文档库 最新最全的文档下载
当前位置:文档库 › 《传感器及检测技术》实验5 光纤传感器位移特性及测速实验

《传感器及检测技术》实验5 光纤传感器位移特性及测速实验

《传感器及检测技术》实验5 光纤传感器位移特性及测速实验
《传感器及检测技术》实验5 光纤传感器位移特性及测速实验

实验五光纤传感器位移特性及测速实验

一、实验目的

了解反射式光纤位移传感器的原理与应用。了解光纤位移传感器用于测转速的方法。二、实验仪器

Y 型光纤传感器、测微头、反射面、差动放大器、电压放大器、数显电压表、频率/转速表、转动源、示波器、直流稳压电源。

三、实验原理

反射式光纤位移传感器是一种传输型光纤传感器。其原理如图5-1 所示,光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

图5-1 反射式光纤位移传感器原理

图5-2 光纤位移传感器安装示意图

在测速时,需利用光纤位移传感器探头对旋转被测物反射光的明显变化产生电脉冲,经电路处理即可测量转速。

四、实验内容与步骤

(1)光纤传感器位移特性实验

1.光纤传感器的安装如图5-2 所示,将Y 型光纤结合处安装在传感器固定支架上,光纤分叉两端插入“光纤插座”中。探头对准镀铬反射板(铁质材料圆盘),固定在测微头上。按图5-3接线,电压放大器的输出接直流电压表。

2.将测微头起始位置调到10cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。3.将“差动变压器”与“电压放大器”的增益调节旋钮调到中间位置。打开直流电源开关。4.将“电压放大器”输出端接到直流电压表(20V档),仔细调节调零电位器使电压表显示

为零。

5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.2mm读出一次输出电压U值,

图5-3 光纤位移传感器接线图

(2)光纤传感器测速实验

1.将光纤传感器安装在传感器升降架上,使光纤探头对准转动盘边缘的反射点,探头距离反射点1mm左右(在光纤传感器的线性区域内)。接线如图5-3 所示。

2.用手拨动转盘,使探头避开反射面(对集合避免产生暗电流),“电压放大器”的输出端接到直流电压表输入。调节调零电位器使直流电压表显示为零。(调零电位器确定后不能改动)

3.将电压放大器输出端接到频率/转速表的输入“f /n”。

4.打开直流电源开关,将0~24V可调直流稳压电源分别接至“转动源输入”和“直流电压表”,改变电压,可以观察到转动源转速的变化,待转速稳定后记录相应的转速(稳定时间约1分钟)。也可用示波器观测电压放大器输出的波形。并将数据填入下表:

五、实验报告

1. 根据所得的实验数据,确定光纤位移传感器大致的线性范围,并给出其灵敏度和非线性误差。

2.分析光纤传感器测量转速原理。根据表13-1的驱动电压和转速,作V-n 曲线。

六、注意事项

光纤请勿成锐角曲折,以免造成内部断裂,端面尤其要注意保护,否则会光通量损耗加大造成灵敏度下降。

光纤传感器基础实验

光纤传感器基础实验 王帅 (哈尔滨工程大学13-3班75号,黑龙江省哈尔滨市 150001) 摘要:光纤传感实验仪开发研制的目的是将光纤传感这一现代技术进行广泛的普及和渗透。了解光纤传感仪试验仪的基本构造和原理,学习和掌握其正确使用方法;了解光纤端光场的径向分布和轴向分布的特点;定量了解一种光纤的纤端光场的径向分布和轴向分布;学习掌握最基本的光纤位移传感器的原理。通过对光纤接受端电压的测量,可以间接测量光纤端轴向和径向的光场强度的分布。 关键词:光纤传感器;轴向;径向;光强分布 Optical Fiber Sensor Based Experiment Wang shuai (Harbin Engineering University, Harbin,150001,Chnia) Abstract:The purpose of the development of fiber optic sensing experimental kits is to make this technology popularization. Understanding the basic structure and principle of fiber optic sensing experimental kits,learning and mastering the correct using method; Understand the radial and axial distribution characteristic of the fiber end; Learning to master the basic principle of optical fiber displacement sensor. By measuring the voltage of the optical fiber acceptting, optical fiber end light field intensity distribution of the axial and radial can be measured indirectly. Key words:fiber optic sensing experimental kits;axial; radial; light intensity distribution 0 引言 光纤传感实验仪是由多种形式的光纤传感器组成,是集教学和实验于一体的传感测量系统。它具有结构简单,灵敏度高,稳定性好,切换方便应用范围广等特点。在实验过程中,我们用光纤传感实验仪构成反射式光纤微位移传感器,可用于测量多种可转换成位移的物理量。 1 实验原理 1.1光在光纤中传输的原理 光在光纤中的传输依据是光学中的全反射定律。普通石英光纤的结构包括纤芯、包层和

光纤传感器最终版

课程设计 题目光纤传感器实验设计 二级学院光电信息学院 专业应用物理 班级110160101 学生姓名王洋学号11016010124 指导教师陶传义 考核项目设计50分平时成绩20分答辩30分得分 总分考核等级教师签名

光纤位移传感器设计实验 摘要:反射式光纤位移传感器是一种传输型光纤传感器。光纤采用Y型结构两束多模光纤,一端合并组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 关键词:光纤传感器

重庆理工大学课程论文作者:王洋 目录 摘要…………………………………………………………………………………I 前言 (1) 1.设计原理 (1) 1.1光导纤维与光纤传感器的一般原理 (1) 1.2反射式位移传感器的结构原理 (1) 2.实验内容 (3) 2.1实验仪器 (3) 2.2实验步骤 (3) 2.3实验结果 (5) 3.系统误差分析 (6) 3.1误差来源 (6) 3.2提高测量精度的措施 (6) 参考文献 (7)

前言 位移测量是多种物理量(如:振动、压力、应变、加速度、流量等)测量的基础。通常有机械式测量、电磁测量及激光测量等方法。机械式测量的精度低,速度慢,不适于在线测量;电磁式测量易受工厂电磁干扰;但是光学测量,不但速度快,而且精度高,且适用于微小的位移测量。 1设计原理 1.光导纤维与光纤传感器的一般原理 光导纤维主要是由二氧化硅构成,它利用光的完全内反射原理传输光波,是一种非常高效的传播介质。如图1所示,光纤是由折射率高的纤芯和包层组成。包层的折射率小于纤芯的折射率,光纤的直径为0.1mm~0.2mm。由于纤芯的折射率比包层高,当光线由光纤端面进入纤芯时,在到达纤芯与包层的交界面时,光线就会完全内反射回纤芯层。经过不断的完全反射,光线就能沿着纤芯向前传播。 许多外界因素(如压力、温度、电场、磁场、振动等)都可对光纤产生作用,从而引起光波特性参量(如相位、偏振态、振幅等)发生变化。因此我们只要测出这些参量随外界因素的变化关系,就可以通过光特性参量的变化来检测外界因素的变化,这就是光纤传感器的基本工作原理。 2.反射式位移传感器的结构原理

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据:

2、光纤传感器位移与输出电压特性曲线: 3、1mm时的灵敏度与非线性误差:

用最小二乘法拟合的直线为: 灵敏度为0.1458V/mm 在0.45mm处取最大相对误差为:0.07V 非线性误差为: 六、思考题 光纤位移传感器测位移时对被测体的表面有些什么要求? 答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

光纤传感器实验报告

实验题目:光纤传感器 实验目的: 掌握干涉原理,自行制作光线干涉仪,使用它对某些物理量进行测量, 加深对光纤传感理论的理解,以受到光纤技术基本操作技能的训练。实验仪器: 激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调 整架,显微镜,光纤传感实验仪,CCD及显示器,等等 实验原理:(见预习报告) 实验数据: 1.光纤传感实验(室温:24.1℃) (1)升温过程 (2)降温过程

2.测量光纤的耦合效率 在光波长为633nm条件下,测得光功率计最大读数为712.3nw。数据处理: 一.测量光纤的耦合效率 在λ=633nW,光的输出功率P1=2mW情况下。在调节过程中测得最大 输出功率P2=712.3nW 代入耦合效率η的计算公式: 3.56×10-4 二.光纤传感实验 1.升温时 利用Origin作出拟合图像如下: B 温度/℃由上图可看出k=5.49±0.06

根据光纤温度灵敏度的计算公式,由于每移动一个条纹相位改变 2π,则 Δφ=2π×m (m 为移动的条纹数) 故灵敏度即为 因l=29.0cm 故其灵敏度为±1.30)rad/℃ 2.降温时 利用Origin 作出拟合图像如下: -40 -20 A B 由上图可看出k=7.45±0.11 同上: 条纹数 温度/℃

灵敏度为 因l=29.0cm 故其灵敏度为±2.38)rad/℃ 由上述数据可看出,升温时与降温时灵敏度数据相差较大,这是因为在升温时温度变化较快,且仪表读数有滞后,所以测出数据较不准确,在降温时测出的数据是比较准确的。 思考题: 1.能否不用分束器做实验?替代方案是什么? 答:可以,只要用两个相同的相干波波源分别照射光纤即可,这样也可造成光的干涉。 2.温度改变1℃时,条纹的移动量与哪些因素有关? 答: (1)与光纤的温度灵敏度有关 (2)与光纤置于温度场的长度有关 3.实验中不可用ccd是否能有办法看到干涉条纹?替代方案是什么? 答:可以。可以用透镜将干涉条纹成像在光电探测器上进行测量。 实验小结: 1.光纤的功能层非常脆弱,光纤剥离过程中要使力均匀,不可用力过猛, 否则易造成光纤的断裂,必要时可分段进行剥离。 2.使用宝石刀进行切割时,要轻轻划一下,再将光纤弹断,直接切断会 造成光纤断面不平滑,导致测出的光纤耦合系数较低。 3.光纤传感实验时记录移动的条纹数时可自行在显示器上寻找参照点, 保证记录的准确即可。

光纤位移传感器静态动态实验

光纤位移传感器静态和动态实验 【教学目的】 1.了解光纤传输的基本原理。 2.了解反射式光纤传感器的原理、结构、性能。 3.学习用光纤传感器进行相关物理量的测量。 【教学重点】 1.反射式光纤位移传感器的结构与工作原理。 2.反射式光纤传感器的输出特性曲线。 【教学内容】 光纤传感器是以光学技术为基础,将被敏感的状态以光信号形式取出。光信号不仅人能直接感知,而且,利用半导体二极管诸如光电二极管、雪崩光电二极管、发光二极管之类的小型而简单的元件很容易进行光电、电光转换,所以易与高度发展的电子装置匹配,这是光纤传感器的突出优点。此外,由于光纤不仅是敏感元件而且也是一种优良的低损耗传输线,因此不必考虑测量仪器和被测物体的相对位置,从而特别适用于电子传感器等不太适用的地方。 与其它机械量相比,位移是既容易检测又容易获得高精度的检测量,所以测量中常采用将被测对象的机械量转换成位移来检测的方法。例如将压力转换成膜的位移,将加速度转换成重物位移等;而且这种方法结构简单,所以位移传感器是机械量传感器中的基本传感器。光纤位移传感器有强度型和干涉型两大类,本实验所用传感器为反射式强度型光纤传感器。反射式强度型光纤传感器具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量(如位移、压力、振动、表面粗糙度等)的测量中获得成功应用。这种位移传感器在小的测量范围内能进行高速位移测量,它具有非接触、探头小、频响高、线性度好等特点。 一、实验原理 1)光导纤维与光纤传感器的一般原理 图1光纤的基本结构

光导纤维是利用光的完全内反射原理传输光波的一种介质。如图1所示,它是由高折射率的纤芯和包层所组成。包层的折射率小于纤芯的折射率,直径大致为0.1mm~0.2mm。当光线通过端面透入纤芯,在到达与包层的交界面时,由于光线的完全内反射,光线反射回纤芯层。这样经过不断的反射,光线就能沿着纤芯向前传播。 由于外界因素(如温度、压力、电场、磁场、振动等)对光纤的作用,引起光波特性参量(如振幅、相位、偏振态等)发生变化。因此人们只要测出这些参量随外界因素的变化关系,就可以通过光特性参量的变化来检测外界因素的变化,这就是光纤传感器的基本工作原理。 2)反射式位移传感器的结构原理 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图2所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。图3所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图2反射式位移传感器原理 图3反射式光纤位移传感器的输出特性

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

光纤传感器的位移特性实验

实验二十五光纤传感器的位移特性实验 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、实验内容 用传光型光纤测位移。 三、实验仪器 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面(用电涡流传感器的铁测片做反射面)。 四、实验原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D 型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 五、实验注意事项 1、实验时注意光纤探头与反射面保持平行,调整光纤探头使其位于反射面的圆心上。 2、实验前应用纸巾擦拭反射面,以保证反射效果。 六、实验步骤 1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图9-1 光纤传感器安装示意图 2、将光纤实验模板输出端VO1与数显单元相连,见图9-2。

图9-2光纤传感器位移实验接线图 3、调节测微头,使探头与反射面圆平板接触。 4、实验模板接入±15V电源,合上主控台电源开关,调RW使数显表显示值最小,然后微调测微头使数显表显示为0.000(电压选择置2V档)。 5、旋转测微头,被测体离开探头,每隔0.05mm读出数显表值,将其填入下表:(实验结论:1、本实验每隔0.05mm是相对位置,起始值看做0.05mm即可,无需从测微头上读绝对位置值。每旋转0.05mm,输出的电压的增量应该大致相等。2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表。3、如果只看本实验的线性情况,可选取十组较好的数据填入下表,若要看到光纤传 感器的整个变化趋势,则至少应该记录25组数据,其V—X曲线见思考题答案) 6、根据上表数据,作光纤位移传感器的位移——输出曲线图。计算在量程1mm时灵敏度和非线性误差。 七、实验报告 在实验报告中填写《实验报告二十五》,详细记录实验过程中的原始记录(数据、图表、 波形等)并结合原始记录进一步理解实验原理。 八、实验思考题 根据实验步骤(6)中的光纤位移传感器的位移——输出曲线图,分析其原理。 答:由光源发出的光经发射光纤传输后入射到被测物表面,经反射体反射后再经接收光 纤接收并传输至光敏元件。由于光纤有一定的数值孔径,当光纤探头紧贴反射体时,发射光 纤中的光不能发射到接收光纤中,因此接收光纤中无光信号;当光纤探头逐渐远离被测体时, 接收光纤中的光强越来越大,当整个接收光纤被全部照亮时,接收光强达到峰值;当反射体 继续远离时,将有部分反射光没有反射进Y型光纤束,接收到的光强逐渐减小。位移特性 如下图所示。

速度测量实验

霍尔测速实验 一、实验目的:了解霍尔转速传感器的应用。 二、基本原理:利用霍尔效应表达式U H = K H IB ,当被测圆盘上装上N 只磁性 体时,圆盘每转一周,磁场就变化N 次,霍尔电势相应变化N 次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12) 三、需用器件与单元:霍尔转速传感器、转速调节2-24V 、转动源单元、数显单元的转速显示部分。 四、实验步骤: 1、根据图5-4,将霍尔转速传感器装于传感器支架上,探头对准反射面的磁 钢。 2、将直流源加于霍尔元件电源输入端。红(+)接+5V ,黑(┴)接地。 3、将霍尔转速传感器输出端(蓝)插入数显单元F in 端。 4、将转速调节中的2-24V 转速电源引到转动源的2-24V 插孔。 5、将数显单元上的转速/频率表波段开关拨到转速档,此时数显表指示转速。 6、调节电压使转动速度变化。观察数显表转速显示的变化。 五、思考题: 1、利用霍尔元件测转速,在测量上是否有限制? 2、本实验装置上用了十二只磁钢,能否用一只磁钢,二者有什么区别呢? 图1霍尔、光电、磁电转速传感器安装示意图

实验三十一光纤传感器测速实验 一、实验目的:了解光纤位移传感器用于测量转速的方法。 二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。 三、需用器件与单元:光纤传感器、光纤传感器实验模块、转速/频率数显表、直流源±15V、转速调节2~24V,转动源模块。 四、实验步骤: 1、光纤传感器按图1装于传感器支架上,使光纤探头与电机转盘平台中磁钢反射点对准。 2、按“光纤位移特性实验”的连线图,如图2所示,将光纤传感器实验模 块输出V o1与数显电压表V i 端相接,接上实验模块上±15V电源,数显表的切换 开关选择开关拨到20V档。①用手转动圆盘,使探头避开反射面(暗电流),合 上主控箱电源开关,调节Rw 2使数显表显示接近零(≥0),此时Rw 1 处于中间位 置。②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表 指示最大,重复①、②步骤,直至两者的电压差值最大,再将V o1 与转速/频率数显表fi输入端相接,数显表的波段开关拨到转速档。 图2光纤传感器位移实验模块 3、将转速调节2-24V,接入转动电源24V插孔上,使电机转动,逐渐加大转速源电压。使电机转速盘加快转动,固定某一转速,观察并记下数显表上的读 数n 1 。 4、固定转速电压不变,将选择开关拨到频率测量档,测量频率,记下频率 读数,根据转盘上的测速点数折算成转速值n 2 (转速和频率的折算关系为:转速=频率*60/12)。 5、将实验步骤4与实验步骤3比较,以转速n 1 作为真值计算两种方法的测

光纤传感器 实验数据范例

实验数据范例 一、光纤测量重力 表一 砝码(g) 5 10 15 20 25 30 35 40 45 显示值(mv) 77 134 180 226 280 346 397 454 500 砝码(g)50 55 显示值(mv) 552 594 表一中的数据曲线图 表二 砝码(g) 5 10 15 20 25 30 35 40 45 显示值(mv) 73 126 163 223 273 338 397 458 520 砝码(g)50 55 显示值(mv) 575 630 表二中的数据曲线图

表三 砝码(g) 5 10 15 20 25 30 35 40 45 显示值(mv) 76 129 173 230 280 342 396 460 520 砝码(g)50 显示值(mv) 560 表三中的数据曲线图 二、温度测量 表四(升温) 温度(℃)20 25 30 35.6 40 45.7 50 56 60 显示值(mv) 2290 2150 1970 1665 1520 1263 1190 1000 940 温度(℃)64.7 70 75 80 85 90 95 100 105 显示值(mv) 850 760 720 600 583 475 406 294 150 表四中的数据曲线图

表五(升温) 温度(℃)20.9 25 30 35 40 45 50 55 60 显示值(mv) 2220 2155 1954 1720 1490 1300 1190 1040 960 温度(℃)65 70.5 75 78 85 90 95 100.3 105 显示值(mv) 826 740 713 640 580 475 390 304 217 表五中的数据曲线图

光纤位移传感器测位移特性实验重点

实验二十六 光纤位移传感器测位移特性实验 一、实验目的:了解光纤位移传感器的工作原理和性能。 二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 光纤传感器主要分为两类:功能型光纤传感器及非功能型光纤传感器(也称为物性型和结构型)。功能型光纤传感器利用对外界信息具有敏感能力和检测功能的光纤,构成“传”和“感”合为一体的传感器。这里光纤不仅起传光的作用,而且还起敏感作用。工作时利用检测量去改变描述光束的一些基本参数,如光的强度、相位、偏振、频率等,它们的改变反映了被测量的变化。由于对光信号的检测通常使用光电二极管等光电元件,所以光的那些参数的变化,最终都要被光接收器接收并被转换成光强度及相位的变化。这些变化经信号处理后,就可得到被测的物理量。应用光纤传感器的这种特性可以实现力,压力、温度等物理参数的测量。非功能型光纤传感器主要是利用光纤对光的传输作用,由其他敏感元件与光纤信息传输回路组成测试系统,光纤在此仅起传输作用。 本实验采用的是传光型光纤位移传感器,它由两束光纤混合后,组成Y 形光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距d ,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,如图26—1所示。 发射光 接收光 (a)光纤测位移工作原理 (b)Y 形光纤 图26—1 Y 形光纤测位移工作原理图 传光型光纤传感器位移量测是根据传送光纤之光场与受讯光纤交叉地方视景做决定。当

自动检测课程——转速检测试验报告

实验一霍尔测速和光电测速实验 一、实验目的: 了解霍尔组件的应用——测量转速。 二、实验仪器: 光电传感器、霍尔传感器、+5V、+4、±6、±8、±10V直流电源、转动源、频率/转速表。 三、实验原理; 如图1,霍尔传感器和光电传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。光电传感器正对着测速圆盘的通孔。 a霍尔测速 b 光电测速 图1 霍尔测速原理:利用霍尔效应表达式:U H=K H IB,当被测圆盘上装上N只磁性体时,转盘每转一周磁场变化N次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。 光电测速原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型的,传感器端部有发光管和光电池,发光管发出的光源通过转盘上的孔透射到光电管上,并转换成电信号,由于转盘上有等间距的6个透射孔,转动时将获得与转速及透射孔数有关的脉冲,将电脉计数处理即可得到转速值。转盘每转一周输出N个脉冲信号,计数器可以测出脉冲信号的频率(Hz),可按n=f*60/N计算转速。 四、实验内容与步骤 霍尔测速步骤 1.将+5V电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到直流电压表。用手转动测速圆盘,观测输出电压与霍尔传感器相对测速圆盘位置的关系。 2.将“霍尔”输出接到频率/转速表(切换到测转速位置)。 3.打开实验台电源,选择不同电源+4V、+6V、+8V、+10V、12V(±6)、16V(±8)、20V(±10)、24V驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值和频率值 4用示波器观测霍尔元件输出的脉冲波形,记录其频率,根据测速圆盘的结构,换算转速;将示波器测得的转速作为实际转速与转速表测得的转速对比,计算误差。

实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验报告:实验07 (光纤传感器的位移测量及数值误差分析实验) 实验一:光纤传感器位移特性实验 一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。学会 对实验测量数据进行误差分析。 二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园 分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。 三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。 四、实验数据: 实验数据记录如下所示: 表1光纤位移传感器输出电压与位移数据 实验二:随机误差的概率分布与数据处理 1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式) clc; clear; l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据 v0=l-mean(l)%残差列 M1=mean(l)%算术平均值 M2=std(l)%标准差 计算结果

数据分布 2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性 系统误差 %残余误差校核法校核线性系统误差 N=length(l)%原数组长度 if(mod(N,2))%求数组半长 K=(N+1)/2 else K=(N)/2 end A1=0; delta=0;%delta=A1-A2 for i=1:K;%计算前半部分残差和 A1=A1+v0(i); end A2=0; for j=K+1:N;%计算后半部分残差和 A2=A2+v0(j); end A1; A2; fprintf('Delta校核结果\n'); delta=A1-A2%校核结果 %阿贝-赫梅特准则校核周期性系统误差 u=0 for i=1:N-1; u=u+v0(i)*v0(i+1); end u=abs(u) if((u-sqrt(N-1)*M30)>0)

多种传感器测速对比的实验报告

测速传感器实验报告 系别:电子通信工程系 班级:应电113班 组号:第三组 组员工作分配情况: 连接电路:苏芳(110415248) 记录数据:魏莹莹(110415216) 分析数据:康书娟(110415237) 拍照人员:刘素芳(110415238) 实习报告:李颂(110415218) 实习报告:李源(110415210) 检查电路:王德福(110415215) 2013年4月20日

磁电式传感器、光纤式传感器、光电传感器、霍尔传感器在测速方面的对比实验 一. 实验目的 1.了解磁电式传感器、光纤式传感器、光电传感器、霍尔传感器的结构及其特点; 2.掌握磁电式传感器、光纤式传感器、光电传感器、霍尔传感器测量转速的方法; 3.掌握磁电式传感器、光纤式传感器、光电传感器、霍尔传感器的实际应用. 二. 实验仪器设备 1.实训台、磁电式传感器、光纤式传感器、光电传感器、霍尔传感器、及其对应的测量模块、导线、万用表、电压表、示波器、电流表. 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分 三. 实验基本原理 利用不同的传感器的特性,把圆盘的转速转换成为电信号,通过对电信号的频率和电压的测量就能根据相应的公式计算出圆盘的转速.丛而达到测量转速的目的. 四. 实验内容及步骤 1.磁电式传感器测速电路基于电磁式感应原理,N匝线圈在磁场中的磁通变化时,线圈中感 应电势的变化,因此当转盘上嵌入N个磁铁时,每转一周线圈感应电势产生N次变化,通过放大,整形和计数等电路即可测量转速. 2.光纤式测速传感器测速时,光源发出的光由发射光纤传输并投射到反射镜片的表面,反射后由接收光纤接收至光敏元件,当反射片随转盘转动位置发生变化.其变化周期即为转动周期, 由此可测量转动速度. 3.光电传感器测速时,光源发出的光由发射光纤传输并投投射到反射镜片的表面,反射后由接收光纤接收至光敏元件,当反射片随转盘转动位置发生变化.其变化周期即为转动周期,由此 可测量转动速度. 4.霍尔式传感器测速电路实验利用霍尔效应的表达式,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次.每转一周霍尔电势就同频率相应变化,输出电势通过放大\整形和计数电路就可以测量被测旋转物的转速. 五.电路连接图如下图所示:

光纤传感器位移特性实验

0.4 0.50.60.70.80.911.1光纤传感器位移特性曲线 光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y 型光纤传感器、测微头、反射面、直流电源、数显电压表。 三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理 图36-2 光纤位移传感器安装示意图 四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y 型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm 处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V 电源,打开实验台电源。 4.将模块输出“Uo ”接到直流电压表(20V 档),仔细调节电位器Rw 使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X (mm ) Uo(V) 2、用matlab 绘制的X-Uo 曲线图

传感器测速性能比较实验

传感器技术 实验报告 实验序号: *********************** 系别: ************** 班级: ********** 组别: ****** 成员:********* ****** ******** 1******** ****** ******** ********* ****** ******** ********* **** ******** 20**年**月**日

各类传感器测速性能比较实验 一、实验目的 比较各类传感器对测速实验的性能差异。 二、实验要求 通过实验二十(霍尔测速实验)、实验二十一(磁电式传感器测速实验)、实验二十八(电涡流传感器测转速实验)、实验三十一(光纤传感器测速实验)以及实验三十二(光电转速传感器的转速测量实验),获得实验数据,进而对实验数据进行比较,获得各传感器测速的性能。 三、基本原理 (一)霍尔测速实验:利用霍尔效应表达式UH = KHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周,磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12)。 (二)磁电式传感器测速实验:基于电磁感应原理,N匝线圈所在磁场的磁 通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N个磁钢时,每转一周线圈感应电势产生N次变化,通过放大、整形和计数等电路即可测量转速。 (三)电涡流传感器测转速实验:利用电涡流的位移传感器及其位移特性,当被测转轴的端面或径向有明显的位移变化(齿轮、凸台)时,就可以得到相应的电压变化量,再配上相应电路测量转轴转速。本实验请实验人员自己利用电涡流传感器和转动源、数显单元组建。 (四)光纤传感器测速实验:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。 (五)光电转速传感器的转速测量实验:光电式转速传感器有反射型和直射型两种,本实验装置是反射型的,传感器端部有发光管和光电管,发光管发出的光源在转盘上反射后由光电管接收转换成电信号,由于转盘上有黑白相间的12个间隔,转动时将获得与转速及黑白间隔数有关的脉冲,将电脉冲计数处理即可得到转速值。 四、主要器件及单元 霍尔式传感器、磁电式传感器、电涡流传感器、光纤传感器、光电转速传感器、直流源±15V、转速调节2~24V,转动源模块、光纤传感器实验模块、+5V 直流电源、转动源单元及转速调节2-24V、数显转速/频率表。

光纤位移传感器性能测试目的1了解光纤位移传感器的原理

光纤位移传感器性能测试 一、实验目的: 1、了解光纤位移传感器的原理结构、性能。 2、了解光纤位移传感器的动态应用。 3、了解光纤位移传感器的测速应用。 二、实验内容: 1、光纤传感器的静态实验; 2、光纤位移传感器的动态应用实验; 3、光纤位移传感器的测速应用实验; (一)光纤传感器的静态实验 实验单元及附件: 主副电源、差动放大器、F/V表、光纤传感器、振动台。 实验原理: 反射式光纤位移传感器的工作原理如下图所示,光纤采用Y型结构,两束多膜光纤一端合并组成光纤探头,另一端分为两束,分别作为光源光纤和接收光纤,光纤只起传输信号的作用,当光发射器发出的红外光,经光源光纤照射至反射面,被反射的光经接收光纤至光电转换器将接受到的光纤转换为电信号。其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到的位移量如下图8-1所示 图8-1 实验步骤: (1)观察光纤位移传感器结构,它由两束光纤混合后,组成Y形光纤,探头固定在Z 型安装架上,外表为螺丝的端面为半圆分布的光纤探头。

(2)了解振动台在实验仪上的位置(实验仪台面上右边的圆盘,在振动台上贴有反射纸作为光的反射面。) (3)如图8-2接线:因光/电转换器内部已安装好,所以可将电信号直接经差动放大器放大。F/V显示表的切换开关置2V档,开启主、副电源。 (4)旋转测微头,使光纤探头与振动台面接触,调节差动放大器增益最大,调节差动放大器零位旋钮使电压表读数尽量为零,旋转测微头使贴有反射纸的被测体慢慢离开探头,观察电压读数由小-大-小的变化。 (5)旋转测微头使F/V电压表指示重新回零;旋转测微头,每隔0.05mm读出电压表的读数,并将其填入下表: △X(mm) 0.05 0.10 0.15 0.20 10.00 指示(V) 图8-2 (二)光纤传感器的动态应用实验 实验单元及附件: 主、副电源、差动放大器、光纤位移传感器、低通滤波器、振动台、低频振荡器、激振线圈、示波器。 实验步骤: (1)了解激振线圈在实验仪上所在位置及激振线圈的符号。 (2)如图8-3接线。 图8-3

光纤传感器实验报告

09级6系姓名:安森松学号:PB09210345 实验题目:光纤传感器 实验目的: 掌握干涉原理,自行制作光线干涉仪,使用它对某些物理量进行测量, 加深对光纤传感理论的理解,以受到光纤技术基本操作技能的训练。实验仪器: 激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调 整架,显微镜,光纤传感实验仪,CCD及显示器,等等 实验原理:(见预习报告) 实验数据: 1.光纤传感实验(室温:24.1℃) (1)升温过程 右移条纹数+0+3+6+9+12+15+18 ( 温度示数(℃)26.128.629.129.630.130.731.2 2 右移条纹数+21+24+27+30+33+36+39 ) 降 温度示数(℃)31.732.232.833.433.934.635.2温 (2)降温过程 左移条纹数-0-3-6-9-12-15-18 温度示数(℃)36.135.935.635.334.934.634.1 左移条纹数-21-24-27-30-33-36-39 温度示数(℃)33.733.332.932.432.031.631.2

09级6系姓名:安森松学号:PB09210345 2.测量光纤的耦合效率 在光波长为633nm条件下,测得光功率计最大读数为712.3nw。数据处理: 一.测量光纤的耦合效率 在λ=633nW,光的输出功率P1=2mW情况下。在调节过程中测得最大 输出功率P2=712.3nW 代入耦合效率η的计算公式: -4 3.56×10 二.光纤传感实验 1.升温时 利用Origin作出拟合图像如下: Equationy=a+b 条纹数Adj.R-Squ0.99849 A LinearFitofA ValueStandardEr AIntercep-153.3071.96249 40 ASlope5.485340.06163 A 20 303336 B 温度/℃由上图可看出k=5.49±0.06

传感器实验模板

合肥工业大学实验报告 专业班级学号姓名 日期指导老师共页第页 实验一 CSY-998B+传感器实验仪 1.1 CSY---998B+传感器实验仪简介 实验仪主要由四部分组成:传感器安装台、显示与激励源、传感器符号及引线单元、处理电路单元。 ⑴传感器安装台部分 装有双平行振动梁(应变片、热电偶、PN 结、热敏电阻、加热器、压电传感器、梁 自由端的磁钢)、激振线圈、双平行梁测微头、光纤传感器的光电变换座、光纤及探头、小机电、电涡流传感器及支座、电涡流传感器引线Φ3.5 插孔、霍尔传感器的二个半圆磁钢、振动平台(圆盘)测微头及支架、振动圆盘(圆盘磁钢、激振线圈、霍尔片、电涡流检测片、差动变压器的可动芯子、电容传感器的动片组、磁电传感的可动芯子)、半导体扩散硅压阻式差压传感器、气敏传感器及湿敏元件安装盒,热释电传感器、光电开关、硅光电池、光敏电阻元件安装盒,具体安装部位参看附录三。 ⑵显示及激励源部分 电机控制单元、主电源、直流稳压电源(±2V - ±10V 分5 档调节)、F/V 数字显示表(可作为电压表和频率表)、(5mV-500mV)、音频振荡器、低频振荡器、±15V 不可调稳压电源。 ⑶实验主面板上传感器符号单元 所有传感器(包括激振线圈)的引线都从内部引到这个单元上的相应符号中,实验时传感器的输出信号(包括激振线圈引入低频激振器信号)按符号从这个单元插孔引线。 ⑷处理电路单元 电桥单元、差动放大器、电容变换放大器、电压放大器、移相器、相敏检波器、电 荷放大器、低通滤波器、涡流变换器等单元组成。 1.2 主要技术参数、性能及说明 1.2.1 传感器安装台部分双平行振动梁的自由端及振动圆盘下面各装有磁钢,通过各自测微头或激振线圈,接入低频激振器U0 可做静态或动态测量。 应变梁:应变梁采用不锈钢片,双梁结构端部有较好的线性位移。(或采用标准双孔悬臂梁传感器应变梁)。 ⑴差动变压器(电感式) 量程:≥5mm 直流电阻:5'-10' 由一个初级、二个次级线圈绕制而成的透明空心 线圈,铁芯为软磁铁氧体。 ⑵电涡流位移传感器 量程:≥1mm 直流电阻:1'-2' 多股漆包线绕制的扁平线圈与金属涡流片组成。 ⑶霍尔式传感器 量程:±≥2mm 直流电阻:激励源端口800'-1.5K';输出端口300'-500' 日本JVC 公司生产的线性半导体霍尔片,它置于环形磁钢构成的梯度磁场中。 ⑷热电偶 直流电阻:10' 左右由两个铜-康铜热电偶串接而成,分度号为T,冷端温度为环 境温度。 ⑸电容式传感器 量程:±≥2mm 由两组定片和一组动片组成的差动变面积式电容。 ⑹热敏电阻 半导体热敏电阻NTC:温度系数为负,25℃时为10K'。 ⑺光纤传感器 由多模光纤、发射、接收电路组成的导光型传感器,线性范围≥2mm。 红外线发射、接收、直流电阻:500'-2.5k' 2×60 股Y 形、半圆分布。 ⑻半导体扩散硅压阻式压力传感器 量程:10Kpa(差压)供电:≤6V 美国摩托罗拉公司生产的MPX 型压阻式差压传感器。 ⑼压电加速度计 PZT-5 压电晶片和铜质量块构成。谐振频率:≥10KHZ,电荷灵敏度:q≥20pc/g。⑽应变式传感器 箔式应变片电阻值:350'、应变系数:2,平行梁上梁的上表面和下梁的下表面对应地贴有4 片应变片,受力工作片分别用符号↑和↓表示。在998B 型仪器中,横向

相关文档