文档库 最新最全的文档下载
当前位置:文档库 › 220kV变电站220kV母线保护双重化改造实例分析_钱碧甫

220kV变电站220kV母线保护双重化改造实例分析_钱碧甫

220kV变电站220kV母线保护双重化改造实例分析_钱碧甫
220kV变电站220kV母线保护双重化改造实例分析_钱碧甫

技术与应用

2014年第12期 81

220kV 变电站220kV 母线保护双重化改造

实例分析

钱碧甫 陈 刚 林高翔 叶正策 王 策

(温州供电公司,浙江 温州 325000)

摘要 目前我地市公司220kV 母差保护双重化配置率仍较低,双重化改造的工作正有序展开,本文针对某220kV 变电站的实际情况,介绍保护类型和工程内容,详细阐述第二套母差跳闸回路,失灵回路,远跳回路等设置,鉴于此变电站内设备回路的多样性和复杂性,给出不同的回路走线方法以使之达到功能完备,回路清晰。本文对类似220kV 变电站的母差保护双重化改造工程极有参考价值。

关键词:母差保护双重化改造;跳闸回路;失灵回路;远跳回路

Example Analysis of Reformation of Duplex Bus Protection in 220kV

Transformer Substation

Qian Bifu Chen Gang Lin Gaoxiang Ye Zhengce Wang Ce (Wenzhou Power Supply Company, Wenzhou, Zhejiang 325000)

Abstract At present in the city company, the coverage of double bus protection was much low, and the reformations of duplex bus differential protection were applied orderly. The paper introduced the protection types and content of construction, and expounded the details of trip circuit, breaker fail protection circuit and direct transfer trip circuit aiming at the 220kV transformer substation. Owing to the diversity and complexity, the suitable circuits were designed for full-function and clear. The paper had much reference to the reformation of duplex bus differential protection.

Key words :reformation of duplex bus differential protection ;trip circuit ;direct transfer trip circuit ;breaker fail protection circuit

近年,我国电网容量架构迅速扩大,一次设备因为各种故障出现短路电流的事故剧增,而同时系统互联性进一步加强,母线保护,作为500kV 和220kV 变电站中的关键保护设备,其快速性、可靠性对系统稳定及缩小故障影响具有越来越重要的地位。按照《防止电力生产重大事故的二十五项重点

要求》,新建500kV 和重要的220kV 厂、所的220kV 母线应做到双套母差、开关失灵保护,而已建成的500kV 和重要的220kV 厂所的220kV 母线可逐步完成。目前,微机母差保护和失灵保护的一体化和智能化,以其运行方便、灵活、稳定已使母线保护双重化配置的实现具备可靠的条件[1-2]。 目前我地市局220kV 母差保护双重化配置率仍较低,双重化改造的工作正有序展开,本文针对某220kV 变电站的实际情况,详细阐述第二套母差跳闸回路,失灵回路,远跳回路等设置,鉴于此变电站内设备的多样性,给出不同的回路走线方法以使之达到功能完备,回路清晰。本文对类似220kV 变电站的母差保护双重化改造工程极有参考价值。 1 现场设备情况

1.1 220kV 设备主接线、运行方式 此220kV 变电站的220kV 设备的主接线示意图如图1所示,为双母运行方式,含有220kV 间隔9个,具体各间隔的保护配置如下: 1)线路间隔A1、A2所配线路保护型号:第一

套为南瑞继保RCS-931,第二套为国电南自PSL-603,共用操作箱为CZX-12R1,断路器失灵装

技术与应用

2014年第12期

82

置为国电南自PSL-631。

2)线路间隔B1、B2所配线路保护型号:第一套为国网许继WXH-803,第二套四方的CSC-103,共用操作箱为ZFZ-812,断路器失灵装置为CSC-122。

3)线路间隔C1、C2所配线路保护型号:第一套为南瑞继保PCS-931,操作箱为NSR-381,第二套为四方的CSC-103,操作箱为JFZ-11,共用断路器失灵装置为CSC-122。

4)母联保护型号为南瑞继保的RCS-923,操作箱为南瑞继保LFP-974。

5)1#主变和2#主变保护配置一致,第一套和第二套主变保护型号均为南瑞继保主变保护RCS-978,操作箱南瑞继保LFP-974,失灵控制装置为南瑞继保RCS-974。

图1 220kV 主接线示意图

1.2 220kV 母差保护双重化的必要性

220kV 系统保护采用近后备原则。当220kV 母差保护正常运行时,可实现近后备保护功能。但220kV 母差保护因缺陷退出运行或计划检修时,只能采取远后备保护方式。此时,需将所有220kV 出线对侧变电站的线路保护灵敏段时间定值临时改为0.5s ,以保证母线故障能以较短时间切除故障,这一调整引起变电运行操作工作量大大增加,许可变电检修工作票推迟,有效工作时间大大缩短,同时也不利于快速切除母线故障。而采取母差保护双重化配置之后,这一问题迎刃而解,当有一套母差保护因故障退出运行时,另一套保护可继续运行,在此同时也可开展对故障设备的应急消缺处理,保障电网正常工作。 1.3 工程主要内容

本工程为220kV 变电站220kV 母差保护双重化改造。此变电站前期已上一套220kV 母差保护,为

深圳南瑞公司的BP-2B 。本期新上的220kV 母差保护采用国电南京自动化股份有限公司的GSGB750- C15A ,配置一面大电流试验端子屏。

本次改造内容为:新上一套220kV 母差保护;改造前期已上的母差保护接线以适应母差双重化功能。

原母线保护BP-2B 不具备分相失灵开入,线路失灵电流的判别起动由线路的失灵保护装置实现;新上母线保护GSGB750-C15A ,失灵电流的判别由母差保护实现。

主变220kV 侧无备用流变,因此拆除主变220kV 侧的失灵保护回路,空出的流变用于新上的母差保护。原母线保护BP-2B 的主变间隔失灵开入接线作相应更改。

原主变屏上的失灵保护退出,主变失灵电流判别由母线保护(BP-2B ,GSGB750-C15A )实现。

2 回路改造关键点

2.1 电流回路

经核实,220kV 线路及母联间隔电流互感器均为5绕组配置,主变220kV 进线间隔电流互感器为9绕组配置(含主变套管CT ),均有备用的保护级绕组,满足本期改造要求。因此新上第二套母差保护的间隔电流引用户外相关间隔的端子箱内备用绕组进行接线。值得注意的是,第一套母差为深圳南

瑞的BP-2B ,而新上第二套母差保护为国电南自的GSGB750,因为保护逻辑对母联CT 极性朝向的差异[3]直接影响母线保护中母联电流的流向,应该将第二套母差的母联CT 电流与第一套相反才能符合工程要求。

另,因为此变电站的主变间隔的失灵装置已引用了主变220kV 侧CT 电流,并结合主变保护开出的失灵信号来失灵保护。本期改造为完全达到母差双重化的目的,拆除此绕组电流并接给新上母差保护的主变间隔,以之作为失灵判据使用,而且将主变失灵装置的失灵回路也进行相应改动。 2.2 失灵回路[4-5]

由于前期所上的第一套母差保护为深圳南瑞公司的BP-2B 不具备分相失灵开入,相应失灵电流的判别起动由所在的失灵保护装置实现。220kV 的6个线路间隔均是将双套保护的分相失灵开出进行并接后接至失灵装置使用。本期改造首先是保存第一套母差保护的此种失灵回路,又由于,本期新上的第二套母差保护是具备分相失灵开入的,所以拆除

技术与应用

2014年第12期 83

以上6个线路间隔的第二套保护的是失灵接线并改接至第二套新上母差保护使用。图2(a )所示为A1、A2线路间隔的改造后示意图,失灵回路如图所示,而B1、B2、C1、C2均如是改动。

同样的,一期1#和2#主变间隔双套主变保护的

启失灵和解复压回路也是并接至主变失灵装置,然后开给母差保护BP-2B 。本期改造则彻底解开此并

接回路,将主变的第一套保护的启失灵、解复压直接接至第一套母差保护;将主变的第二套保护的启

失灵、解复压直接接至第二套母差保护。图2(

b )所示为

1#、

2#主变间隔的改造后示意图,启失灵和解复压回路如图所示。

a )线路间隔

A1、A2

的改造后控制回路示意图

(b )主变间隔改造后控制回路示意图

2014年第12期

84

(c )母联间隔改造后控制回路示意图

图2 间隔改造后控制回路示意图

2.3 跳闸回路

对于线路间隔C1、C2而言,因为线路保护的双重化配置比较完善,一期的母差保护第一组跳闸出线接至第一套线路保护操作箱NSR-381,母差保护BP-2B 的第二组跳闸出线接至第二套线路保护操作箱JFZ-11。本期改造方法为拆除母差BP-2B 的第二组跳闸回路,改用新上母差保护的第一组跳闸接线。

而对于220kV 的其余七个间隔而言,一个间隔均只有一个操作箱,一期的母差保护BP-2B 跳闸出线均接至相应间隔的操作箱第一组跳闸线圈。本期改造方法是增加第二套母差保护的第一组跳闸接线至其操作箱的第二组跳闸线圈。

如图2所示,图中虚框均为增加的第二套母差保护至各个间隔的跳闸接线大致示意。 2.4 远跳回路

此220kV 变电站的远跳回路因线路保护配置不同也分为两种情况:

1)线路间隔A1、A2、B1、B2均是只配置了一个操作箱,但线路保护是双重化配置的。在一期的设计中,是将母差保护BP-2B 的第二组跳闸接线作为操作箱重动继电器3ZJ 的开入,利用重动继电器的两个开出分别作为此间隔的两套线路保护的失灵输入使用,如图3所示。

图3 改造前的远跳开入示意图

本期改造方法是,拆除此回路接线,直接将第一套母差保护BP-2B 的第二组跳闸接线作为第一套线路保护的远跳开入使用;将新上第二套母差保护的第二组跳闸接线作为第二套线路保护的远跳开入使用。

2)线路间隔C1、C2均配置了两个操作箱,改造期间只需按照2.2中跳闸回路的改造方法即可,因为此间隔的远跳开入来自跳闸回路中的继电器开入,已完成了远跳回路的双重化配置。 2.5 其他回路

母联间隔的HWJ 、各间隔的正负母闸刀位置结点、第二套母差保护的电源、故障录波器信号、给保护子站开出、对时、照明等回路因其回路简单易懂,本文将不再累述,但需同样注意所用电缆的强弱电隔离,交直流分别等注意事项。

(下转第94页)

2014年第12期

94

经过理论计算和试验验证,终端和接头的绝缘结构基本由:

1)导体连接部分采用皮金铜表带型触子结构。 2)电场应力控制锥、主绝缘层和半导电屏蔽层采用三元乙丙橡胶真空注橡成型。

3)外屏蔽采用不锈钢材料组成。同时,针对旁路供电电缆线路暴露在大气环境、甚至在阴雨天中运行,且邻近带电作业人员和过往行人,为了防止终端和中间接头意外脱离,特殊设计了密封防水、对位自锁装置。实物照片如图5所示。

(a )快速插拔电缆终端头

(b )中间接头

图5 实物照片

图5表明,插拔式快速终端和中间接头采用了应力锥绝缘结构优化设计,选用三元乙丙橡胶作主要绝缘材料,并保证界面始终保持足够的正压强,使得终端和中间接头结构非常紧凑,其体积和重量仅为常规的插拔式电缆附件的50%左右。同时,外屏蔽采用不锈钢材料,特殊设计防水密封结构和对位自锁装置,使得终端和中间接头现场安装非常便利、运行安全可靠。可应用于35kV 及以下电压等级的电力电缆现场快速连接和分支,适用于电缆的现场快速连接和分支。

试验证明,插拔式快速终端和中间接头插拔配

合的过盈值、复合界面压强值的理论计算和试验验证基本一致,安全使用寿命可达到1000次。插拔式快速终端、中间接头构成组合试品,通过了严格的型式试验和补充试验,其电气性能符合标准要求,能够满足现场长期安全可靠运行的需要。

2 结论

本文主要介绍了10kV 630A 电缆快速接头装置的研究内容,论证了其在实际应用中的可行性,具有结构灵巧、安全稳定、操作简便的特点,将大大缩短大电流电缆的接续时间,同时使电缆的配置长度灵活多变,避免了电缆太长而造成的浪费和施工高强度,在配网检修工作中值得推广,具有广阔的应用前景。

参考文献

[1] 罗俊华, 张丽, 等. 电场应力控制锥的数值分析[J].广东电缆技术, 2003(1): 8-30.

[2] 戴征宇, 姜芸, 等. 预制型电缆附件沿面放电试验

研究[J]. 高电压技术, 2002, 28(9): 7-81.

[3] 张锦秀, 蓝耕, 范云刚, 等. 柔性电缆插拔式快速终

端和接头绝缘结构分析[J]. 高电压技术, 2005, 31(1): 25-44.

[4] 张锦秀, 蓝耕, 范云刚, 等. 带电旁路作业用插拔式

快速电缆终端和接头[J]. 高电压技术, 2005, 31(1): 25-44.

作者简介

左婧(1980-),女,广东电网公司佛山顺德供电局副局长,从事配网管理工作。

(上接第84页)

3 结论

文中针对本公司220kV 变电站220kV 母差保护

的改造工程中遇到的间隔保护配置差异性,回路多样性的具体情况,详细阐述220kV 母差双重化改造的重点和难点,主要包括电流回路、跳闸回路、失灵回路等的举例介绍,通过改造,使得两套母线差动保护的回路隔离清楚,正常工作,准确高效动作切除母线故障,保障电网安全稳定运行。

参考文献

[1] 杜浩良, 杜鹃, 温诘强. 220kV 母差保护双重化改造方案研究[J]. 机电信息, 2012(5): 4-5.

[2] 郭祝平, 邹阳, 王炼. 500kV 变电站220kV 母差保护

双重化改造[J]. 继电器, 2006, 35(10): 72-75. [3] 易淑智. BP-2A 母差保护误动110kV 母联的事故分

析[J]. 电力系统保护与控制, 2008, 36(20): 75-77. [4] 戴缘生, 鲁炜, 徐斌. 母差双重化改造中远跳及失

灵回路相关问题讨论[J]. 电力系统保护与控制, 2009, 37(6): 98-103.

[5] 杜浩良. 主变220kV 断路器失灵保护的改进[J]. 浙

江电力, 2008, 27(5): 50-53.

作者简介

钱碧甫(1982-),浙江温州人,硕士,工程师,研究方向为电力系统自动化及电力系统继电保护。

电机低电压保护现状

关于我厂高压电机低电压保护的问题 一、高压电机低电压保护的重要性。 高压电机的低电压保护在电力系统中具有重要意义。当电动机的供电母线电压短时降低或者短时中断又恢复时,为了防止电动机自启动时使电源电压严重降低,通常在次要厂用电动机上装设低电压保护或者重要电机比次要电机在低电压延时上要长。当供电母线电压降低要一定值时,低电压保护动作将次要电动机切除,使供电母线电压迅速恢复到正常电压,以保证重要电动机的自启动。因此装设低电压保护可以提高我厂化工生产的稳定性。 二、我厂高压电机低电压保护现状。 我厂大部分高压电机(包括热电站)均采用ABB公司REF521综合保护装置,低电压保护作为其保护的一部分均投入运行。在一次的偶然故障中,我们发现一台设备PT一相断线后低电压保护动作,并没有按逻辑规定而进行低电压PT断线闭锁。经过我们的反复试验以及与ABB公司的技术沟通发现,现在我厂所有正在使用的电机REF521装置均存在以上无法PT断线闭锁低电压的缺陷。这个缺陷的存在具有及其大的隐患,一旦我高压母线有PT断线的情况,那么所有在此母线上工作的高压电机均会跳闸断电,进而中断我厂生产,造成巨大经济损失。经调查发现,此缺陷为最初安装程序设置缺陷,ABB公司在我建厂初期调试设备程序时并未将此逻辑勾选完善,因此留下此巨大隐患。因此,我厂所有的高压电机REF521保护装置的程序更新改造刻不容缓。 三、由PT断线所引申出来的备自投问题。 我厂高压母线均分段运行,均有备自投装置。所用保护装置均为ABB REF542综保,该备自投装置在检测备自投条件时只检测无压,并不检测无电流,同时没有PT断线闭锁程序,一旦发生PT断线,备自投将自动启动,切换电源。这无疑会造成一部分设备停电,生产中断,造成经济损失。因此备自投也必须有所改造,使其在PT断线时闭锁备自投。 三、改造建议及措施。 1、关于低电压的改。 经过我部门几天的不断试验以及与ABB公司的技术沟通,我们通过电脑程序,对REF521综保装置内部逻辑的修改,可以在PT断线时,启动PT断线闭锁低电压保护,使低电压保护不再误动作,因此提高了保护的可靠性。 2、关于备自投保护的改造。 我们在备自投装置闭锁回路里,加入PT断线闭锁节点,此节点引自备自投所管辖的两段母线上的电机柜,此节点为电机柜REF521装置里的PT断线闭锁所启动的常开节点。当母线PT断线时,电机柜REF521装置启动PT断线闭锁,利用其启动的出口串入REF542装置的闭锁回路之中,闭锁备自投。因此备自投不会因为PT断线而启动。 但此改造方式还存在一定缺陷,当PT断线闭锁备自投时,如果此时进线开关偷跳或者保护跳进线,那么备自投将无法自投,故障段将停电。

变电站母线保护的探讨

变电站母线保护的探讨 发表时间:2018-11-16T11:54:57.523Z 来源:《河南电力》2018年10期作者:何剑波[导读] 变电所或发电厂的高压母线也是电力系统的中枢部分,若母线故障不能迅速切除,将会造成或扩大事故。本文阐述了母线差动保护的原理,对几种母线差动保护的方法进行阐述和比较。 何剑波 (中国能源建设集团广东火电工程有限公司)摘要:母线保护是发电厂和变电所保护的重要元件,母线保护装置是正确迅速切除母线故障的重要设施,母线工作的可靠性直接影响着发电厂和变电所工作的可靠性,同时,变电所或发电厂的高压母线也是电力系统的中枢部分,若母线故障不能迅速切除,将会造成或扩大事故。本文阐述了母线差动保护的原理,对几种母线差动保护的方法进行阐述和比较。 关键词:母线保护;原理;差动;方法 引言 母线保护是保证电网安全稳定运行的重要系统设备,它的安全性、可靠性、灵敏性和快速性对保证整个区域电网的安全具有决定性的意义。迄今为止,在电网中广泛常用的有固定连接的母线差动保护、母联电流比相式差动保护、电流相位比较式差动保护、比率制动式差动保护。 一、母线差动保护的原理和分类 为了满足继电保护的可靠性、选择性、灵敏性、速动性要求,母线保护多采用差动保护原理。电流差动保护原理还是非常简单和实用可靠的,母线差动保护装置原理我们一般可以分成两类:1.全电流差动保护;2.电流相位差动保护。差动保护的基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,母线差动保护装置会通过比较大差电流及小差电流的大小来判定发生故障的母线,跳开母联开关及有故障母线上运行的所有断路器,有效的防止事故的进一步扩大。 大差电流指的是母线上连接的所有元件的电流的相量和(不计算母联及分段电流),大差电流是判断母线是否有故障的依据,有大差电流说明母线是存在故障的;小差电流指的是某一段母线的差动电流,以双母线带专用母联开关的接线方式为例,IM母线的小差电流是指挂在IM母线上的所有元件的电流的相量和(这时母联电流要计算在内,当作是其中的一个支路对待),若IM母线存在小差电流,则可判定故障母线是IM,保护应跳开母联及IM母线上的所有开关,小差电流是判断故障母线的依据。为防止CT断线导致母线差动保护的误动,引入了一个复合电压闭锁条件,必须当复合电压条件及差动电流都满足要求的情况下保护装置才能出口动作。 二、母线保护在变电站的应用 母线是变电站至关重要的元件,承担着交换负荷,转接潮流的作用,几乎所有同一电压等级的元件都要挂在母线上,一旦母线发生故障,如果母线保护不能正确及时的动作,将会导致非常严重的后果。因为当母线发生故障的时候,以线路元件为例,本站的线路保护将会判断为区外故障,所以本站的线路保护本身是不会动作的,这时如果母线保护不动作,就只有等待线路对侧的保护的III段保护来动作,时间很长,有可能对设备造成不可修复的损坏,考虑到挂在母线上的元件众多,其风险呈几何级的上升,一旦有一个或几个后备保护没有正确动作,轻则造成大面积的长时间的停电,重则有可能影响电网的稳定性。所以在变电站里,220千伏及以上电压等级的母线保护都是双重配置,保证可以可靠的判断故障,及时动作,保证母线的安全。 从以上分析我们知道,当母线发生故障的时候,母线保护会判断故障母线,并切除故障母线上的所有元件,这就不可避免的切除了很多运行线路或主变,停电范围涉及很广。那么有什么方法可以避免或者说是减少因母线故障受影响的运行设备呢?一个目前常用的做法是尽量减少挂在同一段母线上的运行设备数量,换言之就是将母线尽量切割成尽量多的小块,这样挂在同一段母线上的设备就更少,母线保护切除的设备也就更少,受影响的运行设备也就少了。所以这几年很多500千伏站的220千伏母线都在进行双母双分段的改造,就是将原来双母线带母联开关的双母线接线方式改为双母线带两个分段断路器的接线方式,从原来的两段母线该为四段母线,虽然成本增加了,但是可靠性安全性大大增加。这种做法在GIS设备上尤其重要,近年来,由于GIS设备的制造质量问题及安装质量问题,GIS设备故障率大大增加,发生了不少运行中的GIS设备突然炸裂的事故,一旦此类事故发生,几乎都会导致母线保护的动作,这时小段的母线就可以大大减少事故的影响范围。 二、母线保护动作的原因 母线一旦发生故障,常见的表现形式主要有单相接地故障、两相短路故障、三相短路故障等,造成母线保护动作的原因是多种多样的,具体如下。 (1)设备自身问题。比如当母线本身有质量问题,或者当连接母线的设备本身有质量问题,容易造成母线、断路器、电压互感器、电流互感器、避雷器等长期运行后,由于材料老化导致爆炸事故,造成母线保护动作[2]。比如所选的设备不匹配时,例如所选的电流互感器磁滞饱和曲线不合格,当短路电流很大时,二次电流不合格,容易使母差保护误动。对于GIS母线,比如当导体部分接触不良、母线表面有毛刺和突出的尖角、绝缘子表面有气泡或裂纹、筒内有导电微粒等,很容易造成电场强度不均匀,导致在过电压冲击下造成击穿故障,进而引发母线保护动作。 (2)自然环境因素。恶劣自然天气容易造成母线保护动作,比如大风容易引起母线设备变形,造成母线短路;也容易把漂浮物刮到母线上,造成母线短路。比如连续阴雨天气容易造成雨水进入电流互感器,造成电流互感器内部故障,也容易引起户外端子箱、机构箱受潮和凝露,造成二次回路故障,引起母差动作。比如雷电容易造成电流互感器端子箱电缆绝缘击穿,引起母差保护电流回路两点接地,使电流产生分流,造成母线保护动作。比如工业污染和雾霭,容易造成母线的支撑绝缘子和断路器套管发生闪络,造成母线保护动作。 (3)日常运维不到位。由于运维人员技术不熟练,再加上安全意识也比较淡薄,在日常运维工作中,容易造成不能及时发现设备缺陷,给母线保护动作埋下隐患。除此之外,就算运维人员发现缺陷后,也容易因为粗心大意造成消缺工作不彻底,还容易将工具误落在母差保护回路上,导致母线检修后送电时再次跳闸。

110kV变电站的运行与维护

110kV变电站的运行与维护 【摘要】在变电站的日常工作中,确保变电站设备的运行安全是一项十分重要的内容,设备的安全运行是保证电网合格的前提条件。在使用变电站设备的过程中,工作人员要注意规范操作,这样有利于提升变电站的供电安全的能力,延长变电站设备的使用寿命,促进人们生活水平的提高。因此,对110kV 变电站的运行情况进行了分析,并探讨了110kV 变电站的维护措施,对110kV 变电站的运行与维护进行了研究。 【关键词】110kV 变电站;设备安全;运行与维护 引言 近年来,我国的国民经济得到了快速的发展,这对我国电网规模的扩大具有一定的促进作用。变电站设备的更新换代,使电力系统的稳定性和安全性受到了人们的广泛关注。变电站是电力系统中必不可少的重要组成部分,是电力设备中控制电流、分配电能和变换电压的的电力设备,它能通过变压器对各级电压的电网进行连接。因此,变电设备的使用技术和设计方法等对变电站的发展具有直接的影响,变电设备的损坏带来的损失是巨大的,如:造成人员伤亡、经济损失和扰乱社会秩序等。所以,在日常的生活中,做好变电站

设备的运行和维护工作对110kV 变电站的正常使用和生产具有重要的意义,它同时还对电力系统的安全性能具有保障作用。 1 110kV 变电站的运行 1.1 操作方法程序化 变电站的程序化操作是指工作人员在变电站外部通过遥控操作对变电站内的设备实现控制,它能对电气设备的整个运行过程进行控制,这种操作在变电站内无人的状态下可以实现。程序化操作可以通过可控制的程序对操作步骤中比较复杂的部分进行测控和监控工作,让设备按照设定好的程序运行,达到无误操作。这种将操作方法程序化的方式,能提高工作的效率和确保任务完成的准确性[1]。 1.2 装置自动化 在目前我国电力系统中,电力装置所使用的基本都是自动化的装置。我国的电力系统已经实现了装置的自动化,微机保护的监控装置被广泛应用于电力系统的各个方面,这对确保电力系统的安全运行发挥着巨大的作用。在110kV 变电站中,自动化装置的应用对变电站的安全运行具有重要意义,自动化的微机保护装置能对设备中的故障做到及时发现和处理,同时还能对设备的运行状态进行检测,一旦出现问题就立即发出报警。110kV 变电站装置的自动化提高了设备运行的安全性和稳定性。不断对变电站内部的自动化装置的

220kV短路电流计算书

XX220kV 变电站短路电流计算书 一、系统专业提供2020年系统阻抗值(Sj =1000MV A ) 220kV 侧:Z1=0.070,Z0=0.129。 220kV 侧按不小于50kA 选设备。 110kV 侧:Z1=无穷,Z0=0.60。 主变选择:220±8×1.25%/121/38.5kV ;主变容量:120/120/60MV A ; 变压器短路电压:U k(1-2)%=14,U k(1-3)%=24,U k(2-3)%=8。 二、短路电流计算 1、则由公式得各绕组短路电压: %)%%()()()(32-k 3-1k 2-1k 1U U U 2 1-+=k U =15 %)%%()()()(3-1k 32-k 2-1k 2U U U 2 1-+=k U =-1 %)%%()()()(2-1k 32-k 3-1k 3U U U 2 1-+=k U =9 2、变压器电抗标么值由e j S S X ?=100U d d *%(S e 指系统最大绕组的容量)得: X *1=1.25;X *2=-0.083;X *3=0.75。 3、限流电抗器电抗标么值:2k k *3100U j j e e U S I U X ??= %=()21005.11000431010012????=1.57。 三、三相短路电流的计算(对称) 1、当220kV 母线发生短路时(d 1) 220kV 系统提供的短路电流标么值为:I *=1/0.07=14.29; 短路电流周期分量有效值为:=??=?=2303100029.143*)3(j j per U S I I 35.86kA ; 由于110kV 侧不提供电源,所以==)3()3(1per d I I 35.86kA ; 短路冲击电流峰值=?="= 86.3555.22I K i ch ch 91.45kA 。(注:K ch 为冲击系数,远离发电厂选2.55); 容量:==d dj S S )3(14290MV A 2、当110kV 母线短路时(d 2)

低电压保护配置资料

低电压保护分析 一.低电压保护的用途 1.保护重要电动机的自启动 当电压消失或降低时,电动机的转速下降,当电压恢复时,在电动机绕组内开始流过比额定电流大好几倍的自启动电流,这样大的自启动电流将使电网的电压降加大,使电压恢复的过程延长,增加了电动机达到正常转速的困难,严重时甚至不能自启动,必须切除一部分不重要的电动机,使电网的电压降减少。因此,在不重要的和次要的电动机上可装设低电压保护,当电压消失或降低时动作,将电动机从电网上断开。 发电厂中重要的电动机,是指那些短时将它们断开也不会引起发电厂出力降低甚至停电的厂用机械的电动机,如给水泵、凝结水泵、送风机、吸风机、排粉机等的电动机。 当电动机断开时,并不影响发电厂出力的,为不重要电动机,如具有中间煤仓的磨煤机及灰渣浆等的电机。 2.保证技术安全及工艺过程的特点 在某些情况下,当电压长期消失时(如10S左右)根据技术安全的条件及生产工艺过程的特点,需将某些电动机切除。因为在这段时间内锅炉已熄灭,自启动已经没有必要了。为了保证工艺联锁动作,应装设低电压保护动作于跳闸。另外,还有一些带恒定阻力矩机械的电动机,如磨煤机等,在电压降低时不可能自启动,这些电动机也应在电压降低时切除。 二.低电压保护的装设原则 见厂用电动机低电压保护装设原则表。

注:1.当吸风机与送风机不接在同一电压母线时,吸风机所接母线上的低电压保护装置以9~10S时限动作于送风机断路器跳闸。此外,尚应装设防止送风机继续运转造成炉膛正压的保护装置。 2.当排粉机与送风机不接在同一电压母线时,排粉机应装设低电压保护装置,以9~10S时限动作于跳闸。 三.低电压保护装置的接线要求 无论是在电压完全消失时,或处于电网内的短路故障引起电动机制动时,低电压保护的接线方式,应当能够保证将电动机断开。为此,低电压保护的接线应满足以下几点要求: 1.能反映对称的和不对称的电压下降。因为在不对称短路时的电动机也可能被制动,因而当电压恢复时也会出现自启动问题。 2.电压互感器一次侧一相或两相断线,二次侧各相断线时(例如熔断时),保护装置不应误动作,并且发出信号。但在二次回路断线故障期间,如果这时厂用母线真正失去电压(或电压降到规定值时),低电压保护仍应正确动作。 3.电压互感器一次侧的隔离开关或隔离触头因误操作而被断开时,保护装置不应该误动作,并应发出信号。 4.0.5与9s的低电压保护的动作电压应分别整定。在电压消失时,用接在线电压上的一只电压继电器构成的保护就能达到目的,并能可靠的反应三相短路。但当两相短路时,用一只电压继电器构成的保护,只有在接继电器的两相间发生短路时才能起作用,因而不能完全反应不对称的电压下降。为了保证在所有两相短路的情况下保护都能动作,可采用三相继电器接线方式。 在同一段厂用母线供电的若干台电动机,通常共同装一套低电压保护装置。电压继电器接在厂用母线的互感器上。

100.4kV变电所的运行维护管理

100.4kV变电所的运行维护管理 李海峰 辽阳石化炼油厂电气车间111003 摘要:10/0.4kv变电所是电力输送系统中的一个重要的组成环节,它能够将电网输送来的10kv的高压电能,降低为普通机器设备以及照明灯泡等能够使用的380kv/220kv电压,并将其分配到所需要的地方,所以做好变电所的运行维护管理对于确保电能的正常供应具有十分重要的作用。因此笔者就10/0.4kV变电所的运行维护管理进行相关略述,以供同行进行参考。 关键词:10/0.4kV变电所;运行维护;管理 一直以来,运行维护管理就是变电所工作的重中之重,是保证其顺利实现安全高效供电目标的重要举措和必然要求。加强变电所运行维护管理一方面可以有效地完善其管理功能,另一方面还可以在一定程度上降低运行成本,有利于变电所的持续、稳定、健康发展,符合其现阶段的发展要求。 一、10/0.4kV变电所概况 某变电所主要以办公用电为主,根据负荷分级,只能算作三级负荷。但是也有些供电要求相对较高的负荷,如工厂、加工车间以及生活中网络机房、监控消防、电梯、电脑等。例如,变电所装设干式变压器2台,每台315kVA,分别由A 线和B线两路10kV电源供电。这类小型变电所一般不设高压配电,不配置微机综合继电保护。每路进线分别有3台10kV负荷开关柜(进线柜、计量柜、出线柜)作为高压侧的控制、测量和保护。高压侧采用负荷开关——限流熔断器组合电器对变压器进行保护。低压侧采用母线分段加母联,正常供电由两路电源通过2台变压器分别向两段低压母线供电,任一电源失电,通过闭合母联开关向失电段母线供电。双电源互为备用,两进线一母联3台开关通过机械和电气联锁任何时候三合二,确保不同的两路电源不会并列。备用电源的投入和恢复均由值班人员手动控制。

110KV变电站设计负荷及短路电流计算部分

第二章 负荷及短路电流计算 一、负荷计算 同时系数,出线回路较少的时候,可取0.9-0.95,出线回路数较多时,取 0.85-0.9 ;针对课题实际情况可知同时系数取0.9。 在不计同时系数时计算得 : 1、主变负荷计算 由所给原始资料可知: 110KV 侧负荷量为: KW P 356400.9240002000300026300270000=??+++?+?=∑ )(var 162560.924749.040004358.020004358.0300024749.0630024358.07000(0K Q =???+?+?+??+??=∑ )KVA Q P S 391722 200=∑+∑=∑ 35KV 侧负荷量为: KW P 263610.9200709900920050280001=??+++?+?=∑ )(var 117000.923584.00074358.09907494.000924559.0050024358.08000(1K Q =???+?+?+??+??=∑ )KVA Q P S 2884021211 =∑ +∑=∑ 变电站站用负荷量: KVA S S S 06.340)2884039172(%5.0)(%5.01 2 =+?=∑+∑?=∑ ar 159.8282Kv 0.4706.340in w 2528.29988.006.340os 2222=?=∑ =∑=?=∑ =∑??S S Q K C S P 因为变电站站用负荷是从35KV 侧通过站用降压变压器得到,35KV 出线考虑5%的损耗;考虑站用电的损耗和站用变压器的效率,取损耗为5%;因为选用一台220KV 到35KV 的三绕组主变,故主变35KV 侧的容量为: 在计及同时系数0.9时: KVA S S S 272759.005.1)2 1 35kv =??∑+∑≥(三绕主 如果再考虑该变电站5~10年的10%发展,则: KVA S S S 303321.19.005.1)2 1 35kv =???∑+∑≥(三绕主

电弧光保护在中低压开关柜和母线保护中的应用

电弧光保护在中低压开关柜和母线保护中的应用近几年来, 随着乌海电力工业的快速发展, 35kV 中低压开关柜的应用数量越来越多, 由于开关柜弧光短路故障引发的中低压母线故障时有发生, 并且也发生过主变压器由于遭受外部短路电流冲击损坏的事故, 经济损失严重; 另一方面, 用户对供电的可靠性要求也越来越高: 因此, 乌海电业局在35 kV开关柜装设了专用快速母线保护———电弧光保护。 1 装设电弧光保护的必要性 1.1 开关柜内部燃弧耐受时间 当开关柜内部弧光短路故障时, IEC298 标准附录AA 中规定的内部燃弧时间是100 ms, 也就是说,开关柜可以承受的电弧燃烧时间, 即保护动作和断路器切除故障的时间之和应小于100 ms 才能达到保护该开关柜的目的。目前市场上销售的开关柜基本上是按照IEC298 标准生产的, 也就是说, 开关柜可以承受的电弧燃烧时间为100 ms。表1 为国外对各种燃弧持续时间下进行试验得出的对设备造成的损害程度。 1.2 变压器动稳定时间及中低压母线保护动作时间的要求 国标规定的110 kV 及以上电压等级的变压器的热稳定允许时间为2 s, 动稳定时间为0.25 s。但实际上, 在低压侧出口短路故障时过流后备保护切除动作时间往往在2 s 以上, 距变压器的动稳定时间要求0.25 s 相差甚远, 这也是造成变压器损坏的重要原因。 1.3 现有的中低压母线保护方式及存在的问题 1.3.1 变压器后备过流保护 这是目前国内应用最广泛的中低压母线保护方式( 乌海电业局也是应用的这种保护方式) 。由于考虑到与馈线和母线分段开关的配合, 保护跳闸时间一般整定为 1.0~1.4 s, 有的甚至更长, 达2.0 s 以上。这一动作时间远远不能满足快速切除中低压母线故障的要求。

110kV母线保护通用技术规范

110kV母线保护通用技术规范

110kV备用电源自动投入装置专用技术规范本规范对应的专用技术规范目录

110kV母线保护采购标准技术规范使用说明 1. 本物资采购标准技术规范分为标准技术规范通用部分和标准技术规范专用部分。 2. 项目单位根据需求选择所需设备的技术规范。技术规范通用部分条款、专用部分标准技术参数表和使用条件表固化的参数原则上不能更改。 3. 项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“项目单位技术差异表”,并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计划一起提交至招标文件审查会: 1)改动通用部分条款及专用部分固化的参数; 2)项目单位要求值超出标准技术参数值范围; 3)根据实际使用条件,需要变更环境温度、湿度、海拔高度和耐受地震能力等要求。 经招标文件审查会同意后,对专用部分的修改形成“项目单位技术差异表”,放入专用部分表格中,随招标文件同时发出并视为有效,否则将视为无差异。 4. 投标人逐项响应技术规范专用部分中“1标准技术参数表”、“2项目需求部分”和“3投标人响应部分”三部分相应内容。填写投标人响应部分,应严格按招标文件技术规范专用部分的“招标人要求值”一栏填写相应的投标人响应部分的表格。投标人还应对项目需求部分的“项目单位技术差异表”中给出的参数进行响应。“项目单位技术差异表”与“标准技术参数表”和“使用条件表”中参数不同时,以差异表给出的参数为准。投标人填写技术参数和性能要求响应表时,如有偏差除填写“投标人技术偏差表”外,必要时应提供证明参数优于招标人要求的相关试验报告。 5. 对扩建工程,如有需要,项目单位应在专用部分提出与原工程相适应的一次、二次及土建的接口要求。 6. 技术规范范本的页面、标题等均为统一格式,不得随意更改。 7. 一次设备的型式、电气主接线和一次系统情况对二次设备的配置和功能要求影响较大,应在专用部分中详细说明。

最新变电站工作总结及计划精选

变电站工作总结及计 划精选

变电站工作总结及计划 时光飞逝,转眼间20××年已为历史的366天,回顾过去的一年,变电站在公司的正确引导及相关部门的大力支持和配合下,始终坚定不移地贯彻执行“安全第一、预防为主”的方针,把安全生产“保人身、保设备、保供电”摆在各项工作的首位;严格地从制度上、管理上、人员素质上进一步加强变电安全运行管理及公司电气管理工作,顺利完成了公司下达的各项目标、任务,确保了供电和设备的运行安全。现将变电站20××年各项工作总结如下: 一、日常管理方面 落实公司管理体制;员工遵守厂规厂纪;人员基本稳定;无误操作或工伤事故发生。 二、各项生产指标完成情况 20××年1#、2#110kV变电站全年运行良好、设备运行正常、维护良好。除了受雷击影响外,公司电网运行正常,为公司的正常生产提供了有力的保障;公司范围内的施工电源及时配套提供;协助司属各分厂的高压及低压的电气设计与维护;公共部分维护良好。 1、安全记录及电量情况 截至20××年12月31日,110kV总降未中断安全记录,1#110kV站安全运行达天,2#110kV站安全运行达天。从20××年1月1日起,到20

××年12月31日,变电站送出总用电量为壁 kW·h,功率因数达0.95以上,受供电局奖励(即力率电费)金额为元。 2、继电保护及自动装置运行情况 截至20××年12月31日,变电站继电保护及安全自动装置动作18台次,其中保护动作跳闸13台次,接地选线装置动作5台次,均正常动作。 3、设备的消缺情况 本站全年共发现设备缺陷30项,已处理29项(余下一项是1#站2#主变本体与散热器联接阀渗油现象),设备消缺率达96.6%。 三、变电站主要工作情况 1、结合公司实际生产情况配合生产部对用电负荷进行调整分配; 2、变电站的日常生产运行及维护检修; 3、各类用电报表制作、审核; 4、5月份对总降10kV馈线保护定值进行重新核算; 5、220kV变电站新建工程设计配合、交流; 6、220kV输变电工程设备技术协议编写、签定; 7、220kV变电站工程主变及GIS设备监造;

110KV变电站负荷及短路电流计算及电气设备的选择及校验

第一章短路电流计算 1、短路计算的目的、规定与步骤 1.1短路电流计算的目的 在发电厂和变电站的电气设计中,短路电流计算是其中的一个重要环节。其计算的目的主要有以下几方面: 在选择电气主接线时,为了比较各种接线方案,或确定某一接线是否需要采取限制短路电流的措施等,均需进行必要的短路电流计算。 在选择电气设备时,为了保证设备在正常运行和故障情况下都能安全、可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算。例如:计算某一时刻的短路电流有效值,用以校验开关设备的开断能力和确定电抗器的电抗值;计算短路后较长时间短路电流有效值,用以校验设备的热稳定;计算短路电流冲击值,用以校验设备动稳定。 在设计屋外高压配电装置时,需按短路条件校验软导线的相间和相相对地的安全距离。 1.2短路计算的一般规定 (1)计算的基本情况 1)电力系统中所有电源均在额定负载下运行。 2)所有同步电机都具有自动调整励磁装置(包括强行励磁)。 3)短路发生在短路电流为最大值时的瞬间。 4)所有电源的电动势相位角相等。 5)应考虑对短路电流值有影响的所有元件,但不考虑短路点的电弧电阻。对异步电动机的作用,仅在确定短路电流冲击值和最大全电流有效值时才予以考虑。 (2)接线方式 计算短路电流时所用的接线方式,应是可能发生最大短路电流的正常接线方式(即最大运行方式),不能用仅在切换过程中可能并列运行的接线方式。 1.3 计算步骤 (1)画等值网络图。 1)首先去掉系统中的所有分支、线路电容、各元件的电阻。

2)选取基准容量d S 和基准电压c U (一般取各级电压的1.05倍)。 3)将各元件的电抗换算为同一基准值的标幺值的标幺电抗。 4)绘制等值网络图,并将各元件电抗统一编号。 (2)选择计算短路点。 (3)化简等值网络:为计算不同短路点的短路值,需将等值网络分别化简为以短路点为中心的辐射形等值网络,并求出各电源与短路点之间的总电抗的标幺值* X ∑。 (4)求计算无限大容量系统三相短路电流周期分量有效值的标幺值(3)* k I 。 (5)计算三相短路电流周期分量有效值(3) k I 和三相短路容量(3) k S 。 2、参数计算及短路点的确定 基准值的选取:100d S MVA = 2.1变压器参数的计算 (1)主变压器参数计算 由表查明可知:12%U =10.513%U =1823%U =6.5 MVA S N 75= 1121323%0.5(%%%)U U U U =+-=0.5*(18+10.5-6.5)=11 2122313%0.5(%%%)U U U U =+-=0.5*(10.5+6.5-18)=-0.5 3132312%0.5(%%%)U U U U =+-=0.5*(18+6.5-10.5)=7 电抗标幺值为: 1467.075 100 10011100%1*1=?=?= N D S S U X -0.006775100 1000.5-100%2*2=?=?= N D S S U X 0.093375 100 1007100%3*3=?=?= N D S S U X (2)站用变压器参数计算 由表查明:%4k U =5000.5N S KVA MVA ==

低电压保护配置

6kv电机低电压保护分析 一.低电压保护的用途 1.保护重要电动机的自启动 当电压消失或降低时,电动机的转速下降,当电压恢复时,在电动机绕组内开始流过比额定电流大好几倍的自启动电流,这样大的自启动电流将使电网的电压降加大,使电压恢复的过程延长,增加了电动机达到正常转速的困难,严重时甚至不能自启动,必须切除一部分不重要的电动机,使电网的电压降减少。因此,在不重要的和次要的电动机上可装设低电压保护,当电压消失或降低时动作,将电动机从电网上断开。 发电厂中重要的电动机,是指那些短时将它们断开也不会引起发电厂出力降低甚至停电的厂用机械的电动机,如给水泵、凝结水泵、送风机、吸风机、排粉机等的电动机。 当电动机断开时,并不影响发电厂出力的,为不重要电动机,如具有中间煤仓的磨煤机及灰渣浆等的电机。 2.保证技术安全及工艺过程的特点 在某些情况下,当电压长期消失时(如10S左右)根据技术安全的条件及生产工艺过程的特点,需将某些电动机切除。因为在这段时间内锅炉已熄灭,自启动已经没有必要了。为了保证工艺联锁动作,应装设低电压保护动作于跳闸。另外,还有一些带恒定阻力矩机械的电动机,如磨煤机等,在电压降低时不可能自启动,这些电动机也应在电压降低时切除。 二.低电压保护的装设原则 见厂用电动机低电压保护装设原则表。

注:1.当吸风机与送风机不接在同一电压母线时,吸风机所接母线上的低电压保护装置以9~10S时限动作于送风机断路器跳闸。此外,尚应装设防止送风机继续运转造成炉膛正压的保护装置。 2.当排粉机与送风机不接在同一电压母线时,排粉机应装设低电压保护装置,以9~10S时限动作于跳闸。 三.低电压保护装置的接线要求 无论是在电压完全消失时,或处于电网内的短路故障引起电动机制动时,低电压保护的接线方式,应当能够保证将电动机断开。为此,低电压保护的接线应满足以下几点要求: 1.能反映对称的和不对称的电压下降。因为在不对称短路时的电动机也可能被制动,因而当电压恢复时也会出现自启动问题。 2.电压互感器一次侧一相或两相断线,二次侧各相断线时(例如熔断时),保护装置不应误动作,并且发出信号。但在二次回路断线故障期间,如果这时厂用母线真正失去电压(或电压降到规定值时),低电压保护仍应正确动作。 3.电压互感器一次侧的隔离开关或隔离触头因误操作而被断开时,保护装置不应该误动作,并应发出信号。 4.0.5与9s的低电压保护的动作电压应分别整定。在电压消失时,用接在线电压上的一只电压继电器构成的保护就能达到目的,并能可靠的反应三相短路。但当两相短路时,用一只电压继电器构成的保护,只有在接继电器的两相间发生短路时才能起作用,因而不能完全反应不对称的电压下降。为了保证在所有两相短路的情况下保护都能动作,可采用三相继电器接线方式。 在同一段厂用母线供电的若干台电动机,通常共同装一套低电压保护装置。电压继电器接在厂用母线的互感器上。

110kV母线保护作业指导书

编号:Q/××××××变电站110kV××母线保护全部检验作业指导书 (范本) 编写:年月日 审核:年月日 批准:年月日 作业负责人: 作业日期年月日时至年月日时 重庆市电力公司×××

1.范围 1.1 本规范适用于重庆电网×××变电站110kV××母线保护的检验。 1.2 作业目的是对重庆电网×××变电站110kV××母线保护运行过程中的周期性全部校验。 2.引用文件 下列标准及技术资料所包含的条文,通过在本作业指导书中的引用,而构成为本作业指导书的条文。本作业指导书出版时,所有版本均为有效。所有标准及技术资料都会被修订,使用本作业指导书的各方应探讨使用下列标准及技术资料最新版本的可能性。 2.1 DL 408-91《电业安全工作规程》 2.2 GB 7261-2001《继电器及继电保护装置基本试验方法》 2.3 GB 14285-93《继电保护和安全自动装置技术规程》 2.4 GB/T 15145-2001《微机线路保护装置通用技术条件》 2.5 DL 478-2001《静态继电保护及安全自动装置通用技术条件》 2.6 DL/T 559-94《220--500kV电网继电保护装置运行整定规程》 2.7 DL/T 624-1997《继电保护微机型试验装置技术条件》 3.修前准备 3.1准备工作安排

3.3备品备件 3.4工器具 3.5材料

3.6危险点分析 3.7安全措施 3.8人员分工

4.母线保护全部校验流程图 工作负责人:

5.作业程序和作业标准(试验记录见附录A) 5.1开工 5.2检修电源的使用 5.3检修内容及结果

220千伏变电站220、110母线保护技术规范

220kV变电工程 220、110千伏母线保护专用技术规范 工程名称: 建设单位: 设计单位: 设计联系人: 联系电话: 2 供货范围 2.1供货范围如表1所示。 表1 供货范围 2)厂家应分项报价。如工程需两块220kV母线保护柜,也只能中1块。 2.2组屏要求 2.2.1各母线保护柜中应包括微机母线保护装置一套(含断路器失灵保护)与打印机一台。 2.2.2屏柜尺寸和颜色在签订技术合同时再定。 2.2.3母线保护柜布置主控楼继电器室内。 2.3工程条件如表2所示 表2 工程条件

3 其他技术条款 4 使用说明 本专用技术规范与湖南省电力公司220kV微机母线保护(含断路器失灵保护)、110kV微机母线保护通用技术规范(2007版)构成完整的技术规范书。

湖南省电力公司 220kV、110kV微机母线保护通用技术规范书(2007版)

目录 1总则 (1) 2供货范围(详见专用条款) (1) 3技术要求 (1) 4技术服务 (11) 5买方工作 (13) 6工作安排 (13) 7备品备件及专用工具 (13) 8质量保证和试验 (13) 9包装、运输和储存 (15) 附表A:投标厂商资质应答表 附表B:投标装置主要技术性能应答表 附表C:技术性能差异表 附表D:按常规配备的备品备件清单 附表E:按常规配备的专用工具及仪器

1总则 1.1本设备技术规范书适用于湖南省电力公司220kV、110kV母线保护和220kV失灵保护的招标订货,它提出了功能设计、结构、性能、安装和试验等方面的技术要求。 1.2本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,卖方应提供符合本规范书和工业标准的优质产品。 1.3如果卖方没有以书面形式对本规范书的条文提出异议,则意味着卖方提供的设备(或系统)完全符合本规范书的要求。如有异议,不管是多么微小,都应在报价书中以“对规范书的意见和同规范书的差异”为标题的专门章节中加以详细描述。 1.4本设备技术规范书所使用的标准如遇与卖方所执行的标准不一致时,按较高标准执行。 1.5本设备技术规范书经买、卖双方确认后作为订合同的技术附件,与合同正文具有同等的法律效力。 1.6本设备技术规范书未尽事宜,由买卖双方协商确定。 1.7投标商资格 1.7.1投标商应至少设计、制造、集成、调试20套及以上类似本标书提出的220kV 及以上电压等级连续成功的商业运行业绩(投标商应提供近期工程业绩表)。 1.7.2投标商提供的产品应具有在国内外220kV及以上电压等级成功投运一年以 上的经验。 1.7.3投标商提供的产品应通过省(部)级以上主管部门组织的技术鉴定,并随 投标书提供电力部门运行情况报告。 1.7.4投标商提供的产品应通过部级以上检测中心(许继、南瑞、电科院)的型 式试验并有报告、动模试验并有报告。 1.7.5投标商提供ISO9000资格认证书。 1.7.6投标时,以上资料和报告必须在技术文件中提供。 2供货范围(详见专用条款) 3技术要求 3.1 应遵循的主要现行标准、规定和反事故技术措施有

变电站维修合同

编 号:_______________ 本资料为word版 本,可以直接编辑和打印,感谢您的下 载 变电站维修合同 甲方:___________________ 乙方:___________________ 日期:___________________

(合同编号:)施工合同

发包人: 承包人: 年月

变电站维修合同 甲方: 乙方: 依照〈〈中华人民共和国合同法》、〈〈中华人民共和国建筑法》及其他有关法律、行政法规,遵循平等、自愿、公平和诚实信用的原则,双方就变电站土建施工事项协商一致,订立本合同。 1. 工程概况 最终规模:主变容量:终期2 X63MVA,本期2 >63MVA。各电压等级出线规模:220kV出线终期出线2回,本期2回;110kV出线终期出线2回,本期2回;10kV出线终期出线24回,本期12回。无功补偿:装设并联补偿电容器组,终期容量按2 x( 2 X5+7 ) Mvar考虑,本期装设2 x( 2X5+7) Mvar。土建:户内GIS站,综合楼建筑面积1962.6 m2,体积16228.8m3。 2. 承包范围 2.1甲方提供的施工设计图中全部土建项目:综合楼、屋外配电装置建筑(主变压器系统、220kV 构架及基础、110kV构架及基础、站用变压器系统)、供水系统、站区给排水系统、消防、场平、站区道路及广场、污水处理池、水井(如有)、管道、排水沟、地基处理、站外道路、挡土墙及护 坡、锚杆、各类主被动防护网、围墙及大门、站外通信线改迁。 2.2乙方负责完成上述工程任务所需的水电接入、临时设施搭设(含材料及场地)、各类安全防 护设施的修建、作业面各施工单位的配合等相关工作及产生的对应费用。

某110kv变电站短路电流计算书

某110kv变电站短路电流计算书

一、短路电流计算 取基准容量S j=100MV A,略去“*”, U j=115KV,I j=0.502A 富兴变:地区电网电抗X 1=S j/S dx=I j/I dx =0.502/15.94=0.031 5km线路电抗X2=X*L*(S j/Up2) =0.4*5*(100/1152)=0.015 发电机电抗X3=(Xd’’%/100)*(S j/Seb) =(24.6/100)*(100/48)=0.512 16km线路电抗X4=X*L*(S j/Up2) =0.4*16*(100/1152)=0.049 5.6km线路电抗X5=X*L*(S j/Up2) =0.4*5.6*(100/1152)=0.017 31.5MV A变压器电抗X6=X7= (Ud%/100)*(S j/Seb)=(10.5/100)*(100/31.5)=0.333 50MV A变压器电抗X=(Ud%/100)*(Sj/Seb)=0.272 X8=X3+X4+X5=0.578 X9=X1+X2=0.046 X10=(X8*X9)/(X8+X9) X11=X10+X6=0.046 地区电网支路的分布系数C1=X10/X9=0.935 发电机支路的分布系数C2=X10/X8=0.074 则X13=X11/C1=0.376/0.935=0.402 X14=X11/C2=0.376/0.074=5.08 1、求d1’点的短路电流 1.1求富兴变供给d1’点(即d1点)的短路电流 I x″=I j/(X1+X2)=0.502/(0.031+0.015)=10.913kA S x″=S j/(X1+X2)=100/(0.031+0.015) ≈2173.913MV A

电弧光保护在中低压开关柜和母线保护中的应用

电弧光保护在中低压开关柜和母线保护中 的应用 2008年第26卷第2期 内蒙古电力技术 INNERMONGOLIAELECTRICPOWER53 电弧光保护在中低压开关柜和母线保护中的应用ApplicationofElectricArcProtectioninIntermediateandLowV oltage SwitchCabinetandBusBarProtections 樊建军.张景玉,李硕 (1.乌海电业局,内蒙古乌海016000;2.海勃湾发电厂,内蒙古乌海016034) [摘要]分析了现有的中低压母线保护方案及存在的问题,介绍了一种新型中低压母线保 护装置电弧光保护的原理,特点及其在鸟海电网中的应用情况.该装置的应用,填补了鸟海电网中低压母线没有快速保护的空白,提高了系统安全运行水平. 『关键词1中低压母线保护;开关柜;电弧光保护;应用分析 f中图分类号】TM77[文献标识码】B 『文章编号11008—6218(20o8)02—0o53—03 近几年来,随着乌海电力工业的快速发展,35 kV中低压开关柜的应用数量越来越多,由于开关柜 弧光短路故障引发的中低压母线故障时有发生,并 且也发生过主变压器由于遭受外部短路电流冲击损 坏的事故,经济损失严重;另一方面,用户对供电的 可靠性要求也越来越高:因此,乌海电业局在35kV 开关柜装设了专用快速母线保护——电弧光保护. 1装设电弧光保护的必要性 1.1开关柜内部燃弧耐受时间 当开关柜内部弧光短路故障时,IEC298标准附 录AA中规定的内部燃弧时间是100ms,也就是说, 开关柜可以承受的电弧燃烧时间,即保护动作和断 路器切除故障的时间之和应小于100ms才能达到 保护该开关柜的目的.目前市场上销售的开关柜基 本上是按照IEC298标准生产的,也就是说,开关柜 可以承受的电弧燃烧时间为100ms.表1为国外对 各种燃弧持续时间下进行试验得出的对设备造成的 损害程度. 1.2变压器动稳定时间及中低压母线保护动作时 间的要求 国标规定的110kV及以上电压等级的变压器 的热稳定允许时间为2S,动稳定时间为0.25s.但

相关文档
相关文档 最新文档