

隐式Euler 公式迭代求解方法:

5.2 Euler

方法(0)1(,)n n n n y y h f x y +?=+迭代初值

(1)()

1

11(,)k k n n n n y

y h f x y ++++?=+?收敛性:

0,1,...k =(1)

()1

111

111

((0)(,)(,)

k k n n n n n n k y

y h f x y

f x y hL ++++++++?=?≤≤()

)1

11

1

(1)1

1 1, ()

k n n n n k n n hL y

y y

y hL y

k y +++++++≤??<∴→→∞ ∵,h f x =+在迭代公式中取极限,有(5.2.6)11(1

1)

()n n n n k n y y y y ++++因此的极限就是隐式方程的解.

()17

52Euler 几何意义

P n+1

y

5.2 Euler

方法设已知曲线上一点P n (x n ,y n ),过该点作弦

线,斜率为(x n +1,y n +1)点的方向场f (x ,y )方P n

y(x )

向,若步长h 充分小,可用弦线和垂线x =x n +1的交点近似曲线与垂线的交点。

x x x

见上图,显然,这种近似也有一定误差,n n+1

如何估计这种误差y (x n +1) ?y n +1?

方法同上,基于Taylor 展开估计局部截断误差。但是注意隐式公式中右边含有但是注意,隐式公式中右边含有

f (x n +1, y n +1) ,由于y n +1不准确,所以不能直接用

y')

y (x n +1)代替f (x n +1, y n +1) 18

52Euler

)

隐式欧拉法的局部截断误差:5.2 Euler

方法h f x y =+′由微分中值定理,得

111(,)

n n n n y y +++()()()()()()111111111,,,,

n n n n y n n n n n f x y f x y x f x y y x y y x ηη+++++++++=+?????在,之间;

()()()()()()2

111 ,2

n n n n n n h f x y x y x y x hy x y x +++′′′′′′′==+++

又()()()

111132

,n y n n n n y hf x y y x y x h η++++′∴=?+????′′′′′′

()()() 2

n n n hy x h y x y x ++++而

()1n y x y x += ()()()()2

3

26

n n n n h h

hy x y x y x ′′′′′′++++

19

52Euler

5.2 Euler

方法()()111111(),n n n y n n n R y x y hf x y x y η++++++′=?=?????从而

()()2

3

23

n n h h

y x y x ′′′′′??+ 23

1h h hf x R y x y x ??′′′′′′?=??+

()()()11,23

y n n n n f η++??

2

()

()()()

11211,,1,y n y n y n hf x h f x hf x ηηη+++′′=+++′?

11由

2

(1)1x x x

=+++? 20

数值分析常微分方程的数值解法

《计算机数学基础》数值部分第五单元辅导 14 常微分方程的数值解法 一.重点内容 1. 欧拉公式: )心知1)a 儿+1 =儿 + hfg ,儿) m 1、 伙=0丄2,…川一 1) I 无=x Q +kh 局部截断误差是0(*)。 2. 改进欧拉公式: 预报一校正公式: 预报值 _v*+1 =儿+ hf (x k ,儿) - h - 校正值 y M = y k +-[f (x kt y k ) + /(x A+1, y M )] 即 儿+1 =儿+ £ "(忑'儿)+心+「儿+ hfg ,儿))] 或表成平均的形式: 儿=儿+ hfg ,儿) '儿=儿+"(无+】,儿) +K ) 改进欧拉法的局部截断误差是0(2) 3. 龙格一库塔法 二阶龙格一库塔法的局部截断误差是0(爪) 三阶龙格一库塔法的局部截断误差是0(护) 四阶龙格F 塔法公式:儿计=儿+ 2(匕+ 2心+ 2? + ?) 四阶龙格一库塔法的局部截断误差是0(爪)。 二实例 y' = — y — xv f2(0 < x < 0.6) 例1用欧拉法解初值问题{ ' ? -取步长/匸02计算过程保留 b (o )= 1 4位小数。 解/i=0.2. f (x )= —y —xy 2<,首先建立欧拉迭代格式 y*+i =儿+ hf g,y k ) = y k -hy k -hx k y ; =0.2 儿(4 - x k y k )(k = 0,1,2) K 2=f(x n +^h, yk+-hK\)t gg+舟人,>'n +y/?A3);

当k=0, xi=0.2 时,已知x()=0,y()=l,有 y(0?2)今i=0?2X l(4-0X 1)=0.8000 当k=\. M=0?4时,已知“=0?2」尸0?8,有 y(0?4)今2=0.2 X 0.8X(4-0.2X0.8)=0.614 4 当k=2, xs=0.6 时,已知x2=0.4,y2=0.6144,有 y(0?6)今3=0.2 X0.6144X (4-0.4 X 0.4613)=0.8000 「J, ,2 ?_ ZX 例2用欧拉预报一校正公式求解初值问题\y + v +V sinx=,取步长/?=0.2,计算 .y ⑴=1 y(0.2),y(0.4)的近似值,计算过程保留5位小数。 解步长力=0.2,此时/(x,y)=—y—fsiiu 欧拉预报一校正公式为: 预报值兀I = y k + hfg y k) - I J_ 校正值)3=儿+尹(忑,儿)+ fg,儿+1)] 有迭代格式] 预报值儿+] = y k 4-h(-y k -y; sin x k) =y k (0?8-0?2儿sin x k) < h 、—— 2 校止值y如]=儿 +尸[(一片一力sinxJ + LN+i-yl sin.v I+1)] ——?> =儿(°?9一0?1儿sin心)一0?1(儿+| +y;j sin心利) 、"M=0.別=1」)=1 时,Xj=1.2> 有 儿=yo(°?8-O?2yo sinx0) = 1 x (0.8-02x lsin 1) = 0.63171 y(1.2) ?= lx(0.9-0.1xlxsinl)-0.1(0.63171+0.631712sinl.2) = 0.71549 当 T xi=1.2, yi=0.71549 时,x2=1.4,有 y2 =儿(0.8-0?2儿sinXj) = 0.71549x(0.8-02x0.71549sinl.2) =0.47697 y(14) z y2 = 0.71549x(0.9-0.1x0.71549xsin 1.2)-0.1(0.47697+ 0.476972 sin 1.4) =0.52608 V = 8 — 3y 例3写出用四阶龙格一库塔法求解初值问题^ ‘的计算公式,取步长/匸0.2计 b(0) = 2 算y(0.4)的近似值。讣算过程保留4位小数。 解此处.心,刃=8 —3”四阶龙格一库塔法公式为 艰=儿 + % + 2? + 2勺 + ?) 1 h, y n+ y/?A3): 本例计算公式为: 0 2 呱严儿+三(32?+2?+心

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析实验报告176453

实验报告 插值法 数学实验室 数值逼近 算法设计 级 ____________________________ 号 ____________________________ 名 _____________________________ 实验项目名称 实验室 所属课程名称 实验类型 实验日期

实验概述: 【实验目的及要求】 本次实验的目的是熟练《数值分析》第二章“插值法”的相关内容,掌握三种插 多项式插值,三次样条插值,拉格朗日插值,并比较三种插值方法的 优劣。 本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并 去实现。 【实验原理】 《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值, 拉格朗日 插值的相应算法和相关性质。 【实验环境】(使用的软硬件) 软件: MATLAB 2012a 硬件: 电脑型号:联想 Lenovo 昭阳E46A 笔记本电脑 操作系统: Win dows 8专业版 处理器:In tel ( R Core ( TM i3 CPU M 350 @2.27GHz 2.27GHz 实验内容: 【实验方案设计】 第一步,将书上关于三种插值方法的内容转化成程序语言,用 MATLA B 现; 第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。 【实验过程】(实验步骤、记录、数据、分析) 实验的主要步骤是:首先分析问题,根据分析设计 MATLA 程序,利用程序算出 问题答案,分析所得答案结果,再得出最后结论。 实验一: 已知函数在下列各点的值为 试用4次牛顿插值多项式 P 4( x )及三次样条函数 S ( x )(自然边界条件)对数据进行插值。 用图给出{( X i , y i ), X i =0.2+0.08i , i=0 , 1, 11, 10 } , P 4 ( x )及 S ( x )。 值方法:牛顿 在MATLAB 件中

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

数值分析实验报告

实验一、误差分析 一、实验目的 1.通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; 2.通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念; 3.通过上机计算,了解舍入误差所引起的数值不稳定性。 二.实验原理 误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时,由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。 三.实验内容 对20,,2,1,0 =n ,计算定积分 ?+=10 5dx x x y n n . 算法1:利用递推公式 151--=n n y n y , 20,,2,1 =n , 取 ?≈-=+=1 00182322.05ln 6ln 51dx x y . 算法2:利用递推公式 n n y n y 51511-= - 1,,19,20 =n . 注意到 ???=≤+≤=10 10202010201051515611261dx x dx x x dx x , 取 008730.0)12611051(20120≈+≈y .: 四.实验程序及运行结果 程序一: t=log(6)-log(5);

n=1; y(1)=t; for k=2:1:20 y(k)=1/k-5*y(k-1); n=n+1; end y y =0.0884 y =0.0581 y =0.0431 y =0.0346 y =0.0271 y =0.0313 y =-0.0134 y =0.1920 y =-0.8487 y =4.3436 y =-21.6268 y =108.2176 y =-541.0110 y =2.7051e+003 y =-1.3526e+004 y =6.7628e+004 y =-3.3814e+005 y =1.6907e+006 y =-8.4535e+006 y =4.2267e+007 程序2: y=zeros(20,1); n=1; y1=(1/105+1/126)/2;y(20)=y1; for k=20:-1:2 y(k-1)=1/(5*k)-(1/5)*y(k); n=n+1; end 运行结果:y = 0.0884 0.0580 0.0431 0.0343 0.0285 0.0212 0.0188 0.0169

常微分方程的数值解

实验4 常微分方程的数值解 【实验目的】 1.掌握用MATLAB软件求微分方程初值问题数值解的方法; 2.通过实例用微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。 【实验内容】 题3 小型火箭初始重量为1400kg,其中包括1080kg燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为0.4kg/m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。 模型及其求解 火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=9.8m/s2。 在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。因此有如下二式: a=dv/dt=(F-mg-0.4v2)/m=(32000-0.4v2)/(1400-18t)-9.8 dh/dt=v 又知初始时刻t=0,v=0,h=0。记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。程序如下: function [ dx ] = rocket( t,x ) a=[(32000-0.4*x(2)^2)/(1400-18*t)]-9.8; dx=[x(2);a]; end ts=0:1:60;

x0=[0,0]; [t,x]=ode45(@rocket,ts,x0); h=x(:,1); v=x(:,2); a=[(32000-0.4*(v.^2))./(1400-18*t)]-9.8; [t,h,v,a]; 数据如下: t h v a 0 0 0 13.06 1.00 6.57 13.19 13.30 2.00 26.44 26.58 1 3.45 3.00 59.76 40.06 13.50 4.00 106.57 53.54 13.43 5.00 16 6.79 66.89 13.26 6.00 240.27 80.02 12.99 7.00 326.72 92.83 12.61 8.00 425.79 105.22 12.15 9.00 536.99 117.11 11.62 10.00 659.80 128.43 11.02 11.00 793.63 139.14 10.38 12.00 937.85 149.18 9.71 13.00 1091.79 158.55 9.02 14.00 1254.71 167.23 8.33 15.00 1425.93 175.22 7.65 16.00 1604.83 182.55 6.99 17.00 1790.78 189.22 6.36 18.00 1983.13 195.27 5.76 19.00 2181.24 200.75 5.21 20.00 2384.47 205.70 4.69 21.00 2592.36 210.18 4.22 22.00 2804.52 214.19 3.79 23.00 3020.56 217.79 3.41 24.00 3240.08 221.01 3.07 25.00 3462.65 223.92 2.77 26.00 3687.88 226.56 2.50 27.00 3915.58 228.97 2.27

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

常微分方程常用数值解法.

第一章绪论 1.1 引言 常微分方程是现代数学的一个重要分支,是人们解决各种实际问题的有效工具。微分方程的理论和方法从17世纪末开始发展起来,很快成了研究自然现象的强有力工具,在17到18世纪,在力学、天文、科学技术、物理中,就已借助微分方程取得了巨大的成就。1864年Leverrer根据这个方程预见了海王星的存在,并确定出海王星在天空中的位置。现在,常微分方程在许多方面获得了日新月异的应用。这些应用也为常微分方程的进一步发展提供了新的问题,促使人们对微分方程进行更深入的研究,以便适应科学技术飞速发展的需要。 研究常微分方程常用数值解是数学工作者的一项基本的且重要的工作。在国内外众多数学家的不懈努力,使此学科基本上形成了一套完美的体系。微分方程的首要问题是如何求一个给定方程的通解或特解。到目前为止,人们已经对许多微分方程得出了求解的一般方法。由于在生产实际和科学研究中所遇到的微分方程问题比较复杂,使这些问题的解即使能求出解析表达式,也往往因计算量太大而难于求出,而对于一些典型的微分方程则可以运用基本方法求出其解析解,并可以根据初值问题的条件把其中的任意常数确定下来。 由于求通解存在许多困难,人们就开始研究带某种定解条件的特解。首先是Cauchy对微分方程初始解的存在惟一性进行了研究。目前解的存在惟一性、延拓性、大范围的存在性以及解对初始解和参数的延续性和可微性等理论问题都已发展成熟。与此同时,人们开始采取各种近似方法来求微分方程的特解,例如求微分方程数值解的Euler折线法、Runge-Kutta法等,可以求得若干个点上微分方程的近似解。最后,由于当代高科技的发展为数学的广泛应用和深入研究提供了更好的手段。用计算机结合Matlab软件求方程的精确解、近似解,对解的性态进行图示和定性、稳定性研究都十分方便有效。 本章先介绍常微分的一般概念、导出微分方程的一些典型例子及求解微分方程的思路分析。从而得到常微分方程的常用数值解法。

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

数值分析实验报告

实验五 解线性方程组的直接方法 实验5.1 (主元的选取与算法的稳定性) 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。 实验要求: (1)取矩阵?? ? ?? ?? ?????????=????????????????=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。取n=10计算矩阵的 条件数。让程序自动选取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。 (4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。重复上述实验,观察记录并分析实验结果。 思考题一:(Vadermonde 矩阵)设 ?? ??????????????????????=? ? ? ?????????????=∑∑∑∑====n i i n n i i n i i n i i n n n n n n n x x x x b x x x x x x x x x x x x A 0020 10022222121102001111 ,, 其中,n k k x k ,,1,0,1.01 =+=, (1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化? (2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b (3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。 (4)你能由此解释为什么不用插值函数存在定理直接求插值函数而要用拉格朗日或牛顿插值法的原因吗? 相关MATLAB 函数提示: zeros(m,n) 生成m 行,n 列的零矩阵 ones(m,n) 生成m 行,n 列的元素全为1的矩阵 eye(n) 生成n 阶单位矩阵 rand(m,n) 生成m 行,n 列(0,1)上均匀分布的随机矩阵 diag(x) 返回由向量x 的元素构成的对角矩阵 tril(A) 提取矩阵A 的下三角部分生成下三角矩阵

常微分方程初值问题数值解法

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

相关文档
相关文档 最新文档