文档库 最新最全的文档下载
当前位置:文档库 › 基于STM32的数字舵机控制系统的设计

基于STM32的数字舵机控制系统的设计

基于STM32的数字舵机控制系统的设计
基于STM32的数字舵机控制系统的设计

#66#

计算机测量与控制.2011.19(1) Computer Measurement &Control

控制技术

收稿日期:2010-05-14; 修回日期:2010-06-24。

作者简介:周永龙(1986-),男,河南灵宝人,硕士研究生,主要从事电路与系统,数字伺服方向的研究。

文章编号:1671-4598(2011)01-0066-03 中图分类号:T P273

文献标识码:A

基于STM32的数字舵机控制系统的设计

周永龙1,雷金奎2

(11西北工业大学电子信息学院,陕西西安 710072;21西北工业大学第365研究所,陕西西安 710065)

摘要:针对无人机舵机控制系统对位置伺服的实时性和可靠性的要求,首次提出了以S TM 32为微控制器的新型数字控制系统;硬件部分给出了系统硬件结构图,并简要介绍了主控制芯片和硬件电路结构,为了提高系统数据传输的可靠性,引入CAN 总线传输方式;在软件部分,首先简要介绍了ST M 32的标准外设固件库函数,然后介绍了三闭环数字调节算法的实现和中断任务;另外,搭建了无人机数字舵机数字控制系统的仿真模型,通过仿真研究验证了控制策略的可行性。

关键词:无人机;ST M 32;三闭环伺服调节;舵机

Design of STM32-Based Digital Actuator Controlling System

Zho u Yonglong 1

,Lei Jinkui

2

(11No rthw ester n Polytechnical U niver sity ,Xi p an 710072,China;

21R esear ch Institute N o 1365,N o rthwester n P olytechnical U niver sity,Xi p an 710065,China)

Abstract:In view of th e position -s ervo real-timin g and reliability r equiremen ts to th e u nman ned aerial vehicle actu ator contr olling system ,for th e fir st time a novel digital actuator con tr olling s ystem is pu t forw ard based on S TM 32micr o-controller.In the hardw are part th e structu ral graph of the system hardw are is brough t forw ard,and the micro-controller and the hardw are circuit is br iefly introduced.To im prove the reliab ility of data tran smis sion,C AN bu s is u sed.In th e softw are part,S TM 32standard peripherals firmw are library is b riefly in trodu ced at first.Then the arith metic implement of th e th ree closed loop digital modulation and th e interruption tas k is mainly recommen -ded.In addition the emulation m od el of the unm ann ed aerial vehicle digital actuator controlling s ystem is built,and the s ystem performance is validated.

Key words :U AV;ST M 32;thr ee closed-loop control strategy;actuator

0 引言

舵机控制系统是无人机控制系统的重要部分,其性能好坏

直接决定了无人机的性能。随着国防军事的发展,人们对无人机的性能要求也越来越高。

本文研究的目的就在于设计新型数字舵机控制系统,以满足无人机舵机控制系统的快速性﹑精确性和稳定性等指标。该数字舵机控制系统是以微控制器ST M 32F 103R 为主控制单元,外围电路包括信号调制电路,信号采集电路和换向控制电路。该系统接收由上位机发出的位置指令,驱动舵机转动,从而实现了对无人机飞行的准确控制。

1 系统组成框图

舵机控制系统是无人机控制系统的重要组成部分。系统使用ST M 32系列微控制器作为主控制芯片,完成

数字舵机控制系统的设计和实现。系统的飞行控制指令由飞控计算机提供,通过数据接口接入航机控制器。航机控制器依据最新的位置指令与反馈信息,产生舵机飞行的控制信息。航机控制器有数据接口模块、中央控制单元模块、电机的逻辑换向模块及隔离与功率驱动模块。中央控制单元完成数字调节,逻辑单元接收电机位置信息和换向信息,产生新的换向信号,并由隔离与驱动模块完成该信号的隔离与放大。驱动电机通过减速器带动舵面

发生偏转。电机的速度信息与舵面的位置反馈信息通过传感器输入到航机控制器。系统组成框图如图1所示。

图1 系统组成框图

2 基于微控制器STM32F103R 的硬件描述

211 微控制器STM32F 103R

ST M 32F10X 系列微控制器使用灵活而丰富的电源控制策略,为内部的各个模块提供工作电压。各个模块时钟频率可以软件配置。该控制器内嵌了丰富的外设功能模块。该系列控制器中有4个定时控制器,可以工作在编码模式和PWM 模式,对于电机控制很有用处。

212 硬件设计

系统硬件主要包括主控制器﹑接口部分﹑逻辑换向部分﹑信号反馈部分和驱动部分。

(1)接口部分

该系统使用CAN 总线接口,接受位置指令。由于ST M 32系列微控制器内嵌CA N 模块控制器,所以使用CAN 总线传输数据时,非常方便。外部接口只需要外接一个CA N 总线收

第1期周永龙,等:基于ST M32的数字舵机控制系统的设计 #67#

发模块。接口电路可以直接挂接到CA N 总线[1],接收上位机位置指令。

(2)换向部分

该系统使用可编程逻辑器件完成电机换向的控制。输入信号包括电机反馈的三相霍尔信号﹑方向信号和占空比信号,输出为六相PW M 控制信号。可编程逻辑器件的时钟信号由主控制器的主时钟输出引脚提供。本系统使用可编程逻辑器件,完成换向策略,从而避免了使用微控制器实现逻辑换向过程的复杂性。

(3)反馈部分由于本设计采用三闭环数字调节,反馈量包括位置反馈,速度反馈和电流反馈。位置反馈过程对实际舵面偏转量进行反馈和信号调制,然后输入到主控制器的模数转换接口。电流反馈部分使用流压转换器件将驱动电流转换为电压信号,调制之后输入到主控制器的A D 转换接口。速度反馈利用光电编码接收器件,将正交编码信号输入到主控制器的定时控制器,使用主控制器编码模式计算速度反馈

[2]

(4)驱动部分

系统使用的驱动电压为28V ,远大于控制电路部分的5V 和313V 电压。因此,必须使用隔离元件进行隔离,将PWM 电压控制信号隔离放大之后输入到驱动芯片的输入端,驱动芯片输出三相交流驱动电流,驱动电机转动。系统采用三相无刷直流电机星型连接全桥驱动方式,输入为6

路PWM 信号,产生A,B,C 三相输出,驱动电机旋转[3]。驱动电路图如图2所示。

图2 驱动电路

3 系统软件描述

本系统软件是基于EWA RM 的开发平台,使用了ST M 32F10X 标准外设固件库函数开发。该系统软件设计包括系统初始化、中断程序设计和主程序设计。初始化程序设计包括工作时钟设置,CAN 接口初始化,A D 转换接口初始化。中断程序设计包括由CA N 接口接受数据,和驱动芯片异常情况处理。主程序是一个无限循环程序,它不断检测是否有新的数据输入,或者有中断信号产生。然后停止检测,并完成处理。完成处理后跳回主循环继续检测。CAN 中断程序包括接受新的位置指令[4]。主程序包括从AD 转换接口接收反馈信号,并完成三环PID 调节,输出PW M 占空比信号。311 STM 32F 10X 标准外设固件库函数的应用

ST M 32F10X 标准外设固件库函数基于32位AR M 微控制器ST M 32F101xx 与ST M 32F103x x ,包括了微控制器所有外设的性能特征,覆盖了外设所有功能,可以很方便实现各种应用。软件要做的工作包括以下几个方面:

(1)stm32f10x _conf 1h 参数设置文件,起到应用和库之间界面的作用。在这个文件中,设置使能AD 转换和CA N 控制器模块,并且设置H SI 时钟频率为8000000H z 。

(2)stm32f10x _it 1c 中断设置文件,在硬件异常中断H ardFaultExcept ion ()中添加硬件保护措施,在CAN 接收中断U SB _L P _CAN _RX0_IR QH andler ()中添加接收超时处理。

(3)主程序ma in ()函数。在这个函数中CA N ﹑DM A 和AD 等模块的时钟配置;配置端口模式;配置A D 模块的工作模式;在主循环中进行数字调节,产生新的电压占空比信号,并且存储最新的反馈信息。主程序如下:

int main(void){**

RCC_Configu ration();NVIC_Configuration();GPIO_Configuration ();DM A_DeIn it(DM A_Channel1);**

DM A_Init(DM A_Channel1,&DM A_InitStructu re);DM A_Cmd(DM A_Chan nel1,ENABLE);**

ADC_In it(ADC1,&ADC_InitS tru cture);ADC_DM ACmd(ADC1,ENABLE);ADC_Cmd(ADC1,ENABLE);w hile (1){

*****三环数字调节*****}

}

312 软件流程

该系统的主要功能是接收位置指令,并使用传感器得到位置﹑速度和电流的反馈信息,计算得到新的驱动电压波形。其流程图如图3所示。

图3 软件流程图

4 控制系统仿真与建模

本系统采用matlab 作为仿真工具在simulink 环境下搭建舵机模块。系统建模的指导思想是对该系统的各个部分进行建模,包括无刷电机模块、直流电源模块、M OSF ET 功率开关器件模块、换向逻辑模块、减速器模块和三闭环调节模块。然

#68# 计算机测量与控制 第19卷

后对这些功能模块进行有机整合,从而搭建出舵机控制系统的仿真模型。仿真模型如图4所示。

图4 舵机的仿真结构模型

当输入为600阶跃信号时,系统的响应如图5所示。当输入频率为2H z 幅度为1的正弦信号,系统的输入信号和响应信号如图6示。

分析图5和图6可知,

当输入为600阶跃信号指令时,响

图5 阶跃响应

图6 2H z 正弦信号跟踪图

应时间为01035秒。输入频率为2H z 幅度为1的正弦信号时,响应信号和输入信号波形完全相同,延迟0103秒,相位滞后约220。由此可知,舵机系统的稳态性能良好。

5 结束语

本系统阐述并实现了基于ST M 32微控制器的数字舵机控制系统设计,与传统的使用模拟电路设计实现的舵机伺服控制系统相比有很大优点,例如控制精度高、可靠性高和抗干扰能力强等,舵机能方便地实现对舵机回路的全面自检,适应了舵机智能化的要求。

参考文献:

[1]徐 强.支持C AN 总线的电动车辅助逆变电源的设计[J ].电子

技术应用,2002,(8).

[2]张汝成,王广生,张 磊.基于ARM 的电梯主控制器设计[J ].

计算机测量与控制,2009.

[3]王晓明,王 玲,等.电动机的DS P 控制(第一版)[M ].北京:

北京航空航天大学出版社,2004.

[4]邬宽明.CAN 总线原理和应用系统设计[M ].北京:北京航空航

天大学出版社,1996.

(上接第56页)

这部分测试器的同步和协调问题。

5 结论

通过对现有分布式测试模型的改进,引入虚拟多端口测试的方法,极大地简化了多个测试器之间的同步和协调问题,并且不会显著增加系统的构建成本,提高了测试效率。下一步的工作,需要对分布式虚拟测试中的多个虚拟测试器的测试序列

算法进行改进,利用单个虚拟测试器中能够很好的同步协调的优势,选择单个虚拟测试器中合适的虚拟测试器与其他虚拟测试器来进行同步和协调,以进一步简化测试序列,提高测试的效率。

参考文献:

[1]ISO/IEC https://www.wendangku.net/doc/7c13067398.html,rm ation Techn ology –Open S ystem s Intercon -nection –Conformance testing m ethodology and framew ork-Part 1[S],2004.

[2]Luo G,Dssouli R,Bochmann G V,et al.Generatin g synch roniz -

able test sequen ces b as ed on finite state m achine w ith distribu ted ports [A ].Rafiq O,eds.Proceedings of the IFIP Intern ational Work shop on Protocol T est sys tems (IW PTS 1993)[C ].Pau,

Fran ce:North-H olland,1993.

[3]Cacciari L,Rafiq O.Controllability an d ob servability in distribu ted

testing [J ].Information and S oftw are T echnology,1999,41(11-12):767-780.

[4]You ng Y C,Tai K C.Observation in accuracy in con formance tes -tin g w ith multiple testers [A].In:Ntafos S,eds.Proceedings of the IEEE W orksh op on Application -Specific Softw are Engin eering an d T echnology [C].Richardson,TX U SA:IEEE Computer S oc-i ety,1998.

[5]Choi Y J,You n H Y,S eol S,et al.Dis tributed test usin g logical

clock [A].In:Kim M ,Ch in B,Kang S,Lee D,eds.Proceedin gs of the 21st IFIP In ternational Confer ence on Formal Techn iqu es for Netw orked and Distrib uted S ystems (FORT E 2001)[C].Cheju Island,Korea:Kluw er,2001.

[6]Xie L,W ei J L,Zhu G X,An improved FS M -based m ethod for

BGP protocol conform an ce testing [A].ICCCAS2008[C].2008.

无人机舵机控制系统的硬件设计与实现_杨百平

1076 计算机测量与控制.2010.18(5) Computer Measurement &Control 控制技术 收稿日期:2009-09-27; 修回日期:2009-11-09。 作者简介:杨百平(1982-),男,陕西人,在读研究生,主要从事电路系统与自动控制方向的研究。 杨金孝(1964-),男,陕西人,副教授,主要从事电子电路的研究与设计、控制理论与控制工程方向的研究。 文章编号:1671-4598(2010)05-1076-03 中图分类号:T P274 5 文献标识码:A 无人机舵机控制系统的硬件设计与实现 杨百平,杨金孝,赵 强 (西北工业大学电子信息学院,陕西西安 710129) 摘要:给出了一种基于ST M 32F103VB 微控制器的无人机全数字舵机控制系统硬件实现方案,该方案以STM 32F103VB 作为主控芯片,无刷直流电机作为该系统的伺服电机,采用三闭环的控制策略,实现了脉宽调制(PWM )控制信号的采样和输出,通过采样PW M 信号实现舵机的控制,针对无人机对数据传输实时性的要求,利用CAN 总线与上位机通讯,很好地满足了要求;该系统具有成本低廉、安全可靠且实现容易的特点,实现了舵机控制系统的数字化与小型化;经多次试验,证明是安全实用的。 关键词:S TM 32F103VB 微控制器;无人机;伺服;电动舵机 Hardware Design and Implementation for a S ervo System of UAV Rudder Yang Baiping ,Yang Jinxiao,Zhao Qiang (Colleg e of Electr onics and Infor mat ion,No rthw ester n P olytechnical U niver sity,Xi an 710129,China) Abstract:A set of fu lly-digital-signal ser vo system bas ed on S TM 32F103VB for UAV electrom echanical rudder is in tr odu ced in th is paper.It takes S TM 32F103VB as the master control unit and bru shless DC m otor as its drive.T his project uses the digital th ree clos ed-loop control strategy,sampled and gen erated puls e width modulation w ave,through sampling one of th e PW M w aves to realize control tran sfer,in view of U AV to data transmis sion tim elin es s r equest,com municated w ith upper sys tem by CAN bu s.It featu red low cos t,s afe,easy to realize,made it smaller and digital,and w as testified that the sy stem is ap plicable and safety. Key words :S TM 32F103VB M CU;UAV;servo;electr om ech anical rudder 0 引言 舵机控制系统是飞行控制计算机和舵机之间的接口,它采集接收机多路PW M 信号,与上位机进行通讯,产生控制舵机的PW M 信号,是舵机系统的核心部分。现有的舵机伺服控制线路大部分还都是模拟的,因其固有的一些缺点而限制了它的使用,相比之下,数字舵机系统具有很多模拟式舵机所没有的优点。本文给出了一种基于ST M 32F103VB 微控制器的无人飞行器舵机伺服控制系统,具有高性能、低功耗、低成本、安全可靠和实现容易的特点,可在线编程并成功应用于实践。 1 系统综述 舵机主要是由无刷电机、舵机控制器、舵机机械结构和传感器4部分组成。其中舵机控制器又包括:数据接口部分、中央控制单元、逻辑单元、隔离放大部分与功率驱动模块。一般舵机的工作过程如下:首先由上位机给出一舵偏角指令,舵机控制器接受该指令后与检测得到的实际舵面偏转角送入舵面位置调节单元从而得到参考P WM 占空比A;然后测量实际转速,当速度大于预设值时输出一给定PW M 占空比B;最后检测实际电流,当电流大于电流预设值时,输出另一给定的PWM 占空比C [1]。无刷直流电机中的H A LL 传感器检测转子位置,产生H A ,H B,H C 三相霍尔信号,H A 、HB 、H C 、和ST M 32输出的P WM 波和电机换相信号逻辑综合得到6路电机控制信号驱动电机转动 [2] 。电机输出轴连接精密减速器和 各种传感器,减速器输出驱动舵面。系统实现图如图1所示。 图1 系统组成结构图 2 舵机控制器的硬件组成 舵机控制器的硬件由图2中框线部分组成,该控制器以ST M 32F103V B 为核心。整个系统的硬件设计主要由ST M 32F103V B 工作电路、可编程逻辑电路、隔离及驱动电路、检测信号处理电路、A D 转换电路、数据接口电路及温度检测电路等部分组成。在系统中ST M 32F103V B 通过其自身的CA N 总线控制器与上位机进行数据传输,并使用自身集成的A D 转换器和内置通用定时器实时监测舵机位置、转速和电流等参数。 控制器根据内置的控制算法进行位置环、速度环和电流环计算,并产生控制数据,控制数据通过转换算法产生控制量(PW M 信号和DI R 信号),控制量进入逻辑阵列CPL D 与无刷电机位置传感器信号(H A L L 信号)进行逻辑综合后,输出6路电机控制信号。电机控制信号经隔离电路后控制电机功率驱动模块进行功率放大,驱动无刷电机运行。2 1 主控芯片STM32F 103VB [3] ST M 32F103VB 是意法半导体(ST )公司推出的基于A RM 32位CORT EX -M 3CPU ,是目前性能比较突出的微处理器之一,其增强型系列特别适合做电机控制。它的主要特点如下:

舵机工作原理

控制思想 该模块的程序框图如图4.5 所示。车模在行驶过程中不断采样赛道信息,并通过分析车模与赛道相对位置判断车模所处赛道路况,是弯道还是直道,弯道时是左转还是右转。直道时小车舵机状态保持不变,弯道时左转或右转,计算转弯半径。我们所用舵机的标准PWM 周期为20ms,转动角度最大为左右90度,PWM调制波如图7.2所示。

当给舵机输入脉宽为0.5ms,即占空比为0.5/20=2.5%的调制波时,舵机右转90度;当给舵机输入脉宽为1.5ms,即占空比为1.5/20=7.5%的调制波时,舵机静止不动;当给舵机输入脉宽为2.5ms,即占空比为2.5/20=12.5%的调制波时,舵机左转90度。可以推导出舵机转动角度与脉冲宽度的关系计算公式为: 注:其中t为正脉冲宽度(ms);θ为转动角度;当左转时取加法计算,右转时取减法计算结果。 当我们根据赛道弯度计算出转动角度以后便可以根据舵机的参数计算出脉冲宽度,控制舵机转动,舵机转角与PWM脉宽关系如表4-1所示。

在具体操作中PWM调制波的周期可以设置在20ms左右一定范围内,比如设置为10ms 或是30ms均可以使舵机正常转动,但是设置周期较长时,系统延迟时间较多,舵机转向会出现滞后,导致赛车冲出跑道;设置周期如果过短,系统输出PWM 调制波不稳定,舵机转动也会受影响,不能实现赛车的精确转向。经过反复测试,最终把输出PWM 调制波周期设定为13ms (用计数器实现)。 运行电机的转速以及舵机的转角,在软件上都是通过对PWM 波占空比进行设置来相应控制的。前面提到,舵机转角控制需要将两个

八位寄存器合成为一个十六位寄存器。程序中的舵机位置信号,当PWM调制波周期设为13ms时,因为总线频率为24MHz,用时钟SB,可计算得到16进制参数为9870H,舵机中间位置时占空比16进制参数为1680H,要分配给PWM6和7,分配时这2个端口的赋值必须是16进制,那么PWM模块初始化赋值为 PWMPER6= 0x98,PWMPER7= 0x70,PWMDTY6= 0x16,PWMDTY7= 0x80,因此这就牵涉到如何将1个十进制数分配为2个十六进制数问题。有2种方案,一种是除法取余,另一种是移位操作,前者编译生成的代码比后者要多,所以采用移位操作来实现,即取高位时与0xFF00先作“&”计算,然后将所得到的数向右移8位(>>8),即可取得高8位;同理,取低8位时只要与0x00FF作“&”计算即可(算法)。 2、结构和控制 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。 工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。

FutabaS3010参数说明

Futaba S3010参数说明 Futaba S3010参数说明 2011-04-13 21:22 黑线( 接地) , 红线( 电源线) 和白色(控制线)。 以下为Futaba S3010的参数说明: S表示舵机,3表示它用的是三级马达,0表示是泛用型,10是指此舵机为模拟电路控制舵机。 舵机S3010 技术规格 规格, 舵机, 技术 整体介绍: 主用途通用伺服器 特征低成本,高扭矩 基板 S256 马达 Tricore GM1510 VR TR133-15 其他 MATAL 轴承,引线长 300mm,HORND 寸法(L×W×H) 40.0×20×38.1 [mm] 重量 41 [g]

消费电流: 停止时 MAX 15 [mA](无负荷) (4.8V 时) 动作时 130 + 25 [mA](无负荷) 消费电流: 停止时 MAX 15 [mA](无负荷) (参考值:6.0V 时) 动作时 145 + 30 [mA](无负荷) 输出扭矩: 6.0V 时 6.5 + 1.3 [ Kg.cm] 动作速度 6.0V 时 0.16 + 0.02 [Sec/60 度] (以下数据说明了当S3010: 高电平为1520us时:一定为中间位置; 高电平为920us时:一定为最左边位置; 高电平为2120us时:一定为最右边位置; 这些数据说明了该舵机的转角只与高电平脉宽有关,与占空比无关。) 动作方向: CW pulse 窄(1520 → 920 [us]) CCW pulse 宽(1520 → 2120 [us]) 动作角度: CW 60 + 10 [度] CCW 60 + 10 [度] 左右差 MAX 10 [度]

舵机控制

舵机控制实验 舵机是一种位置伺服的驱动器,主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。其工作原理是由接收机或者单片机发出信号给舵机,其内部有一个基准电路,产生周期为20ms,宽度为1.5ms 的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。经由电路板上的IC 判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回信号,判断是否已经到达定位。适用于那些需要角度不断变化并可以保持的控制系统。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。一般舵机旋转的角度范围是0 度到180 度。 舵机有很多规格,但所有的舵机都有外接三根线,分别用棕、红、橙三种颜色进行区分,由于舵机品牌不同,颜色也会有所差异,棕色为接地线,红色为电源正极线,橙色为信号线。

舵机的转动的角度是通过调节PWM(脉冲宽度调制)信号的占空比来实现的,标准PWM(脉冲宽度调制)信号的周期固定为20ms (50Hz),理论上脉宽分布应在1ms到2ms 之间,但是,事实上脉宽可由0.5ms 到2.5ms 之间,脉宽和舵机的转角0°~180°相对应。有一点值得注意的地方,由于舵机牌子不同,对于同一信号,不同牌子的舵机旋转的角度也会有所不同。 了解了基础知识以后我们就可以来学习控制一个舵机了,本实验所需要的元器件很少只需要舵机一个、跳线一扎就可以了。 RB—412 舵机*1 面包板跳线*1 扎 用Arduino 控制舵机的方法有两种,一种是通过Arduino 的普通数字传感器接口产生占空比不同的方波,模拟产生PWM 信号进行舵机定位,第二种是直接利用Arduino 自带的Servo 函数进行舵机的控制,

舵设计计算书

3.舵的性能设计 设计船主尺度为Lbp=138.7m , B=25.1m ,设计吃水d=6.2m ,Cb=0.7893;单螺旋桨直径D=4.10m,轴线离基线高2.35m ,桨推力387000N ,设计速度V=13Kn 。要求设计桨后的单舵,并计算舵机功率。 3.1.确定舵面积 按村桥-山田图谱决定舵面积比μ, 3.2B p C B d ==,20.09k d L ==, 从图中查得μ=0.0186,则舵面积为215.96R A m =,结合本船尾部线型,舵轴线自船体壳板到基线距离为5.68m,舵托高0.3m 左右,若舵下缘离基线0.37m,舵上缘离船体壳板0.26m,舵高h 可取 5.05m ,查询资料,取平衡比0.268e =则舵宽 3.16R b A h m ==,展弦比1.60h λ==,若再增大舵面积,势必增加b ,λ还要减小,是不利的。所以确定舵面积为15.96㎡。考虑到舵杆直径因素,采用NACA0018剖面。此时桨尾流内舵面积 112.956R A =㎡,即10.81R R A A η==。 平衡比e 的大致范围 方形系数CB 平衡比e 0.60.70.8 0.25—0.260.26—0.270.27—0.28 3.2.舵力及舵机功率计算 3.2.1.单独舵舵力 考虑到舵杆直径因素,采用NACA0018剖面。根据NACA0018试验资料使用普兰特(Prandtl )公式换算: 2 1212122121212157.311116, 1.60,,,,Y y y p p x x C y C C C C C C C λλααπ λλπλλ???? =====+ ?-=+ ?- ? ????? 列表计算见表如: α105101520253035CY 00.240.470.710.91.13 1.32 1.42CX1 00.010.040.130.30.460.73 1.01α105101520253035CX200.01940.0760.2120.40.67 1.02 1.34CN2 00.24060.4740.73911.31 1.661.949α2 07.007313.9320.942834.54146.88λ1=6的试验数据λ2=1.60的换算结果 连成曲线后,在图标从新上读取λ2=1.60的NACA0018的数据

无人机用电动舵机控制系统设计

2018年第46卷第10期 D 驱动控制rive and control 李红燕等 无人机用电动舵机控制系统设计 85 收稿日期:2018-05-08 基金项目:2017年度院级课题资助项目(JATC17010101) 无人机用电动舵机控制系统设计 李红燕1,和 阳2,蔡 鹏1,姜春燕1,徐 信1 (1.江苏航空职业技术学院,镇江212134;2.清华大学,北京100084) 摘 要:介绍一种无人机用机电一体化电动舵机控制系统三舵机结构采用无刷直流电动机二谐波减速器二联轴器二旋转变压器二摇臂串联的布局,结构紧凑二体积小三控制器以DSP+CPLD 为核心架构,采用PI 控制算法二位置保护和电流保护逻辑,增强了系统的可靠性三驱动器采用智能功率模块实现,简化了电路设计三实验结果表明,该系统满足控制性能要求,具有高功率密度的特点三 关键词:电动舵机;无刷直流电动机;DSP+CPLD;控制电路 中图分类号:TM359.9 文献标志码:A 文章编号:1004-7018(2018)10-0085-04 Design of Electric Steering Engine Control System Used for Unmanned Aerial Vehicle LI Hong-yan 1,HE Yang 2,CAI Peng 1,JIANG Chun-yan 1,XU Xin 1 (1.Jiangsu Aviation Technical College,Zhenjiang 212134,China; 2.Tsinghua University,Beijing 100084,China) Abstract :A kind of mechatronics electrical actuator control system used by unmanned aerial vehicle (UAV)was in- troduced.The layout of actuator adopted with brushless DC motor,harmonic reducer,shaft coupling,rotary transformer and servo arm in tandem to make the structure compact and small.The controller was based on DSP+CPLD,PI control al-gorithm,position protection and current protection logic were used to enhance the reliability of the system.The driver based on the intelligent power module simplified the circuit design.The experimental results show that the system meets the re-quirements of control performance and has the characteristics of high power density. Key words :electric actuator;brushless DC motor;DSP+CPLD;control circuit 0引 言 无人机依靠电动舵机来控制左右副翼二方向舵二升降舵和油门的定位,从而维持飞行姿态的稳定三随着无人机的应用越来越广泛,对电动舵机的结构及性能要求也越来越高,因此研究轻量化二性能可靠的电动舵机系统具有重要意义三 国外,很多机构为了实现无人机用电动舵机的微型化二高功率密度二高可靠性,开展了大量的试验研究[1-3]三Futaba 公司研制了一系列用于无人机舵面控制的小功率舵机[4]三Parker 宇航开发出具有抗 干扰容错,可耐受高温苛刻环境的飞行机电作动器三此外,美国空军二海军和NASA 研制的电动作动器,结构紧凑,在F /A-18B 系列飞机上进行了测试三国内许多高校和研究院对电动舵机的余度控制[5]二容错设计[6]二故障诊断[7-8]等方面进行了深入研究三 本文从舵机机械结构分析二硬件结构搭建二控制 算法和逻辑设计出发,旨在设计出满足高功率密度二高可靠性要求的电动舵机控制系统三 1 整体设计方案 电动舵机系统的机械结构主要包括电机二减速器二联轴器二位置传感器以及摇臂三电机选用盘式无刷直流电动机,体积小二质量轻;减速器采用谐波减速器,可提高系统的功率密度二传动精度以及扭转刚度;位置传感器采用旋转变压器(以下简称旋变),配合旋变解调芯片完成舵机当前摇臂位置信号的测量与传递,可应对无人操作及复杂的工作环境三电动舵机机械结构如图1所示,其体积尺寸为110mm?33mm?50mm,舵机与控制器集成于一体的布局,有效地利用了空间,提高了系统的集成度 三 图1 舵机机械结构图 设计中,要实现电动舵机的额定扭矩为2.6N四m,最大扭矩5.8N四m;行程范围0~30?三阶跃 响应时间短,无超调和振荡三动态响应速度快,输入? 3?,5Hz 的正弦信号时幅值衰减小于3dB,相位滞万方数据

航模舵机控制原理详解

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。 其工作原理是: 控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。 3. 舵机的控制: 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms 范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制关系是这样的: 0.5ms--------------0度; 1.0ms------------45度; 1.5ms------------90度; 2.0ms-----------135度; 2.5ms-----------180度; 这只是一种参考数值,具体的参数,请参见舵机的技术参数。 小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的宽度太快时,舵机可能反应不过来。如果需要更快速的反应,就需要更高的转速了。 要精确的控制舵机,其实没有那么容易,很多舵机的位置等级有1024个,那么,如果舵机的有效角度范围为180度的话,其控制的角度精度是可以达到180/1024度约0.18度了,从时间上看其实要求的脉宽控制精度为2000/1024us约2us。如果你拿了个舵机,连控制精度为1度都达不到的话,而且还看到舵机在发抖。在这种情况下,只要舵机的电压没有抖动,那抖动的就是你的控制脉冲了。而这个脉冲为什么会抖动呢?当然和你选用的脉冲发生器有

基于Arduino的舵机控制系统设计_蔡睿妍

Computer Knowledge and Technology 电脑知识与技术计算机工程应用技术本栏目责任编辑:梁书第8卷第15期(2012年5月)基于Arduino 的舵机控制系统设计 蔡睿妍 (大连大学信息工程学院,辽宁大连116622) 摘要:舵机是传统的角度控制驱动器,在机器人等领域得到了广泛应用。传统的舵机主要采用单片机系统驱动控制,但单片机系统对多个舵机同时进行驱动效果并不理想,因此,采用了流行的开源Arduino 控制板,通过输出不同脉宽的信号进行舵机转动角度控制,实验证明,该系统实现了舵机角度控制,满足舵机角度控制精度要求,为舵机的驱动提供了新方式。 关键词:Arduino ;舵机;脉宽信号;角度控制 中图分类号:TM383.4 文献标识码:A 文章编号:1009-3044(2012)15-3719-03Design of Servo Control System Based on Arduino CAI Rui-yan (Information and Engineering College of Dalian University,Dalian 116622,China) Abstract:The servo is the traditional angle control driver and has been widely used in robot and other fields.In general,servo is driven by microcontroller system,but the driving effect of microcontroller system is not satisfactory for multiple servos.So,the Arduino,an open source control board,is used to output different pulse width signal to control the servo rotation angle,experiment showed that,this system realizes the angle control of servo,meets the requirement of angle control precision and provides a new way to drive servo. Key words:Arduino;servo;pulse width signal;angle control 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前,在高档遥控玩具,如飞机、潜艇模型,遥控机器人中已经得到了普遍应用。传统对舵机的控制主要采用单片机,利用定时器和中断的方式来完成控制,这样的方式控制一个舵机还是相当有效的,但是随着舵机数量的增加,控制起来就没有那么方便了,尤其对机器人等需要多个舵机同时工作的系统中,单片机驱动复杂且精度难以保证。因此,本文采用目前较为流行的开源Arduino 来实现舵机的精确控制。1Arduino 简介 Arduino 是源自意大利的一个教学用开源硬件项目,主要是为希望尝试创建交互式物理对象的实践者、喜欢创造发明的人及艺术家所构建的,它秉承开源硬件思想,程序开发接口免费下载,也可依需求自己修改。Arduino 引脚如图1所示: 图1Arduino 控制板 其硬件系统是高度模块化的,通过USB 接口与计算机连接,包括14通道数字输入/输出,其中包括6通道PWM 输出、6通道10位 ADC 模拟输入/输出通道,电源电压主要有5V 和3.3V [1]。在核心控制板的外围,有开关量输入输出模块、各种模拟量传感器输入模 块、总线类传感器的输入模块,还有网络通信模块,只要在核心控制板上增加网络控制模块,就可以容易地与互联网连接。Arduino 还提供了自己的开发语言[2,3],支持Windows 、Linux 、MacOS 等主流的操作系统。Arduino 系统是基于单片机开发的,并且大量应用通用和标准的电子元器件,包括硬件和软件在内的整个设计,代码均采用开源方式发布,因此采购的成本较低,在各种电子制作竞赛、收稿日期:2012-04-23 作者简介:蔡睿妍(1979-),黑龙江林甸县人,讲师,硕士,主要从事电子技术、通信与网络方向的研究。 E-mail:kfyj@https://www.wendangku.net/doc/7c13067398.html, https://www.wendangku.net/doc/7c13067398.html, Tel:+86-551-56909635690964 ISSN 1009-3044Computer Knowledge and Technology 电脑知识与技术Vol.8,No.15,May 2012.3719

舵机开题报告

舵机开题报告 一、课题任务与目的 1914年美国人乔治·德沃尔制造出世界上第一台可编程的机器人,即世界上第一台真正的机器人,从此机器人开始迅猛的发展,是近几十年来快速发展起来的高新技术产品,其涉及自控技术、电力电子、传感器、机械、无线网络和人工智能等多学科的内容。机器人在我们的生活中越来越常见了而在发达国家,机器人的使用范围已经越来越广。随着科学技术的发展,机器人已经遍及工业、国防、宇宙空间、海洋开发等领域。所以,机器人已经成为人类生活和生产发展中不可或缺的一部分了随着科技的发展。“计算机主导了过去的20年,而未来的几十年属于机器人。”美国匹兹堡市卡内基·麦农大学机器人研究所主任麦克欧·卡纳德如是说。目前,我国的机器人发展正在以一种迅猛的趋势在追赶发达国。 目前机器人上广泛使用舵机控制。所以舵机的控制对机器人的各种性能有着致关重要的作用。因此,对机器人舵机控制方法的研究就显得很有必要。 本论文的主要任务是分析现有舵机特点和控制方法的基础上,使用计算机仿真的方法,对舵机控制系统进行仿真分析,研究机器人用舵机的控制方法,使用单片机做控制器,完成控制电路设计、制作,完成软件编程,构成舵机控制系统,实现对舵机的控制。在完成相关实验的基础上,寻找适合特定要求的控制方法,确定控制参数,构成舵机控制系统。 二、调研资料 1、机器人的简述 机器人是一种可编程和多功能的操作机;或是为了执行不同的任务而具有可用电脑改变和可编程动作的专门系统。从它的定义上我们可以看出,它既可以运行预先编排的程序,还可以根据以人工智能技术制定的原则行动。机器人是靠自身动力和控制能力来实现各种功能的一种机器。它的任务是协助或取代人类的一些危险或是重复繁琐的工作。 2、机器人的组成部分 机器人一般由执行机构、驱动装置、检测装置和控制系统和复杂机械等组成。 执行机构是机器人最终完成动作的部件。执行机构即机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常即为机器人的自由度数。根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。出于拟人化的考虑,常将机器人本体的有关部位分别称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等。 驱动装置是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。它输入的是电信号,输出的是线、角位移量。机器人使

舵机工作原理要点

舵机工作原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。

3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。

有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的: 收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能

提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用图3来表示。 可变脉宽输出试验(舵机控制) 原创:xidongs 整理:armok / 2004-12-05 / https://www.wendangku.net/doc/7c13067398.html,

51控制舵机程序大全

#include void InitTimer0(void) { TMOD = 0x01; TH0 = 0x0B1; TL0 = 0x0E0; EA = 1; ET0 = 1; TR0 = 1; }void delay(1)(void) { unsigned char a,b,c; for(c=1;c>0;c--) for(b=142;b>0;b--) for(a=2;a>0;a--); } void main(void) { InitTimer0(); P1_2=0; while(1); } void Timer0Interrupt(void) interrupt 1 { //20ms中断 TH0 = 0x0B1; TL0 = 0x0E0; P1_2=1; delay(1); P1_2=0; }

#include #include #include #define uchar unsigned char #define uint unsigned int sbit IN1=P0^0; sbit IN2=P0^1; sbit EA1=P0^5; sbitdj=P0^7; //舵机口 uint t=0;//中断次数 ucharzk;//高电平中断次数uchar p=0;//定义pwm占空比void delay(uint z) { uinti,j; for(i=0;i>8;//100us一次中断TL0=-100%256; if(t==0)zk=p; if(t=zk) dj=0; t++; if(t>=200) t=0;//20mspwm周期 } void turn_left() { IN1=1;IN2=0;EA1=1;//电机工作p=5;//0.5ms delay(600); } void turn_right() { IN1=1;IN2=0;EA1=1;//电机工作p=25;//2.5ms delay(600);

舵机精简讲解

舵机 ------孟令军2014.8.13 -------更多请关注我的百度文库 》》什么是舵机? 【舵机定义】 舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。能够利用简单的输入信号比较精确的转动给定角度的电机系统。 它是一个可以调制偏转角度的电机,从而用于一些车、体机器人的方向调制。 伺服马达三条线中白色的线是控制线,接到控制芯片上。中间的是SERVO工作电源线(红色),一般工作电源是5V。第三条是地线。 》》如何选择舵机呢?? 【参数】 ⑴转速 转速由舵机无负载的情况下转过60°角所需时间来衡量,常见舵机的速度一般在 0.11/60°~0.21S/60°之间。 ⑵转矩 舵机扭矩的单位是KG·CM,这是一个扭矩单位。可以理解为在舵盘上距舵机轴中心水平距离1CM 处,舵机能够带动的物体重量。 ⑶电压 较高的电压可以提高电机的速度和扭矩,舵机推荐的电压一般都是4.8V或6V。 ⑷尺寸、重量和材质 舵机的功率(速度×转矩)和舵机的尺寸比值可以理解为该舵机的功率密度,一般同样品牌的舵机,功率密度大的价格高。 塑料齿轮的舵机在超出极限负荷的条件下使用可能会崩齿,金属齿轮的舵机则可能会电机过热损毁或外壳变形。所以材质的选择并没有绝对的倾向,关键是将舵机使用在设计规格之内。 所以:选择舵机需要在计算自己所需扭矩和速度,并确定使用电压的条件下,选择有150%左右甚至更大扭矩富余的舵机。 》》舵机如何调控???

【模拟舵机及其控制原理】 工作原理是控制电路接收信号源的控制脉冲,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。 模拟舵机需要一个外部控制器(遥控器的接收机)产生脉宽调制信号(可以用pwm模块)来告诉舵机转动角度,脉冲宽度是舵机控制器所需的编码信息。舵机的控制脉冲周期20ms,脉宽从0.5ms-2.5ms,分别对应-90度到+90度的位置。 具体电机内部是怎么运作的,笔者在此不多写了,因为我们是学怎么用他的,如果想深究,可以讨论。 【数字舵机及其控制原理】 1、防抖。(模拟舵机调制不稳定,比如我期望得到2.5V的电压位置,但第一次得到的是2.3V,经过1个调节周期后,电位器转过的位置已经是2.6V了,这样控制电路就会给电机一个方向脉冲调节,电机往回转,又转过头,然后有向前调节,以至于出现不停的震荡) 2、响应速度快。(数字舵机可以以很高的频率进行调节,这个周期和角度会变得非常小,也能用PID进行调节) 如果想用数字舵机的可以研究PID算法。 -------------------下期学习PID算法--------------

舵机控制型机器人设计要点

课程设计项目说明书 舵机控制型机器人设计 学院机械工程学院 专业班级2013级机械创新班 姓名吴泽群王志波谢嘉恒袁土良指导教师王苗苗 提交日期 2016年4 月1日

华南理工大学广州学院 任务书 兹发给2013级机械创新班学生吴泽群王志波谢嘉恒袁土良 《产品设计项目》课程任务书,内容如下: 1. 题目:舵机控制型机器人设计 2.应完成的项目: 1.设计舵机机器人并实现运动 2.撰写机器人说明书 3.参考资料以及说明: [1] 孙桓.机械原理[M].北京.第六版;高等教育出版社,2001 [2] 张铁,李琳,李杞仪.创新思维与设计[M].国防工业出版社,2005 [3] 周蔼如.林伟健.C++程序设计基础[M].电子工业出版社.北京.2012.7 [4] 唐增宏.常建娥.机械设计课程设计[M].华中科技大学出版社.武汉.2006.4 [5] 李琳.李杞仪.机械原理[M].中国轻工业出版社.北京.2009.8 [6] 何庭蕙.黄小清.陆丽芳.工程力学[M].华南理工大学.广州.2007.1 4.本任务书于2016 年2 月27 日发出,应于2016 年4月2 日前完 成,然后提交给指导教师进行评定。 指导教师(导师组)签发2016年月日

评语: 总评成绩: 指导教师签字: 年月日

目录 摘要 (1) 第一章绪论 (2) 1.1机器人的定义及应用范围 (2) 1.2舵机对机器人的驱动控制 (2) 第二章舵机模块 (3) 2.1舵机 (3) 2.2舵机组成 (3) 2.3舵机工作原理 (4) 第三章总体方案设计与分析 (6) 3.1 机器人达到的目标动作 (6) 3.2 设计原则 (6) 3.3 智能机器人的体系结构 (6) 3.4 控制系统硬件设计 (6) 3.4.1中央控制模块 (7) 3.4.2舵机驱动模块 (7) 3.5机器人腿部整体结构 (8) 第四章程序设计 (9) 4.1程序流程图 (9) 4.2主要中断程序 (9) 4.3主程序 (11) 参考文献 (13) 附录 (14) 一.程序 (14) 二.硬件图 (17)

舵机控制C程序

舵机控制C程序 #include #defineucharunsignedchar #defineuintunsignedint /* 变量定义 */ ucharkey_stime_counter,hight_votage=15,timeT_counter; bitkey_stime_ok; /* 引脚定义 */ sbitcontrol_signal=P0^0; sbitturn_left=P3^4; sbitturn_right=P3^5; /***************************************************************** 名称:定时器0初始化 功能:20ms定时,11.0592M晶振 初值20ms 初值0.1ms *****************************************************************/ voidTimerInit() { control_signal=0; TMOD=0x01;//设置定时器0为工作方式1 EA=1;//开总中断 ET0=1;//定时器0中断允许 TH0=0xFF;//定时器装初值 TL0=0xA3; TR0=1;//启动定时器0 } /********************************************** 定时器0中断服务函数 ***********************************************/ voidtimer0(void)interrupt1using0 { TH0=0xFF; TL0=0xA3;//定时器0重新装入数值

舵机原理及其使用详解

舵机的原理,以及数码舵机VS模拟舵机 一、舵机的原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。 有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的:

收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF 判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20ms(即频率为50Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

相关文档