文档库 最新最全的文档下载
当前位置:文档库 › 新华教育高中部数学同步人教A版必修四第三章三角恒等变换-两角和差的正弦、余弦和正切公式强化训练

新华教育高中部数学同步人教A版必修四第三章三角恒等变换-两角和差的正弦、余弦和正切公式强化训练

新华教育高中部数学同步人教A版必修四第三章三角恒等变换-两角和差的正弦、余弦和正切公式强化训练
新华教育高中部数学同步人教A版必修四第三章三角恒等变换-两角和差的正弦、余弦和正切公式强化训练

两角和差的正弦、余弦和正切公式(强化训练)

1.若tan(αβ+)=3, tan(αβ-)=5, 则tan2α= ( )

A .4

7 B .4

7- C .1

2 D .1

2-

答案:B

解析:角变形为2()()ααβαβ=++-然后利用两角和的正切公式可得

2、已知sin α-cos α=sin α·cos α, 则sin2α的值为 (

A 1

B .1

C .2-

D . 2

答案:D

解析:二倍角公式

3.设2

1

tan(),tan()tan()5444π

π

αββα+=-=+则的值是 ( )

A .13

18 B .13

22 C .322 D .1

6

答案:C

解析:利用角的变形求解

4.已知α、β均为锐角, 且cos (αβ+)<0, 则下列结论一定成立的是 (

) A .cos α>cos β B .sin α>sin β C .sin α>cos β D .cos α>sin β 答案:C

5、设T =θ2sin 1+.

(1)已知sin(π – θ ) =3

5,θ 为钝角,求T 的值;

(2)已知 cos(2π

– θ ) = m, θ 为钝角,求T 的值

解析:(1)由sin(π –θ) =3

5,得sin θ =35. ∵θ为钝角, ∴cos θ =4

5-,

∴sin2θ = 2sin θcos θ =24

25- =1

5.

(2)由cos(2π

– θ ) = m, θ 为钝角,所以sin m θ=,cos θ=T = θcos θsin 21+=|sin θ + cos θ|,

∵ 0< θ < π , ∴当2π< θ ≤4π

3时. sin θ+cos θ>0 ,

∴T = sin θ + cos θ = m –2m 1-;

∴当34

π < θ < π 时. sin θ+cos θ < 0 , ∴T = – (sin θ + cos θ) = –

m + 6、.若锐角,,αβ满足13tan tan 7αβ=

且sin()αβ-=求: (1)cos()αβ-;

(2))cos(

βα+. 解析:(1)

,,,s i n (0,0.2222c o s ())3

13

1cos()cos cos sin sin 1tan tan 37(2)13cos()cos cos sin sin 1tan tan 1017

21cos(),cos().35πππαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ-

<-<-=><-<∴-==-+--====--+++-=+=- 为锐角则而则由又于是

简单的三角恒等变换 知识点及习题

§3.2 简单的三角恒等变换 课时目标 1.了解半角公式及推导过程.2.能利用两角和与差的公式进行简单的三角恒等变换.3.了解三角变换在解数学问题时所起的作用,进一步体会三角变换的规律. 1.半角公式 (1)S α2:sin α2 =____________________; (2)C α2:cos α2 =____________________________; (3)T α2:tan α2 =______________(无理形式)=________________=______________(有理形式). 2.辅助角公式 使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ=__________________,sin φ=______,其中φ称为辅助角,它的终边所在象限由__________决定. 一、选择题 1.已知180°<α<360°,则cos α2 的值等于( ) A .-1-cos α2 B.1-cos α2 C .-1+cos α2 D.1+cos α2 2.函数y =sin ????x +π3+sin ??? ?x -π3的最大值是( ) A .2B .1C.12D. 3 3.函数f (x )=sin x -cos x ,x ∈??? ?0,π2的最小值为( ) A .-2B .-3C .-2D .-1 4.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3 5.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( ) A.? ???-π,-5π6 B.????-5π6,-π6 C.????-π3,0D.????-π6,0 6.若cos α=-45,α是第三象限的角,则1+tan α21-tan α2 等于( ) A .-1B.1C .2D .-2

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

第三章:三角恒等变换中角变换的技巧.

1 三角恒等变换中角变换的技巧 一、利用条件中的角表示目标中的角 例1 设a B为锐角,且满足cos a=, tan (a— 3= —,求cos B的值. 二、利用目标中的角表示条件中的角 例2 设a为第四象限的角,若=,贝U tan 2 a=___________________ . 三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin=, 0

五、分子、分母同乘以2n sin a求COS acos 2 a cos 4 a ?os 8a??C0S 2n—1 a 的值 例 5 求值:sin 10 sin 30 sin 50 sin 70 ° 4聚焦三角函数最值的求解策略 一、化为y = Asin( 3x+(j)+ B的形式求解 例1求函数f(x =的最值. 例2 求函数y = sin2x + 2sin xcos x + 3cos2x的最小值,并写出y取最小值时x的集合. 二、利用正、余弦函数的有界性求解 例3求函数y =的值域. 例4求函数y =的值域. 三、转化为一元二次函数在某确定区间上求最值 例5 设关于x的函数y= cos 2x —2acos x—2a的最小值为f(a,写出f(a的表达式. 例 6 试求函数y = sin x + cos x + 2sin xcos x + 2 的最值. 四、利用函数的单调性求解 例7求函数y =的最值. 例8 在Rt A ABC内有一内接正方形,它的一条边在斜边BC上,设AB = a, / ABC = 0,△ ABC的面积为P,正方形面积为Q.求的最小值. 易错问题纠错 一、求角时选择三角函数类型不当而致错例1 已知sin话,sin护,a和B都是锐角,求a+ B的值.

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

高中数学人教版必修简单的三角恒等变换教案(系列一)

3.2 简单的三角恒等变换 一.教学目标 1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向 使用公式等数学思想,提高学生的推理能力。 2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三 角恒等变形在数学中的应用。 3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中 如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二、教学重点与难点 教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力. 三、教学设想: (一)复习:三角函数的和(差)公式,倍角公式 (二)新课讲授: 1、由二倍角公式引导学生思考:2 αα与有什么样的关系? 学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222 sin ,cos ,tan 222α α α. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 2 2α α-=;

因为2cos 2cos 12α α=-,可以得到21cos cos 22 α α+=. 又因为222 sin 1cos 2tan 21cos cos 2α α ααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2.已知135sin = α,且α在第二象限,求2tan α的值。 例3、求证: (1)、()()1sin cos sin sin 2 αβαβαβ=++-????; (2)、sin sin 2sin cos 22θ? θ? θ?+-+=. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手. ()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2 αβαβαβ=++-????; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβ?+=-=, 那么,22θ? θ? αβ+-==. 把,αβ的值代入①式中得sin sin 2sin cos 22θ?θ?θ?+-+=. 思考:在例3证明中用到哪些数学思想? 例3证明中用到换元思想,(1)式是积化和差的形式,

第三章 三角恒等变换(教案)

三角恒等变换 知识点精讲: 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=. ⑵ 2222cos2cos sin 2cos 112sin ααααα =-=-=-( 2cos 21 cos 2 αα+= , 21cos 2sin 2 α α-= ). ⑶22tan tan 21tan α αα = -. 3、()sin cos ααα?A +B = +,其中tan ?B = A . 经典例题: 例 1.已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2 α 1-tan α的值.

例2.设x ∈[0,π3],求函数y =cos(2x -π3)+2sin(x -π 6)的最值. 例3.已知tan 2 θ=2tan 2 α+1,求证:cos2θ+sin 2 α=0. 例4.已知向量a =(cos 3x 2,sin 3x 2),b =(cos x 2,-sin x 2),c =( 3-1),其中x ∈R . (1)当a ⊥b 时,求x 值的集合; (2)求|a -c |的最大值. 例5.设函数f (x )=22cos(2x +π 4)+sin 2 x

三角恒等变换知识点和例题.doc

精品 三角恒等变换基本解题方法 1 、两角和与差的正弦、余弦、正切公式及倍角公式: sin sin cos cos sin cos cos cos msin sin tan tan tan 1mtan tan 2 tan tan 2 2 1 tan 令 sin2 2sin cos 令 cos2 cos 2 sin 2 2cos 2 1 1 2sin 2 cos 2 = 1+cos2 2 sin 2 = 1 cos2 2 如( 1 )下列各式中,值为 1 的是 2 A 、 o o B 、 2 2 C 、 tan 22.5o 1 cos30o sin15 cos15 cos 12 sin 12 tan 2 22.5o D 、 1 2 ( 2 )命题 P : tan( A B ) 0 ,命题 Q : tan A tan B 0,则 P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 ( 3)已知 sin( )cos cos( )sin 3 ,那么 cos 2 的值为 ____ 5 1 3 o 的值是 ______ ( 4 ) o sin 80 sin 10 (5) 已知 tan110 0 a ,求 tan 50 a 3 1 a 2 的值(用 a 表示)甲求得的结果是 ,乙求得的结果是 ,对甲、 1 3a 2a 乙求得的结果的正确性你的判断是 ______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系, 注意角的一些常用变式, 角的变换是三角函数变换的核心! 第二看函数名称之间的关系,通常“切化弦” ;第三观察代数式的结构特点。基本的技巧有 : (1 )巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其 和差角的变换 . 2 2 如( ) ( ),2( ) ( ),2( ) ( ) , , 2 2 2 等),

三角恒等变换-高考理科数学试题

(二十二) 三角恒等变换 [小题对点练——点点落实] 对点练(一) 三角函数的求值 1.(2017·山东高考)已知cos x =3 4,则cos 2x =( ) A .-14 B.14 C .-18 D.18 解析:选D cos 2x =2cos 2x -1=1 8 . 2.(2018·太原一模)若cos ????α-π6=-3 3,则cos ????α-π3+cos α=( ) A .- 22 3 B .±223 C .-1 D .±1 解析:选C 由cos ????α-π3+cos α=12cos α+3 2sin α+cos α=3cos ????α-π6=-1,故选C. 3.(2018·安徽十校联考)sin 47°-sin 17°cos 30° cos 17°=( ) A .-32 B .-12 C.12 D.32 解析:选C sin 47°-sin 17°cos 30° cos 17° =sin (30°+17°)-sin 17°cos 30° cos 17° =sin 30°cos 17°+sin 17°cos 30°-sin 17°cos 30° cos 17° = sin 30°cos 17°cos 17°=sin 30°=1 2 . 4.(2018·湖南郴州质检)已知x ∈(0,π),sin ???? π3-x =cos 2????x 2+π4,则tan x =( ) A.1 2 B .-2 C.22 D. 2

解析:选D 由已知,得sin π3cos x -cos π3sin x =cos ????x +π2+12,即32cos x -1 2sin x = -12sin x +12,所以cos x =3 3 .因为x ∈(0,π),所以tan x = 2. 5.(2018·河北唐山一模)已知α为锐角,且cos ????α+π4=3 5,则cos 2α=( ) A.24 25 B.725 C .- 2425 D .±2425 解析:选A ∵0<α<π2,cos ????α+π4=35>0,∴π4<α+π4<π 2,∴sin ????α+π4=45,∴sin α=sin ????????α+π4-π4=sin ????α+π4cos π4-cos ????α+π4sin π4=45×22-35×22=2 10,∴cos 2α=1-2sin 2α=1-2× ????2102=2425 .故选A. 6.(2018·广东广州模拟)设α为锐角,若cos ????α+π6=35,则sin ????α-π 12=( ) A .-210 B.210 C.2 2 D.45 解析:选B 因为α为锐角,所以0<α<π2,则π6<α+π6<2π 3,因此sin ????α+π6>0,所以sin ??? ?α+π 6= 1-cos 2??? ?α+π 6= 1-????352=45.所以sin ????α-π12=sin ??? ?????α+π6-π4=sin ????α+π6cos π4-cos ????α+π6sin π4=45×22-35×22=2 10 . 7.(2018·荆州一模)计算:sin 46°·cos 16°-cos 314°·sin 16°=________. 解析:sin 46°·cos 16°-cos 314°·sin 16°=sin 46°·cos 16°-cos 46°·sin 16°=sin(46°-16°)=sin 30°=12 . 答案:1 2 8.(2018·洛阳一模)已知sin ????α-π3=14,则cos ????π 3+2α=________. 解析:cos ????π3+2α=cos ????π-2π3+2α=-cos 2????α-π3=2sin 2????α-π3-1=-7 8. 答案:-7 8

三角恒等变换公式

三角恒等变换公式 1.两角和与差的三角函数 和(差)角公式: sin(α±β)=sin αcos β±cos αsin β cos(α±β)=cos αcos β sin αsin β tan(α±β)= β αβαtan tan 1tan tan ± 倍角公式: sin 2α =2sin αcos α cos2α=cos 2α-sin 2α=2cos 2α-1=1 - sin 2α tan2α=αα2tan 1tan 2- 2.和差化积与积化和差公式 积化和差公式: 2sin αcos β=sin(α+β)+sin(α-β) 2cos αsin β= sin(α+β)-sin(α-β) 2cos αcos β= cos(α+β)+cos(α-β) -2sin αsin β=cos(α+β)-cos(α-β) 和差化积公式: sin α+ sin β=2sin 2βα+cos 2 β α- sin α- sin β=2cos 2βα+sin 2 βα- cos α+ cos β=2cos 2βα+cos 2 βα- cos α- cos β=-2sin 2βα+sin 2βα- 3.万能公式与半角公式 万能公式:

sin α=2tan 12tan 22 αα+ cos α=2tan 12tan 12 2 αα+- tan α=2tan 12tan 22 αα- 半角公式: sin 2 cos 12αα -±= cos 2 cos 12αα+±= tan ααα cos 1cos 12+-± ==ααsin cos 1-=ααcos 1sin + 其他: cos 2 2cos 12αα+= sin 22cos 12αα-= 1+cos2α=2cos α2 1-cos2α=2sin α2

三角恒等变换知识点加练习汇总

三角恒等变换测试题 _____贺孝轩 三角函数 1.画一个单位圆,则x y x y ===αααtan ,cos ,sin 2.一些诱导公式 ααπααπααπtan )tan(,cos )cos(,sin )sin(-=--=-=- ααπ ααπααπ cot )2 tan(,sin )2cos(,cos )2sin( =-=-=-? (只要两角之和为/2就行) 3.三角函数间的关系 1cos sin 22=+α ? αα22sec 1tan =+, α α αcos sin tan = ?αααcos tan sin ?= 4.和差化积 βαβαβαsin cos cos sin )sin(±=± , βαβαβαsin sin cos cos )cos( =± β αβ αβαtan tan 1tan tan )tan(?±= ± 5.二倍角 αααcos sin 22sin = , ααααα2222sin 211cos 2sin cos 2cos -=-=-= α α α2tan 1tan 22tan -= 6.二倍角扩展 αα cos 12 cos 22 += , αα cos 12 sin 22 -= , 2)2 cos 2(sin sin 1α α α±=± )tan tan 1)(tan(tan tan βαβαβα +=± 7.)sin(cos sin 22θαβα++= +b a b a ,其中2 2 cos b a a += θ,2 2 sin b a b += θ a b = θtan 8.半角公式 θ θ θ θθ θ θθ sin cos 12 cos 2sin 22 sin 22 cos 2sin 2 tan 2 -= ==

人教版高中数学必修四三角恒等变换题库

(数学4必修)第三章 三角恒等变换 [基础训练A 组] 一、选择题 1.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .7 24- 2.函数3sin 4cos 5y x x =++的最小正周期是( ) A . 5π B .2 π C .π D .2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定 4.设00sin14cos14a =+,00sin16cos16b =+,c = , 则,,a b c 大小关系( ) A .a b c << B .b a c << C .c b a << D .a c b << 5.函数)cos[2()]y x x ππ= -+是( ) A .周期为4π的奇函数 B .周期为4 π的偶函数 C .周期为2π的奇函数 D .周期为2 π的偶函数 6.已知cos 2θ= 44sin cos θθ+的值为( ) A .1813 B .1811 C .9 7 D .1- 二、填空题 1.求值:0000 tan 20tan 4020tan 40+=_____________。 2.若1tan 2008,1tan αα+=-则1tan 2cos 2αα += 。 3.函数f x x x x ()cos sin cos =-223的最小正周期是___________。

4.已知sin cos 223 θ θ +=那么sin θ的值为 ,cos2θ的值为 。 5.ABC ?的三个内角为A 、B 、C ,当A 为 时,cos 2cos 2 B C A ++取得最大值,且这个最大值为 。 三、解答题 1.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值. 2.若,2 2sin sin = +βα求βαcos cos +的取值范围。 3.求值:0 010001cos 20sin10(tan 5tan 5)2sin 20 -+-- 4.已知函数.,2 cos 32sin R x x x y ∈+= (1)求y 取最大值时相应的x 的集合; (2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象. (数学4必修)第三章 三角恒等变换 [综合训练B 组] 一、选择题 1.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) A .a b c >> B .a b c << C .a c b << D .b c a <<

高中数学三角恒等变换精选题目(附答案)

高中数学三角恒等变换精选题目(附答案) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C 2 D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. tan 20tan 4020tan 40? ? ? ? ++的值为( ) A 1 B 3 C D 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47- B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于 5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-= 的图像( )

A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位 10. 函数sin 22x x y =+的图像的一条对称轴方程是 ( ) A 、x =113π B 、x = 53π C 、53x π=- D 、3 x π =- 11. 已知1cos sin 21cos sin x x x x -+=-++,则x tan 的值为 ( ) A 、34 B 、34- C 、43 D 、4 3- 12.若0,4πα? ? ∈ ?? ?()0,βπ∈且()1tan 2αβ-=,1 tan 7 β=-,则=-βα2 ( ) A 、56π- B 、23π- C 、 712 π- D 、34π- 13. .在ABC ?中,已知tanA ,tanB 是方程2 3720x x -+=的两个实根,则tan C = 14. 已知tan 2x =,则 3sin 22cos 2cos 23sin 2x x x x +-的值为 15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ?面积的最小值为 。 16. 关于函数( )cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ?? - ???? 上是单调递增; ③函数()f x 的图像关于点,012π?? ??? 成中心对称图像; ④将函数()f x 的图像向左平移 512 π 个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上) 17. 已知02 π α<< ,15tan 2 2tan 2 α α + = ,试求sin 3πα? ?- ?? ?的值. 18. 求) 212cos 4(12sin 3 12tan 30 200--的值.

高中数学必修4 三角恒等变换

高中数学必修4 三角恒等变换1 1.已知(,0)2 x π ∈-,4 cos 5 x = ,则=x 2tan ( ) A . 247 B .247- C .7 24 D .724- 2.函数3sin 4cos 5y x x =++的最小正周期是( ) A . 5π B .2 π C .π D .2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定 4.函数)cos[2()]y x x ππ= -+是( ) A .周期为 4π的奇函数 B.周期为4π 的偶函数 C .周期为2π的奇函数 D .周期 为2 π 的偶函数 5.已知cos 23 θ= ,则44 sin cos θθ+的值为( ) A . 1813 B .1811 C .9 7 D .1- 6. 函数2 sin cos y x x x =+的图象的一个对称中心是( ) A .2( ,32π- B .5(,62π- C .2(,32π- D .(,3 π 7. 当04 x π <<时,函数22cos ()cos sin sin x f x x x x =-的最小值是( ) A .4 B . 12 C .2 D .14 8. 已知函数()sin(2)f x x ?=+的图象关于直线8 x π= 对称,则?可能是( ) A . 2π B .4π- C .4 π D .34π 9. 将函数sin()3y x π =-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将 所得的图象向左平移3 π 个单位,得到的图象对应的僻析式是( ) A .1sin 2y x = B .1sin()22y x π=- C .1sin()26y x π=- D .sin(2)6 y x π =-

人教A版数学必修四第三章三角恒等变换导学案

第三章 三角恒等变换 1.三角恒等变换中角的变换的技巧 三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角 例1.已知cos ? ????π6+α=33,求cos ? ??? ?5π6-α的值. 分析.将π6+α看作一个整体,观察π6+α与5π 6 -α的关系. 解.∵? ????π6+α+? ?? ? ?5π6-α=π, ∴ 5π6-α=π-? ?? ??π6 +α. ∴cos ? ????5π6-α=cos ???? ? ?π-? ????π6+α =-cos ? ????π6+α=-33,即cos ? ?? ??5π 6-α =-33. 二、利用目标中的角表示条件中的角 例 2.设 α 为第四象限角,若sin 3α sin α =13 5 ,则tan 2α= _______________________________. 分析.要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=13 5中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan 2α. 解析.由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin α sin α =2cos 2 α+cos 2α=135 . ∵2cos 2 α+cos 2α=1+2cos 2α=135.∴cos 2α=45. ∵α为第四象限角,∴2k π+3π 2<α<2k π+2π(k ∈Z ), ∴4k π+3π<2α<4k π+4π(k ∈Z ),

三角恒等变换知识讲解(基础)

三角恒等变换 【考纲要求】 1、会用向量的数量积推导出两角差的余弦公式. 2、能利用两角差的余弦公式导出两角差的正弦、正切公式. 3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】 【考点梳理】 考点一、两角和、差的正、余弦公式 ()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±= ()tan tan tan()()1tan tan T αβαβ αβαβ ±±±= - 要点诠释: 1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2 ±≠ +∈、、π αβαβπ 2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。公式()T αβ±正向用是用单角的正切值表示和差角 ()±αβ的正切值化简。 考点二、二倍角公式 1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式 222,,S C T ααα: sin 22sin cos ααα= 2()S α;

ααα22sin cos 2cos -=2()C α; 22tan tan 21tan α αα= -2()T α 。 要点诠释: 1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(2 24 Z k k k ∈+≠+ ≠ππ αππ α和时才成立; 2. 余弦的二倍角公式有三种:ααα2 2 sin cos 2cos -==1cos 22 -α=α2 sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。 3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍, 24α α是的二倍,332 α α是的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公 式的关键。 考点三、二倍角公式的推论 降幂公式:ααα2sin 2 1 cos sin = ; 22cos 1sin 2 αα-=; 22cos 1cos 2 αα+=. 万能公式:α α α2 tan 1tan 22sin +=; α α α2 2tan 1tan 12cos +-=. 半角公式:2cos 12 sin α α -± =; 2cos 12 cos α α +± =; α α α cos 1cos 12 tan +-± =. 其中根号的符号由2 α 所在的象限决定. 要点诠释: (1)半角公式中正负号的选取由 2 α 所在的象限确定; (2)半角都是相对于某个角来说的,如 2 3α 可以看作是3α的半角,2α可以看作是4α的半角等等。 (3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)

第三章 三角恒等变换.

第三章三角恒等变换 密云县编写组 第一部分:第三章的教学设计 一、教材分析 1.教学内容 本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换. 三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用. 2.在模块内容体系中的地位和作用 在第一章三角函数的学习的基础上,学习简单的三角变换是对三角函数的进一步深化也是为必修5中的解三角形做铺垫. 3.总体教学目标 (1)了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用; (2)理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系; (3)运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公 式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性, 体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用. 4.重点、难点分析 本章内容的重点是两角差的余弦公式的推导及在推导过程中体现的思想方法,同时也是难点. 5.其他相关问题 本章内容安排贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容”的理念,严格控制了三角变换及应用的繁、难程度,尤其注意了不以半角公式,积化和差以及和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习. 二、教学方式概述 应以教师为主导学生为主体的启发式教学为主,以学生为主体探究式教学为辅. 三、教学资源概述 充分利用多媒体课件

三角恒等变换知识点和例题

三角恒等变换基本解题方法 1、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αα αβααβααβααααα =±=???→=-↓=-=-±±=?-↓=-m m 如(1)下列各式中,值为12 的是 A 、1515sin cos o o B 、221212cos sin ππ - C 、22251225tan .tan .-o o D (2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 (3)已知35 sin()cos cos()sin αβααβα---=,那么2cos β的值为____ (4 )11080sin sin -o o 的值是______ (5)已知0tan110a =,求0tan 50的值(用a ,乙求得的结果是212a a -,对甲、乙求得的结果的正确性你的判断是______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22αβαβ++=?,()() 222αββααβ+=---等),

高三数学9种常用三角恒等变换技巧总结

高中数学:9种常用三角恒等变换技巧总结 三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益。 “切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α可视为α/2的倍角等等.

遇平方可用“降次”公式,这是常用的解题策略.本题中首先化异角为同角,消除角的差异,然后化简求值.关于积化和差、和差化积公式,教材中是以习题形式给出的,望引起重视. 跟代数恒等变换一样.在三角变换时,有时适当地应用”‘加一项再减去这一项”. “乘一项再除以同一项”的方法常能使某些问题巧妙简捷地得以解决.

根据题目的特点,总体设元,然后构造与其相应的对偶式,运用方程的思想来解决三角恒等 变换,也是常用的方法,本题也可以采用降次、和积互化等方法。.目前高考中,纯三角函数式的化简与证明已不多见,取而代之的题目经常是化简某一三角函数,并综合考查这一函数的其他性质.但。凡是与三角函数有关的问题,都以恒等变形、条件变形为解题的基石,因此本专题内容的重要性不言而喻.至于在三角条件恒等证明中如何用三内角和的性质、正余弦定理进行边角关系转换等,我们就不另加赘述了.

相关文档
相关文档 最新文档