文档库 最新最全的文档下载
当前位置:文档库 › 第四章-半导体导电性-习题讲解

第四章-半导体导电性-习题讲解

第四章-半导体导电性-习题讲解
第四章-半导体导电性-习题讲解

半导体物理习题

第4章半导体的导电性

1. 试计算本征Si在室温时的电导率,设电子和空穴迁移率分别为1350cm2/V?s和500 cm2/V?s。当掺入百万分之一的As后,设杂质全部电离,试计算其电导率。掺杂后的电导率比本征Si的电导率增大了多少倍?

2. 500g的Si单晶中掺有4.5?10-5g的B,设杂质全部电离,求其电阻率。

(硅单晶的密度为2.33g/cm3,B原子量为10.8)。

3. 设Si中电子的迁移率为0.1 m2/(V.s),电导有效质量m C=0.26m0,加以强度为104V/m

的电场,试求平均自由时间和平均自由程。

4. 截面积为0.001cm2的圆柱形纯Si样品,长1mm,接于10V的电源上,室温下希望通过0.1A的电流,问:

①样品的电阻须是多少?

②样品的电导率应是多少?

③应该掺入浓度为多少的施主?

σ的表达式;

5.①证明当μn≠μp且电子浓度n=n i(μp/μn)1/2时,材料的电导率最小,并求

min

②试求300K时Ge和Si样品的最小电导率的数值,并和本征电导率相比较。

1. 试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V ?s 和500 cm 2/V ?s 。当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。掺杂后的电导率比本征Si 的电导率增大了多少倍?

解:将室温下Si 的本征载流子密度1.5?1010/cm 3及题设电子和空穴的迁移率代入电导率公式

()i i n p n q σμμ=+

即得:

101961.510 1.610(1350500) 4.4410 s/cm i σ--=????+=?;

已知室温硅的原子密度为5?1022/cm 3,掺入1ppm 的砷,则砷浓度

22616351010510 cm D N --=??=?

在此等掺杂情况下可忽略少子对材料电导率的贡献,只考虑多子的贡献。这时,电子密度n 0因杂质全部电离而等于N D ;电子迁移率考虑到电离杂质的散射而有所下降,查图4-14知n-Si 中电子迁移率在施主浓度为5?1016/cm 3时已下降为800 cm 2/V ?s 。于是得

1619510 1.610800 6.4 s cm n nq σμ-==????=/

该掺杂硅与本征硅电导率之比

866.4 1.44104.4410

i σσ-==?? 即百万分之一的砷杂质使硅的电导率增大了1.44亿倍

2. 500g 的Si 单晶中掺有4.5?10-5g 的B ,设杂质全部电离,求其电阻率。

(硅单晶的密度为2.33g/cm 3,B 原子量为10.8)。

解:为求电阻率须先求杂质浓度。设掺入Si 中的B 原子总数为Z ,

18235

105.21063.68

.101058.4?=???=-Z 个 500克Si 单晶的体积为3500214.6 cm 2.33

V ==,于是知B 的浓度 ∴18

16-32.510 1.1610 cm 214.6

A Z N V ?===? 室温下硅中此等浓度的

B 杂质应已完全电离,查图4-14知相应的空穴迁移率为400 cm 2/V ?s 。故

161911 1.35cm 1.1610 1.610400

A p N q ρμ-===Ω?????

半导体物理习题

3. 设Si 中电子的迁移率为0.1 m 2/(V .s),电导有效质量m C =0.26m 0,加以强度为104V/m

的电场,试求平均自由时间和平均自由程。 解:由迁移率的定义式*n c c

q m τμ=知平均自由时间 *c c n m q

μτ?= 代入相关数据,得

3113190.269.1100.1 1.48101.610

n s τ---???==?? 平均自由程:134101.48100.110 1.4810 m n n d n c L v ττμε--==?=???=?

4. 截面积为0.001cm 2的圆柱形纯Si 样品,长1mm ,接于10V 的电源上,室温下希望通过0.1A 的电流,问:

①样品的电阻须是多少?

②样品的电导率应是多少?

③应该掺入浓度为多少的施主?

解:⑴由欧姆定律知其电阻须是

101000.1V R I =

==Ω ⑵其电导率由关系1L R S

σ=?并代入数据得 1

3

L 10 1 s cm 100110R S σ--===???/ ⑶由此知该样品的电阻率须是1Ω?cm 。查图4-15可知相应的施主浓度大约为5.3?1015 cm -3。 若用本征硅的电子迁移率1350cm 2/V ?s 进行计算,则

1530191 4.610 cm 1.6101350

n n q σμ=

==???- 5.①证明当μn ≠μp 且电子浓度n =n i (μp /μn )1/2时,材料的电导率最小,并求min σ的表达式;②试求300K 时Ge 和Si 样品的最小电导率的数值,并和本征电导率相比较。

解:⑴∵()n p q n p σμμ=+,又2i n p n

= ∴2()i n p n q n n

σμμ=+

令0d dn σ=,得220i n p n n

μμ+=

∴n n = 又32222332()20p i n

p i n d dn n n μμσμ==>

故当n n =σ

取极小值。这时p n =

∴1122min [()()]2p n i n p i n p n q n μμσμμμμ=+=因为一般情况下μn >μp ,所以电导率最小的半导体一般是弱p 型。

⑵对Si ,取21350/n cm V s μ=?,2500/p cm V s μ=?,1031.510i n cm -=?

则10196min 2 1.510 1.610 3.9510/s cm σ--=????=? 而本征电导率10196() 1.510 1.610(1350500) 4.4410/i i n p n q s cm σμμ--=+=????+=? 对Ge ,取23900/n cm V s μ=?,21900/p cm V s μ=?,1332.410i n cm -=?

则13192min 2 2.410 1.610 2.110/s cm σ--=????=? 而本征电导率13192() 2.410 1.610(39001900) 2.210/i i n p n q s cm σμμ--=+=????+=?

生物统计学(第3版)杜荣骞 课后习题答案 第六章 参数估计

第六章参数估计 6.1以每天每千克体重52 μmol 5-羟色胺处理家兔14天后,对血液中血清素含量的影响如下表[9]: y/(μg · L-1)s/(μg · L-1)n 对照组 4.20 0.35 12 5-羟色胺处理组8.49 0.37 9 建立对照组和5-羟色胺处理组平均数差的0.95置信限。 答:程序如下: options nodate; data common; alpha=0.05; input n1 m1 s1 n2 m2 s2; dfa=n1-1; dfb=n2-1; vara=s1**2; varb=s2**2; if vara>varb then F=vara/varb; else F=varb/vara; if vara>varb then Futailp=1-probf(F,dfa,dfb); else Futailp=1-probf(F,dfb,dfa); df=n1+n2-2; t=tinv(1-alpha/2,df); d=abs(m1-m2); lcldmseq=d-t*sqrt(((dfa*vara+dfb*varb)/(dfa+dfb))*(1/n1+1/n2)); ucldmseq=d+t*sqrt(((dfa*vara+dfb*varb)/(dfa+dfb))*(1/n1+1/n2)); k=vara/n1/(vara/n1+varb/n2); df0=1/(k**2/dfa+(1-K)**2/dfb); t0=tinv(1-alpha/2,df0); lcldmsun=d-t0*sqrt(vara/n1+varb/n2); ucldmsun=d+t0*sqrt(vara/n1+varb/n2); cards; 12 4.20 0.35 9 8.49 0.37 ; proc print; id f; var Futailp alpha lcldmseq ucldmseq lcldmsun ucldmsun; title1 'Confidence Limits on the Difference of Means'; title2 'for Non-Primal Data'; run; 结果见下表: Confidence Limits on the Difference of Means for Non-Primal Data F FUTAILP ALPHA LCLDMSEQ UCLDMSEQ LCLDMSUN UCLDMSUN 1.11755 0.42066 0.05 3.95907 4.62093 3.95336 4.62664 首先,方差是具齐性的。在方差具齐性的情况下,平均数差的0.95置信下限为3.959 07,置信上限为4.620 93。0.95置信区间为3.959 07 ~ 4.620 93。 6.2不同年龄的雄岩羊角角基端距如下表[27]: 年龄/a y/cm s/cm n

半导体物理学(刘恩科第七版)课后习题解第四章习题及答案(精)

第四章习题及答案 1. 300K时,Ge的本征电阻率为47Ωcm,如电子和空穴迁移率分别为 3900cm2/( V.S)和1900cm2/( V.S)。试求Ge 的载流子浓度。解:在本征情况下,n=p=ni,由ρ=1/σ= 47?1.602?10 -19 1nqu n +pqu = p 1niq(un+up)cm -3 知 ni= ρq(un+up) = ?(3900+1900) =2.29?10 13 2. 试计算本征Si在室温时的电导率,设电子和空穴迁移率分别为1350cm2/( V.S)和500cm2/( V.S)。当掺入百万分之一的As后,设杂质全部电离,试计算其电导率。比本征Si的电导率增大了多少倍? 解:300K时,un=1350cm2/(V?S),up=500cm2/(V?S),查表3-2或图3-7可知,室温下Si的本征载流子浓度约为ni=1.0?1010cm-3。本征情况下, σ=nqun+pqu p =niq(un+up)=1?10 10 ?1.602?10 18 -19 ?(1350+500)=3.0?10 12 -6

S/cm 金钢石结构一个原胞内的等效原子个数为8?+6?的晶格常数为0.543102nm,则其原子密度为 +4=8个,查看附录B知Si。 8 (0.543102?10 11000000 -7 ) 3 =5?10 22 cm -3 掺入百万分之一的As,杂质的浓度为ND=5?1022? =5?10 16 cm -3 ,杂质全 2 ND>>ni,部电离后,这种情况下,查图4-14(a)可知其多子的迁移率为800 cm/( V.S) σ≈NDqun=5?10 ''16 ?1.602?10 -19 ?800=6.4S/cm 比本征情况下增大了 σσ ' = 6.43?10 -6 =2.1?10倍

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

半导体物理第四章习题答案

半导体物理第四章习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第四篇 题解-半导体的导电性 刘诺 编 4-1、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。 解:对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的是晶格振动散射,所以温度越高,迁移率越低。 4-2、何谓迁移率影响迁移率的主要因素有哪些 解:迁移率是单位电场强度下载流子所获得的漂移速率。影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。 4-3、试定性分析Si 的电阻率与温度的变化关系。 解:Si 的电阻率与温度的变化关系可以分为三个阶段: (1) 温度很低时,电阻率随温度升高而降低。因为这时本征激发极弱,可以 忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。 (2) 温度进一步增加(含室温),电阻率随温度升高而升高。在这一温度范 围内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。 (3) 温度再进一步增加,电阻率随温度升高而降低。这时本征激发越来越 多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。 4-4、证明当μn ≠μp ,且电子浓度p n i n n μμ/0=,空穴浓度n p i n p μμ/0=时半导体的电导率有最小值,并推导min σ的表达式。 证明:

半导体物理学简答题及答案(精)

第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同; 答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F作用下,电子的波失K不断改变,f=h(dk/dt,其变化率与外力成正比,因为电子的速度与k有关,既然k状态不断变化,则电子的速度必然不断变化。 7.以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系,为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度? 答:沿不同的晶向,能量带隙不一样。因为电子要摆脱束缚就能从价带跃迁到导带,这个时候的能量就是最小能量,也就是禁带宽度。

半导体物理习题及复习资料

复习思考题与自测题 第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F

半导体物理学练习题

第一章半导体中的电子状态 例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: (1)同理,-K状态电子的速度则为: (2)从一维情况容易看出: (3)同理 有: (4) (5) 将式(3)(4)(5)代入式(2)后得: (6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。 例2.已知一维晶体的电子能带可写成:

式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关 系 (1) (2)令得: 当时,代入(2)得: 对应E(k)的极小值。 当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。

故:能带宽度 (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 3 试指出空穴的主要特征。 4 简述Ge、Si和GaAs的能带结构的主要特征。 5 某一维晶体的电子能带为 其中E0=3eV,晶格常数a=5×10-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同? 7晶体体积的大小对能级和能带有什么影响?

半导体-金属导体平面结构导电性能的维度效应

半导体-金属导体平面界面结构导电性能的维度效应 宋太伟邹杏田璆璐 2017年3月 上海日岳新能源有限公司上海陆亿新能源有限公司上海建冶研发中心 内容摘要: 半导体-金属材料结构界面或其它由2种不同材料组成的复合材料结构界面,一般存在明显的微观扩散结势垒构造,这种扩散结对复合材料的导电性等物理性能产生明显影响。我们发现这种半导体-金属组合结构材料的导电性与半导体和金属导体的几何结构存在明显的关联效应,尤其是在体型半导体平面表面镀上金属薄膜的材料结构,表现出清晰的导电性等物理性能与材料几何结构维度的关联关系,这种材料的导电性呈现明显的二极管效应。我们用时空结构几何理论对此现象分别作了理论阐明。这种普遍存在的由半导体和金属材料的维度差异引起的复合材料的二极管效应,其理论价值与在光电工程领域的应用价值极大。 1 引言 两种不同材料的接触面,一般会产生接触势垒。由具有一定导电性能的两种材料依次排列组成的复合材料结构,由于不同材料导电电子的平均约束势能不同,在两种材料的接触界面附近,微观上呈非均衡的载流子扩散形态及电位梯度。界面附近导电电子低约束势能的材料呈现一定的正电性,相应的另一种导电电子高约束势能的材料界面附近呈现一定的负电性,复合材料内部这种不同材料界面附近的微观构造形态,是一种接触电位势垒,可称为电位势结,平面薄膜结构形态的也称为“量子泵”[3]。就导电性能来讲,这种内部界面构造,都有一定程度的二极管效应。半导体PN结是典型的界面电位势结构造形态。 我们在开发研制高效多结层硅基太阳能电池的过程中,发现不同材料界面附近的微观电位势结构造形态,对复合材料的导电性能的影响,存在明显的维度关联关系或者说尺度关联关系,也就是说,复合材料内部界面电位势结产生的二极管效应大小,与两种材料的几何维度构造明显关联,两种不同材料典型的几何维度形态结构组合是3维-2维、3维-1维、3维-0维、2维-1维、2维-0维等,见示意图1。我们重点对半导体硅晶体为3维、金属或非金属为2维薄膜的3-2维界面构造材料(示意图1中的a结构),就其光电性能变化进行了详细的实验与分析研究,使用的实验仪器设备主要包括真空镀膜系统、氙灯、单色仪、i-v曲线源表、椭圆偏振仪、显微镜等。我们运用简单的时空结构几何[1][2]模型,对3维-2维界面

半导体物理习题答案第四章

第4章半导体的导电性 2.试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V ?s 和500 cm 2/V ?s 。当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。掺杂后的电导率比本征Si 的电导率增大了多少倍? 解:将室温下Si 的本征载流子密度1.5?1010/cm 3及题设电子和空穴的迁移率代入电导率公式 即得: 101961.510 1.610(1350500) 4.4410 s/cm i σ--=????+=?; 已知室温硅的原子密度为5?1022/cm 3,掺入1ppm 的砷,则砷浓度 在此等掺杂情况下可忽略少子对材料电导率的贡献,只考虑多子的贡献。这时,电子密度n 0因杂质全部电 5?10165.500g 500∴A N =6.设Si 8.截面积为0.001cm 2的圆柱形纯Si 样品,长1mm ,接于10V 的电源上,室温下希望通过0.1A 的电流,问: ①样品的电阻须是多少? ②样品的电导率应是多少? ③应该掺入浓度为多少的施主? 解:⑴由欧姆定律知其电阻须是 ⑵其电导率由关系1L R S σ=?并代入数据得 ⑶由此知该样品的电阻率须是1??cm 。查图4-15可知相应的施主浓度大约为5.3?1015 cm -3。 若用本征硅的电子迁移率1350cm 2/V ?s 进行计算,则 计算结果偏低,这是由于没有考虑杂质散射对的影响。按n 0=5.3?1015 cm -3推算,其电子迁移率应为

1180cm 2/V ?s ,比本征硅的电子迁移率略低,与图4-14(a)相符。 因为硅中杂质浓度在5?1015 cm -3左右时必已完全电离,因此为获得0.1A 电流,应在此纯硅样品中掺入浓度为5.3?1015 cm -3的施主。 10.试求本征Si 在473K 时的电阻率。 解:由图4-13查出T=473K 时本征硅中电子和空穴的迁移率分别是 2440 cm /V s n μ=?,2140 cm /V s p μ=? 在温度变化不大时可忽略禁带宽度随温度的变化,则任意温度下的本征载流子密度可用室温下的等效态密度N C (300)和N V (300)、禁带宽度E g (300)和室温kT=0.026eV 表示为 代入相关数据,得 该值与图3-7中T=200℃(473K )所对应之值低大约一个数量级,这里有忽略禁带变窄的因素,也有其他因素(参见表3-2 675 cm 2255 cm 将n μμ+置换以上电阻率计算式中的V s ?,得 11.的电场,求: ①②400K ⑵利用声学波散射的3 2T μ-∝规律计算T=400K 的载流子迁移率: 3 22 3001350()877 cm /V s 400 n μ=??,322300500()325 cm /V s 400n μ=?? 于是得400K 时的电导率 相应的电流密度332 1.371010 1.37A /cm j E σ-==??= 电流强度31.3710A I j S -=?=? 16.分别计算掺有下列杂质的Si 在室温时的载流子浓度、迁移率和电导率:

浙教版19年中考科学一轮第二篇 第4课时 化合价与化学式 巩固练习

第二篇 物质科学(化学部分) 第4课时 化合价与化学式 1.下列说法与符号含义相符的是 ( C ) A .Ca 2+:钙元素的化合价为+2价 B. Mg +2 :1个镁离子带2个单位的正电荷 C .2SiO 2:2个二氧化硅分子 D .2Br :1个溴分子由2个溴原子构成 2.[2018·福建]下列是《本草纲目》记载的四种无机药物,其成分中Hg 的化合价为0的是 ( A ) A .水银(Hg) B .升丹(HgO) C .朱砂(HgS) D .轻粉(Hg 2Cl 2) 3.[2018·兰州]重铬酸钾是一种有毒且有致癌性的强氧化剂,它被国际癌症研究机构划归为第一类致癌物质。重铬酸钾(K 2Cr 2O 7)中Cr 元素的化合价为 ( D ) A .+3 B .+4 C .+5 D .+6 【解析】 根据化学式中各元素化合价的代数和为零,K 化合价为+1 价, O 化合价为-2 价,设铬的化合价为x ,则有(+1)×2+2x +(-2)×7=0,则 x =+6。 4.[2018·泰州]C 22H 19FN 4O 2为抗癌新药西达本胺的化学式。下列关于西达本胺的

说法正确的是(A) A.西达本胺是一种有机物 B.西达本胺由碳、氢、氧、氮四种元素组成 C.西达本胺中碳元素和氮元素的质量比为11∶2 D.西达本胺各元素的质量分数中氧元素的质量分数最小 【解析】西达本胺由碳、氢、氧、氟、氮五种元素组成;其中,碳元素和氮元素的原子个比是11∶2,质量比为33∶7;西达本胺C22H19FN4O2化学式中各元素质量比是(12×22)∶19∶19∶(14×4)∶(16×2)=264∶19∶19∶56∶32,元素的质量分数最小的是氟和氢。 5.[2018·重庆A卷]民间常用川乌、草乌泡制药酒。川乌、草乌含有少量有毒物质乌头碱(化学式为C34H47NO11),药酒使用不当会造成中毒。下列关于乌头碱的说法不正确的是(C) A.乌头碱由四种元素组成 B.乌头碱分子中C、H原子个数比为34∶47 C.乌头碱在空气中充分燃烧只生成CO2和H2O D.每个乌头碱分子由93个原子构成 6.元素R与氢、氧元素形成的化合物化学式为H a R b O c,其中R元素的化合价数值是(D) A.+(a+b+c) B.+2c+a b C.+a+b c D.+ 2c-a b 【解析】化合物中所有元素化合价的代数和为零。设R的化合价为x,则 a+bx-2c=0,可得x=2c-a b。

半导体物理习题

半导体物理习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

附: 半导体物理习题 第一章 晶体结构 1. 指出下述各种结构是不是布拉伐格子。如果是,请给出三个原基矢量;如 果不是,请找出相应的布拉伐格子和尽可能小的基元。 (1) 底心立方(在立方单胞水平表面的中心有附加点的简立方); (2) 侧面心立方(在立方单胞垂直表面的中心有附加点的简立方); (3) 边心立方(在最近邻连线的中点有附加点的简立方)。 2. 证明体心立方格子和面心立方格子互为正、倒格子。 3. 在如图1所示的二维布拉伐格子中,以格点O 为原点,任意选取两组原基 矢量,写出格点A 和B 的晶格矢量A R 和B R 。 4. 以基矢量为坐标轴(以晶格常数a 为度量单位,如图2),在闪锌矿结构的 一个立方单胞中,写出各原子的坐标。

5.石墨有许多原子层,每层是由类似于蜂巢的六角形原子环组成,使每个原 子有距离为a的三个近邻原子。试证明在最小的晶胞中有两个原子,并画出正格子和倒格子。 第二章晶格振动和晶格缺陷 1.质量为m和M的两种原子组成如图3所示的一维复式格子。假设相邻原子 间的弹性力常数都是β,试求出振动频谱。 2.设有一个一维原子链,原子质量均为m,其平衡位置如图4所示。如果只 考虑相邻原子间的相互作用,试在简谐近似下,求出振动频率ω与波矢q之间的函数关系。 3.若把聚乙烯链—CH=CH—CH=CH—看作是具有全同质量m、但力常数是以 1 β, 2 β交替变换的一维链,链的重复距离为a,试证明该一维链振动的特征频率为} ] ) ( 2 sin 4 1[ 1{2/1 2 2 1 2 2 1 2 1 2 β β β β β β ω + - ± + = qa m 并画出色散曲线。

医学统计学考试习题集文档版

实习一统计学基础 一、是非题 1.统计学是一门研究数据的设计、收集、整理、分析和表达的科学。( ) 2.概率是描述随机事件发生可能性大小的一个度量。( ) 3.设计是影响研究成功与否的最关键环节。( ) 4.对200例患者外周血的红细胞进行计数所得的资料为计数资料。( ) 5.统计分析包括统计描述和统计推断。( ) 6.计量资料、计数资料和等级资料可根据研究目的和分析的需要而相互转化。( ) 7.欲了解中国40岁以上人口的高血压患病率,现对某地40岁以上人口进行调查,所得到的患病率是一个统计量。( ) 8.统计推断的目的是由样本信息推断总体特征,因此,样本应该是有代表性的一部分。( ) 二、最佳选择题 1.统计学中对总体的要求是。 A.有限的B.同质的C.随机的D.典型的E.大量的 2.统计中所说的同质是指。 A.研究指标的可控制的主要影响因素相同B.研究指标的不可控制的主要影响因素相同 C.研究对象之间个体差异很小D.研究对象的测量指标变异很小

E.以上都不对 3.从总体中随机抽取样本的目的是。 A.研究样本统计量B.研究总体参数C.研究抽样误差D.由样本统计量推断总体参数E.计算样本统计指标 4.抽样误差是指。 A.个体指标值与参数值之差B.个体指标值与样本统计量值之差C.样本统计量值与参数值之差D.个体指标值与个体指标值之差 E.以上都对 5.欲研究某地成年男性血红蛋白的参考值范围,现随机调查了该地12000名健康成年男性的血红蛋白,那么本次调查的总体是。 A.该地所有成年男性 B.该地所有成年男性的血红蛋白值 C.该地所有健康成年男性的血红蛋白值D.抽取的这12000名健康成年男性 E.抽取的这12000名健康成年男性的血红蛋白值 6.某医生对200名糖尿病患者采用某新疗法进行治疗,该研究的总体是。 A.全院收治的糖尿病患者B.该医生收治的所有糖尿病患者C.接受该新疗法的所有糖尿病患者D.所有糖尿病患者 E.这200名糖尿病患者 7.以下对概率描述错误的是。 A.概率值界于0和1之间B.必然事件发生的概率为1 C.概率用于描述某样本事件发生的强度D.样本含量足够大时,频率接近概率E.小概率事件是指随机事件发生的概率小于0.05或0.01

半导体物理习题与问题

半导体物理习题与问题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章半导体中的电子状态 例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: (1)同理,-K状态电子的速度则为: (2)从一维情况容易看出: (3)同理 有:(4 )(5) 将式(3)(4)(5)代入式(2)后得: (6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几

率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。 例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关 系(1) (2)令得: 当时,代入(2)得: 对应E(k)的极小值。 当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。

故:能带宽度 (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 3 试指出空穴的主要特征。 4 简述Ge、Si和GaAs的能带结构的主要特征。 5 某一维晶体的电子能带为 其中E0=3eV,晶格常数a=5×10-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。

有机化学习题福山组会题2005年104

1 5 2 3 4 O O O N 2 O 1) Rh 2(OAc)4 (3 mol%), CH 2Cl 2, 74%2) 6 N HCl, 1,4-dioxane, 93%3) MeI, NaH, DMF, 75%4) sealed tube 1-methylcyclohexene, 150 °C, 62% O O Me H OMe J. E. Baldwin et al . Org . Lett . 1, 1933 (1999) N S AcO CO 2CH 3 Et Me O K 2CO 3 MeOH-H 2O TsOH·H 2O toluene reflux 76% N S Et CO 2CH 3 H.-G. Hahn et al . Heterocycles, 57, 1697 (2002) O OMe NO 2Me Me Me Me OMe O H 2N O Me Me Me Me Boc 2O DMAP benzene-MeCN Raney Ni H 2MeOH tricyclo compound D. G. J. Young et al . J. Org. Chem. 67, 3134 (2002) OH H Me 1) Bu 3SnH (1.2 eq) AIBN (cat) PhH, 80 °C 2) TBAF, THF 81% (2 steps) O Me 3Si Br Tsai, Y. M. et al ., Tetrahedron Lett . 34, 1303 (1993) O O Ph O Ph OTMS C 29H 40O 6SSi ? ? ? O Ph O O O Ph C 26H 32O 4 Stereochemistry C*? "H +"C 21H 22O 3 SO 2, toluene Tf 2NH (cat.) P. Vogel et al., Chem. Eur. J .,11,465 (2005) 78% d.r. 5:1 C 8H 18OSi

半导体物理习题与解答

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 诺 编 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温

度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge、Si的禁带宽度具有负温度系数。 1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A、荷正电:+q; B、空穴浓度表示为p(电子浓度表示为n); C、E P=-E n D、m P*=-m n*。 1-4、解: (1)Ge、Si: a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV; b)间接能隙结构 c)禁带宽度E g随温度增加而减小; (2)GaAs: a)E g(300K) 第二篇习题-半导体中的杂质和缺陷能级 诺编 2-1、什么叫浅能级杂质?它们电离后有何特点? 2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。

半导体的导电性

第四章 半导体的导电性 引言 前几章介绍了半导体的一些基本概念和载流子的统计分布,还没有涉及到载流子的运动规律。本章主要讨论载流子在外加电场作用下的漂移运动,讨论半导体的迁移率、电导率、电阻率随温度和杂质浓度的变化规律,以及弱电场情况下电导率的统计理论和强电场情况下的效应,并介绍热载流子的概念。 §载流子的漂移运动和迁移率 一、欧姆定律 1.金属:V I R = () l R s ρ=() 单位:m Ω?和cm Ω? 1 = σρ () 单位:/m S 和/cm S 2.半导体: 电流密度:通过垂直于电流方向的单位面积的电流,J=I s ??() 单位:/m A 和/cm A 电场强度:= V l ε()单位:/m V 和/cm V 均匀导体:J= I s () 所以,J==I V l s Rs Rs εεσ==() 上式表示半导体的欧姆定律,把通过导体某一点的电流密度和改点的电导率及电场强度直接联系起来,称为欧姆定律的微分形式。 二、漂移速度和迁移率 有外加电压时,导体内部的自由电子受到电场力的作用,沿电场反方向作定向运动构成电流。电子在电场力作用下的这种运动称为漂移运动,定向运动的速度称为漂移速度。 电子的平均漂移速度为d v ,则其大小与电场强度成正比: d v με=()其中,μ称为电子的迁移率,表示单位场强下电子的平均漂移速度,单位是

m 2 /V·s 或cm 2 /V·s。由于电子带负电,其d v 与E 反向,但μ习惯上只取正值, 即d v με = () d J nqv =- 三、 半导体的电导率和迁移率 型半导体:n p ,0n n q σμ=() 型半导体:p n ,0p p q σμ=() 3.本征半导体:i n p n ==,()i n p n q σμμ=+() 4.一般半导体:n p nq pq σμμ=+() §载流子的散射 一、载流子散射的概念 在有外加电场时,载流子在电场力的作用下作加速运动,漂移速度应该不断增大,由式: d J nqv =-可知,电流密度将无限增大。但是由式:J σε=可知,电流密度应该是恒定的。 因此,二者互相矛盾。 (一)没有外电场作用时 在一定温度下: 半导体内部的大量载流子永不停息地做无规则的、杂乱无章的运动,称为热运动; } d v με =(4.110) J nq με=-(4.111) nq σμ=-电导率与迁移率之间的关系 实际中,存在破坏周期性势场的作用因素:杂质、缺陷、晶格热振动等。 一块均匀半导体,两端加以电压,在其内部形 成电场。 电子和空穴漂移运动的方向不同,但形成的电 流都是沿着电场方向的。 半导体中的导电作用应该是电子导电和空穴导 电的总和。

半导体物理习题答案第四章

第4章 半导体的导电性 2.试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V s 和500 cm 2/V s 。当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。掺杂后的电导率比本征Si 的电导率增大了多少倍 解:将室温下Si 的本征载流子密度1010 /cm 3 及题设电子和空穴的迁移率代入电导率公式 ()i i n p n q σμμ=+ 即得: 101961.510 1.610(1350500) 4.4410 s/cm i σ--=????+=?; 已知室温硅的原子密度为5 1022 /cm 3 ,掺入1ppm 的砷,则砷浓度 22616351010510 cm D N --=??=? 在此等掺杂情况下可忽略少子对材料电导率的贡献,只考虑多子的贡献。这时,电子密度n 0因杂质全部电离而等于N D ;电子迁移率考虑到电离杂质的散射而有所下降,查表4-14知n-Si 中电子迁移率在施主浓度为51016 /cm 3 时已下降为800 cm 2 /V s 。于是得 1619510 1.610800 6.4 s cm n nq σμ-==????=/ 该掺杂硅与本征硅电导率之比 8 66.4 1.44104.4410 i σσ-==?? 即百万分之一的砷杂质使硅的电导率增大了亿倍 5. 500g 的Si 单晶中掺有 10-5g 的B ,设杂质全部电离,求其电阻率。 (硅单晶的密度为2.33g/cm 3 ,B 原子量为)。 解:为求电阻率须先求杂质浓度。设掺入Si 中的B 原子总数为Z ,则由1原子质量单位= 10-24 g 算 得 618 24 4.510 2.51010.8 1.6610 Z --?==???个 500克Si 单晶的体积为3500 214.6 cm 2.33 V = =,于是知B 的浓度 ∴18 16-32.510 1.1610 cm 214.6 A Z N V ?== =? 室温下硅中此等浓度的B 杂质应已完全电离,查表4-14知相应的空穴迁移率为400 cm 2/V s 。 故 1619 11 1.35cm 1.1610 1.610400 A p N q ρμ-= ==Ω?????

半导体的导电性

半导体的导电性 1载流子的漂移运动和迁移率 欧姆定律 电流密度 指通过垂直于电流方向的单位面积的电流 漂移速度和迁移率 1.有外加电压时,导体内部的自由电子受到电场力的作用,沿着电场的反方向作定向运动构成电 流。电子在电场力作用下的这种运动称为漂移运动,定向运动的速度称为漂移速度。 2.当导体内部电场E恒定时,电子应具有一个恒定不变的平均漂移速度v_d。电场强度增大时, 电流密度J也相应地增大,因而,平均漂移速度v_d也随着电场强度E的增大而增大,反之亦 然。 3.电子的迁移率μ的大小反映了载流子在外电场的作用下,载流子运动能力的强弱。 半导体的电导率和迁移率 1.半导体的导电作用是电子导电和空穴导电的总和。 2.导电的电子是在导带中,它们是脱离了共价键可以在半导体中自由运动的电子;而导电的空穴 是在价带中,空穴电流实际上是代表了共价键上的电子在价键间运动时所产生的电流。 3.在相同电场作用下,导带电子平均漂移速度>价带空穴平均漂移速度,就是说,电子迁移率>空 穴迁移率。 2载流子的散射 载流子散射的概念 1.在一定温度下,半导体内部的大量载流子即使没有电场作用,它们也不是静止不动的,而是永 不停息地作着无规则的、杂乱无章的运动,称为热运动。 2.载流子无规则热运动与热振动着的晶格原子、电离了的杂质离子发生碰撞,速度方向发生改 变,即电子波在传播时遭到了散射。 3.自由载流子,实际上只在两次散射之间才真正是自由运动的,其连续两次散射间自由运动的平 均路程称为平均自由程,而平均时间称为平均自由时间。 4.存在外电场时,一方面载流子受到电场力的作用,作定向漂移运动;另一方面载流子仍不断地 遭到散射,使运动方向不断发生改变。→运动方向和速度大小不断变化→漂移速度不能无限地积累→加速运动只在两次散射之间存在→平均漂移速度 半导体的主要散射机构 散射原因:周期性势场被破坏而存在附加势场。

Hcy参考值

一、材料与方法 1.标本来源 以临床确诊的无任何疾患的健康人血清或血浆为检测标本,200例,采晨空腹静脉血2ml,分离血清或血浆测定。 2.使用仪器 Microlab300半自动生化分析仪。 3.试剂盒 北京有限公司同型半胱氨酸测定试剂盒(酶法)。 4.质量控制 使用北京公司高低值两水平质控品,测定标本前先做质控,质控测定值在靶值的±20%范围内方进行标本测定。 5.参考值确定方法 取检验合格的同型半胱氨酸测定试剂盒(酶法),按照试剂盒成品检验规程的要求和方法,对200例无相关疾病的健康人群的血清进行检测,经统计学方法计算出均值(X)和标准差(SD),结果的分布区间(X±2SD)即为参考范围。 二、实验结果(结论) 对200例无相关疾病的健康人群的血清进行检测,经统计学方法计算出均值(X)为9.00,标准差(SD)为2.99,结果的分布区间(X±2SD)即参考值范围为3.02—14.98 umol/L。 参考其他生化试剂厂家如北京九强、四川迈克等公司的同型半胱氨酸生化试剂盒使用说明书中的参考值范围,确定: 同型半胱氨酸测定试剂盒(酶法)的正常值参考值范围为:3—15umol/L 备注:详细实验数据资料见附件1。 三、讨论 1.某项目的临床参考值是指在特定条件用特定方法所得到的生理生化参数,不同的

条件(如地区,时间,性别,年龄,生活水平,测定方法等)测出的参考值范围可能有所差异,建议用户建立自己实验室内的参考值范围。 2.不能盲目地把参考值范围作为正常与异常的分界点,因参考值通常采用95%可信区间,此范围仅覆盖研究人群的95%,有5%的健康人群落在参考值范围之外。3.参考值在作为诊断与监测疾病时的判断依据时,还应考虑年龄、性别、饮食、锻炼、个人喜好等多种因素的影响,综合评价,仔细判定。

刘恩科半导体物理习题答案word打印版

半导体物理习题解答 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: 2222 00(1)()3C h k h k k E k m m -=+和2222100 3()6v h k h k E k m m =- ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 2710 6.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵dk F qE dt ==hg (取绝对值) ∴dt dk qE =h

相关文档
相关文档 最新文档