文档库 最新最全的文档下载
当前位置:文档库 › 调控红细胞生成的转录因子及其作用

调控红细胞生成的转录因子及其作用

调控红细胞生成的转录因子及其作用
调控红细胞生成的转录因子及其作用

综述 调控红细胞生成的转录因子及其作用

陈渝萍 刘德培 薛社普

哺乳类红细胞生成分为胚胎型(或称原始型)和成年型(或称定型)两个不同的发育时期,前者主要在卵黄囊的血岛中进行,产生有核红细胞;后者则集中于胚胎,骨髓及脾脏,产生无核红细胞。如果从红系分化角度出发,则可分为两个阶段:红系早期分化(由造血干细胞到红系祖细胞)和终末分化(由红系祖细胞到成熟红细胞)。在整个分化过程中,红系特异基因相继开启并呈优势表达,非红系基因则逐渐关闭,细胞最终呈现红系特有表型。调控基因特异表达的主要方式之一是由公用转录因子与红系特异转录因子共同参与的基因转录水平的调控。红系特异转录因子的分布具有组织特异性,其表达水平随红系的发育和分化的进行而变化,这种严格的谱系限制性直接导致靶基因在红系组织细胞中的特异表达。而任何影响这些转录因子控制基因表达能力的改变,均会严重干扰乃至完全破坏红系的正常发育和分化;它们自身的异常表达也会导致一系列血液疾病的发生。我们从早期造血发生开始,介绍调控红系早、晚期发育和分化的转录因子及其作用。

1 红系早期分化过程中的转录调控因子 红系早期分化始于自我更新状态的造血干细胞(Hematopoietic stem cells, HSC),经过定向谱系的造血祖细胞(Hematopietic p rogeni tor cells,HPC)阶段,进而分化产生红系祖细胞(Erythropoietic HPC,E HPC)。从小鼠基因敲除,胚胎干细胞的体外分化和嵌合体的实验结果可知,失活SCL或LMO2均可导致原始型和定向型造血完全丧失,表明二者至少参与了造血谱系和髓系定向的调控,可能还包括从腹部中胚层细胞到造血细胞的定向,并显示出维持细胞增殖和生存的功能[1],HSC自我更新和分化的行为则受到GATA2控制,增强该因子的活性将抑制细胞扩增,促进HSC往单核系和粒系发育,抑制红系分化[2]。另外,c myb也可能调控了造血定向,并促进HSC往一定方向分化,当它在ES细胞中过度表达时,可促进HSC的形成并进一步分化产生红系和髓系的混合克隆[3]。

调控HPC增殖的转录因子主要有GATA2/3,AML1和c myb等。这些基因的敲除个体虽能产生正常造血细胞,但祖细胞的数量显著降低,造成成熟血细胞的数目大为减少[4,5]。其中GATA3的作用限于胎肝的定向型造血过程。部分Id (Id1,2,3)和Hoxs(Hox9,10,Hox3 6)因子,可刺激祖细胞增殖,抑制祖细胞成熟分化。它们的过度表达将抑制HPC的进一

作者单位:100005 北京,中国医学科学院、中国协和医科大学基础医学研究所;国家医学分子生物学重点实验室;中国协和医科大学基础医学院细胞生物室步成熟[6]。

从红系多能造血细胞到红系前体细胞,E HPC的分化、增殖和分裂的调控是由某些在造血早期有重要作用的因子承担,如SCL和LMO2。它们在多能的HPC中表达水平极低,随着E HPC的产生,其表达上调,并持续高水平至红系前体细胞[7];与此同时,一些在多能HPC中高表达(如GATA2,c myb等)或非红系分化必需的转录因字(如PU.1,Fli 1等)的表达动态正好相反,它们的表达下调是HPC向红系分化的先决条件[8]。

2 红系晚期分化过程中的转录调控因子 进入红系分化晚期以后,定向祖细胞经过有限次数的分裂,逐步分化直至产生成熟红细胞。细胞在增殖、分化和凋亡之间维持着动态平衡。某些相对特异的转录因子参与了该时期红系分化的调控,敲除这些转录因子只会影响红系的成熟分化,其它谱系发育正常。其中,GATA1是红系分化至C FU E期后调控细胞存活和红系特异基因转录的中心因子,一旦该基因被敲除,多种红系特异基因不能表达,细胞阻滞于前体细胞期不能继续分化,并开始大量凋亡[9]。NF E2则确保珠蛋白基因LCR 中HS2增强子活性的发挥以维持珠蛋白高表达,并调控涉及几个合成关键酶分子的基因正常表达[10]。然而NF E2-/-个体却并不发生红系发育和分化异常,推侧可能有其它C NCs 蛋白家族成员(如Nrf1,2,3,Bach1/2)进行代偿[11]。Ets 1是另一个直接控制某些红系特异基因(如转铁蛋白受体TR,珠蛋白和PBGD等)表达的转录因子,若MafB和Ets 1结合,将导致红系分化受阻。有的转录因子调控基因不同发育时期的表达,如控制珠蛋白基因发育阶段特异性的三个转录因子:EKLF、BKLF、FKLF,其靶基因分别是 珠蛋白、其它不依赖E KLF的基因和 -、-珠蛋白基因。敲除其中一个单一基因只会使得某类蛋白(如某类珠蛋白)在特定时期不表达,在其它时期则正常表达。但个体最终因某些基因丧失正常的发育时相性而不能完成终末分化[12]。

从中、晚幼红细胞到成熟红细胞,血红蛋白进一步在细胞中积累,细胞核开始浓缩并被排放于胞外,最终产生成熟红细胞。有关核浓缩和排核发生机制的研究目前仅限于一些细胞骨架系统的报道,如微管蛋白和某些中等纤维蛋白;相应基因的表达调控机制尚不清楚。最近国内有报道,红系终末分化涉及一种具有可能的亮氨酸拉链结构和激酶活性的蛋白。该蛋白在处于终末分化时期的红系细胞中优势表达,于排核前从胞质中转移至核内,表现出和排核相关的定位改变。

3 其它和红系相关的转录因子 有的转录因子并不直接和

基因结合,而是通过与红系特异转录因子相互作用形成多聚体来发挥调控作用:如CBF ,E2A和MAFs等。它们或具严格的谱系限制性分布,如FOG1;或呈广谱性分布,如E2A, CB P/P300和MAFs等。其中有的是转录因子和DNA结合所必需的成分,如E2A,或可提高转录因子结合的特异性,如MAFs;有的可增强蛋白 DNA复合体的稳定性,如CBF ;有的还充当了多个转录因子的共激活子,确保转录因子调控功能的发挥。因此,它们和相应的转录因子之间的正常联系是保证基因得到精确调控和红系正常分化的基础。例如,MafK过表达能诱导红白血病细胞分化,过量的Ids蛋白会干扰SCL/ E2A二聚体的形成,从而抑制分化;CB F 和FOG1的敲除小鼠分别表现出与AML1和GATA1敲除个体相似的表型;而CB P/P300 / 小鼠在造血和心血管发育上表现异常,显示了该因子同多种造血因子间的广泛联系对造血和红系的发育分化有极其重要的调控作用[13,14]。

有些转录因子在正常情形下集中分布于非红系组织和器官,调控非红系的发育分化,但却与多种红系疾病及其病毒感染引起的红系细胞转化相关。例如PU.1/Spi 1和Fli 1,二者是B细胞和T细胞发育和分化所必需的调控因子,敲除实验也显示它们几乎不影响红系的发育。但是当它们在红系早期祖细胞中表达异常增强时却会造成红系成熟分化障碍;同时,它们也是Friend s病毒感染细胞时攻击的主要对象[8]。近来的研究结果表明,细胞微环境的改变也可间接控制红系的发育和分化。比如,尽管Lh x2 / 小鼠胎肝中的定型红系生成严重缺陷,但如将Lhx2 / ES细胞植入由正常的ES 细胞产生的囊胚中,却可获得正常表型的嵌合个体[15]。再如,PU.1敲除小鼠的红系发育分化正常,但这样的HPC却不能支持骨髓中有定型红系生成。这是因为细胞中c kit受体表达严重降低,使得细胞对Epo和SCF不反应,一些粘附分子不能产生,影响了HPC由胎肝向骨髓的迁移[16]。

值得一提的是,某些核激素受体(Nuclear hormone recep tors,NHRs)如雌激素受体(estrogene receptor,ER),糖皮质激素受体(Glucocorticoid receptor,GR),RAR/RXR(Retinoid acid/X receptor)和胸腺激素受体(thymoid hormone recep tor,TR)等,表现出开关红系分化的功能:未与配体结合的NHRs维持细胞处于未成熟的祖细胞期,抑制分化;一旦同配体(ER,维生素D,视黄醛和TR)结合,却表现出刺激红系祖细胞产生、促进红系分化的调控作用。但是,从一些NHRs的敲除实验结果发现,NHRs并不直接参与一般的红系发育和分化调控,推测其作用时期可能是个体因贫血或缺氧而在脾脏中发生的代偿性红细胞生成[17,18]。

4 转录调控因子间的级联关系 从多能造血干细胞到成熟红细胞,红系生成的整个过程是有条不紊的,调控该过程的分子机制也必然是复杂而精确的。每个发育分化阶段均为相应的转录因子所调控,各个因子的表达水平和作用方式也随红系的发育和分化而发生相应改变,呈现出显著的发育时期和分化阶段的特异性,颇类似上下级的级联调控规律。祖细胞时期GATA2和c myb表达水平很高,GATA1则只有低水平表达;红系分化开始时,前二者表达下调,后者上调。这种改变是红系分化的先决条件,如人为逆转这一表达形式会引起红系分化障碍[19]。同样,在HPC中表达的Ids抑制分化进行,维持细胞处于未成熟状态;一旦红系分化开始,其表达水平则降低、最终关闭。有关PU.1和GATAs蛋白的研究也显示,两者间的相互作用在确定细胞向红系或髓系中具有极其重要的意义,这种彼此拮抗又相互关联的转录因子之间的平衡与否常常是决定细胞正常分化和恶性转化的关键[20]。

转录因子基因自身的表达调控也呈现出类似的级联规律。例如,SCL的靶基因很可能就是GAT;GATA2则可能作用于GATA1基因的启动子引起表达上调;在EKLF的上游远端启动子上并列着GATA E 盒 GATA位点,其转录水平可能受到GATA1和bHLH因子的联合控制[21]。研究表明,在红系分化后期细胞中高水平的GATA1可导致GATA2的下调,引起SC L、FOG、Ets 1和GATA1自身表达上调,从而维持红系基因高表达;而诱导GATA1上调的信号则可能来自Epo的刺激[22]。另外,Spi 1/PU.1可增强Fli 1的表达,HERF1是AML1/CBF 的靶基因,Ets 1诱导GATA1和SC L表达等等。显然,各个调控成分之间彼此相互作用组成一个复杂有序的网络系统,共同维持红系发育和分化所需要的正常内外环境。值得指出的是,迄今所发现的转录调控因子的作用多集中于红系早期分化时期,找寻其它新的调控基因正是当前发育分化和基因调控研究领域的热点。

参考文献

1 Robb L,El wood NJ,Elefanty A G,et al.The s cl gene product i s required

for the generation of all he matopoietic lineages in the adul t mouse.The EMBL J,1996,15:4123 4129.

2 Warren AJ,Colledge WH,Carlton MBL,et al.The oncogenic c ys taine

rich LIM do main protein Rbtn2is essential for erythroid devel opment.

Cell,1994,78:45 57.

3 M elotti P,Calabretta B.Induction of he matopoietic commi tment and ery

thromyeloid di fferentiati on i n ES cells constitutively expres sing c myb.

Blood,1996,87:2221 2234.

4 pandolfi PP,Roth ME,Karis A,et al.Targeted dis ruption of the GA TA

3gene causes severe abnormali ties in the nervous system and in fetal li ver haematopoiesi s.Nature Genet,1995,11:40 44.

5 Bae SC,Ito Y.Regulation mechanis ms for the he terodimeric transcripti on

factor,PEBP2/CBF.Hi stol Hi stopathol,1999,14:1213 1221.

6 Deed R S,M ichelle J,Norton J D.Lymphoi d specific expression of the Id3

gene in hematopoietic cells.J Biol Chem,1998,173:8273 8286.

7 Valtieri M,Tocci A,Gabbianelli M,et al.Enforced TAL 1expression s ti

muates pri mitive,erythoid,and megakaryocytic progeni tors but bloc ks the granulopoietic differenti ation program.Cancer Res,1998,58:562 569.

8 Fisher R C,Scott FW.Role of PU.1in he matopoiesis.Ste m Cells,1998,

16:25 37.

9 Weiss MJ,Orki ns SH.G ATA transcription factors:key regulators of

hematopoiesi s.Exp Hematol,1995,23:99 104.

10 Andrews NC.Molec ules in focus the NF E2transcription factor.Int1J

Biochem&Cell Bi ol,1998,30:429 432.

11 Clausen PA.Athanasiou M,Chen Z,et al.ETS 1i nduces i ncreased ex

pression of erythroid markers in the pluripotenet erythroleukemic cell lines K562and HEL.Leukemia,1997,11:1224 1233.

12 Asano H,Li XS,Sta matoyannopoul os G.FK LF,a novel Kruppel li ke fac

tor that activates human embryonic and fetal beta like globi n genes.Mol Cell Bi ol,1999,19:3571 3579.

13 Tsang AP,Fujiwara Y,Hom DB,et al.Failure of megakaryopoiesis and

arres ted erythropoiesis in mice lacking the GATA1transcriptional cofac tor FOG.Genes&Development,1998,12:1176 1188.

14 Oi ke YC,Takakura N,Hata A,et al.Mice ho mozygous for a truncated

form of CREB binding protein e xhi bits defects i n he matopoiesis and vas culo angiogenes is.Blood,1999,93:2771 2779.

15 Porter FD,Drago J,Xu Y,et al.Lhx2,a LTM homeobox gene is required

for eye,forebrain,and defini ti ve erythroyte development.Devel opment, 1997,124:2935 2944.

16 Fisher RC,Lovelock JD,Scott EW.A critical role for PU.1i n homi ng

and long term engraftment by hematopoie tic stem cells in the bone mar row.Bl ood,1999,94:1283 1290.

17 Bartunck P,Zenke M.Retinoid X receptor and c erbA/thyroid hormone

receptor regulates erythroi d cell growth and differentiation.Mol En

docri nology,1998,12:1269 1279.

18 Reichardt HM,Kaes tner KH,Tuckermann J,et al.DNA bindi ng of the

gluc ocorticoid receptor is not essential for survival.Cell,1998,93:531 541.

19 Kulessa H,Frampton J,Graf T.G ATA1reprograms avian myelomonocytic

cell lines into eosinophils,thromboblasts,and erythroblas ts.Genes&De velopment,1995,9:1250 1262.

20 Zhang P,Behre G,Pan J,e t al.Negative cros s talk bet ween hematopoietic

regulators:GATA proteins repress P U.1.Proc Natl Acad Sci U S A, 1999,96:8705 8710.

21 Anderson KP,Crable SC,Lingrel JB.Multiple proteins binding to a

GA TA E box GA TA moti f regulate the erythroid kruppel like fac tor (EKLF)gene.J Biol Chemi,1998,273:14347 14354.

22 Seshasayee D,Gaines P,Wojchowski D M.GATA 1dominantly activates a

program of erythroid gene expression in fac tor dependent myeloid FDCW2 cells.Mol Cell Biol,1998,18:3278 3288.

(收稿日期:2000 03 31)

(校对:张吉贤)

病例报告

再生障碍性贫血合并T细胞淋巴瘤一例周昌菊 熊维军 薛玉伦

患者,男,26岁。因诊断为慢性再生障碍性贫血(再障)5年,反复发热、牙龈出血4月余、脐周疼痛3月余,于1999年10月28日入院。5年前,无诱因出现牙龈出血,头昏乏力,双下肢皮肤瘀点、瘀斑,口腔溃疡。后因鼻出血不止查血常规,示血细胞三系下降;骨髓涂片及活检示再障,予康力龙、左旋咪唑、再障生血片及输血等治疗,病情好转,坚持服药治疗。4个月前,反复低热,牙龈出血,面色苍白,进行性加重。3个月前出现脐周疼痛,无便血。遂来门诊检查血常规:WBC2.6 !109/L,Hb30g/L,BPC13!109/L,收入院。查体:重度贫血貌,皮肤粘膜无出血斑点,全身浅表淋巴结未扪,双肺无异常体征,心率116次/mi n,心尖区可闻及?级收缩期吹风样杂音。腹软,肝脾未扪及,右肝区叩痛,莫菲氏征(-),右腹部深压痛,无反跳痛。入院后查血常规示:Hb48g/L,RBC1.2 !1012/L,WBC2.0!109/L,BPC23!109/L,再次骨髓涂片及活检示:骨髓增生极度低下,非造血细胞增多。干细胞培养:每2!105个骨髓有核细胞粒细胞集落2个(正常人对照为43)、大丛18个(127)、小丛44个(47),细胞抑制试验不明显,血清抑制试验率51%;每1!105个骨髓有核细胞红细胞集落5个(正常人对照为135),细胞抑制试验(-),血清抑制试验率56%,符合慢性再障。B超示:胆囊结石,胆囊炎。予抗感染、解痉、免疫抑制剂环孢菌素A等治疗1月余无效,呈低至中度发热,且伴腹痛时便血。血培养(-)。再次B超示结肠肝曲到回盲部约10cm肠壁增厚。内窥镜检查示:病变位于结肠肝曲至回盲部,约8cm长,且见升结肠、盲肠有巨大溃疡,底不平,周边糜烂、充血、水肿,溃疡边缘不规则,并可见有息肉样隆起物,占据肠腔,肠壁僵硬,余肠腔可见出血点及出血斑。示结肠溃疡,多系淋巴瘤。转外科行根治性右半结肠切除术,回盲肠、横结肠吻合术。术中探查未见转移灶,肿块位于升结肠与回盲部交界处,约7cm!6cm大小,已突破肠管浆膜层,术中清扫周围淋巴结。术后剖开标本见肿块中央5cm!3cm大溃疡。病检示:回盲部非霍奇金淋巴瘤,多形性、中等细胞性。免疫组化染色瘤细胞:UCHLI(+)、L26 (-)、CD68(-),浆细胞为Kappa(+)、Lambda(+),支持Tc来源。病变周围淋巴结病检未见浸润。术后伤口恢复欠佳,无发热、腹痛、腹泻、便血。1个月后复查骨髓涂片及活检示:增生极度低下,非造血细胞增多,符合再障。继续按再障治疗及C HOP方案化疗。

(收稿日期:2000 05 29)

作者单位:610100 四川省成都市龙泉驿,成都航天医院(校对:张吉贤)

转录调节位点和转录因子数据库介绍_张光亚

10生物学通报2005年第40卷第11期 2003年即Watson和Crick发表DNA双螺旋结构50周年,宣布了人类基因组计划的完成,与此同时,其他许多生物的基因组计划已完成或在进行中,在此过程中产生的大量数据库对科学研究的深远影响是以前任何人未曾预料到的。然而遗憾的是,许多生物学家、化学家和物理学家对这些数据库的使用甚至去何处寻找这些数据库都只有一个比较模糊的概念。 基因转录是遗传信息传递过程中第一个具有高度选择性的环节,近20年来对基因转录调节的研究一直是基因分子生物学的研究中心和热点,因此亦产生了大量很有价值的数据库资源,对这些数据库的了解将为进一步研究带来极大便利,本文对其中一些数据库进行简要介绍。 1DBTSS DBTSS(DataBaseofTranscriptionalStartSites)由东京大学人类基因组中心维护,网址:http://dbtss.hgc.jp。最初该数据库收集用实验方法得到的人类基因的TSS(TranscriptionalStartSites,转录起始位点)数据。对转录起始位点(TSS)的确切了解具有非常重要的意义,可更准确的预测翻译起始位点;可用于搜索决定TSS的核苷酸序列,而且可更精确地分析上游调控区域(启动子)。自2002年发布第一版以来已作了多次更新。目前包含的克隆数为190964个,含盖了11234个基因,在SNP数据库中显示了人类基因中的SNP位点,而且现在含包含了鼠等其他生物的相关数据。DBTSS最新的版本为3.0。 在该最新的版本中,还新增了人和鼠可能同源的启动子,目前可以显示3324个基因的启动子,通过本地的比对软件LALIGN可以图的形式显示相似的序列元件。另一个新的功能是可进行与已知转录因子结合位点相似的部位的定位,这些存贮在TRANSFAC(http://transfac.gbf.de/TRANSFAC/index.html)数据库中,免费用于研究,但TRANSFAC专业版是商业版本。 DBTSS对匿名登录的用户是免费的,该网站要求用户在使用前注册,用户注册后即可使用。主页分为2个区域,一个介绍网站的部分信息和用户注册,另一区域为用户操作区,该区约分为10个部分,可分别进行物种和数据库的选择、BLAST、SNP以及TF(转录因子)结合部位搜索等部分。后者的使用可以见网页中的Help部分,里面有比较详细的介绍。DBTSS还提供了丰富的与其他相关网站的链接,如上文提到的TRANSFAC数据库、真核生物启动子数据库(Eukaryot-icPromoterDatabase,http://www.epd.isb-sib.ch/)以及人类和其他生物cDNA全长数据库等。 2JASPAR JASPAR是有注释的、高质量的多细胞真核生物转录因子结合部位的开放数据库。网址http://jaspar.cgb.ki.se。所有序列均来源于通过实验方法证实能结合转录因子,而且通过严格的筛选,通过筛选后的序列再通过模体(motif)识别软件ANN-Spec进行联配。ANN-Spec利用人工神经网络和吉布斯(Gibbs)取样算法寻找特征序列模式。联配后的序列再利用生物学知识进行注释。 目前该数据库收录了111个序列模式(profiles),目前仅限于多细胞真核生物。通过主页界面,用户可进行下列操作:1)浏览转录因子(TF)结合的序列模式;2)通过标识符(identifier)和注解(annotation)搜索序列模式;3)将用户提交的序列模式与数据库中的进行比较;4)利用选定的转录因子搜索特定的核苷酸序列,用户可到ConSite服务器(http://www.phylofoot.org/consite)进行更复杂的查询。JASPAR数据库所有内容可到主页下载。 与相似领域数据库相比,JASPAR具有很明显优势:1)它是一个非冗余可靠的转录因子结合部位序列模式;2)数据的获取不受限制;3)功能强大且有相关的软件工具使用。JASPAR与TRANSFAC(一流的TF数据库)有较明显的差异,后者收录的数据更广泛,但包含不少冗余信息且序列模式的质量参差不齐,是商业数据库,只有一部分是可以免费使用。用户在使用过程中会发现二者的差异,这主要是由于二者对数据的收集是相互独立的。另外该数据库还提供了相关的链接:如MatInspector检测转录因子结合部位,网址http://transfac.gbf.de/programs/matinspector/;TESS转录元件搜索系统,网址http://www.cbil.upenn.edu/tess/。 转录调节位点和转录因子数据库介绍! 张光亚!!方柏山 (华侨大学生物工程与技术系福建泉州362021) 摘要转录水平的调控是基因表达最重要的调控水平之一,对转录调节位点和转录因子的研究具有重要意义。介绍了DBTSS、JASPAR、PRODORIC和TRRD等相关数据库及其特征、内容和使用。 关键词转录调节位点转录因子数据库生物信息学 !基金项目:国务院侨办科研基金资助项目(05QZR06) !!通讯作者

植物转录因子及转录调控数据与分析平台

植物转录因子及转录调控数据与分析平台 PlantTFDB:植物转录因子数据库 URL: https://www.wendangku.net/doc/7515235694.html, 包含资源:植物转录因子的家族分类规则、基因组转录因子全谱、丰富的注释、转录因子结合图谱(binding motifs)、转录因子预测、系统发生树等 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等165个物种。 PlantRegMap:植物转录调控数据与分析平台 URL: https://www.wendangku.net/doc/7515235694.html, 包含资源:植物转录调控元件、植物转录调控网络、转录因子结合位点预测、转录调控预测与富集分析、GO富集分析、上游调控因子富集分析等。 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等156个物种。 ATRM: 拟南芥转录调控网络及其结构和演化分析 URL: https://www.wendangku.net/doc/7515235694.html, 包含资源:基于文本挖掘和人工校验的拟南芥转录调控网络、植物转录调控网络的结构和演化特征 涉及物种:拟南芥 植物转录因子及转录调控数据与分析平台(导航页) 我们致力于为广大科研人员提供一个关于植物转录因子和转录调控、集数据和分析于一体的高质量平台,为研究和理解植物转录调控系统保驾护航。 植物转录因子数据库(PlantTFDB) 一套完整的植物转录因子分类规则 覆盖绿色植物各大分支的转录因子全谱 丰富的功能和演化注释 基因组范围的高质量转录因子结合矩阵(156个物种) 在线转录因子预测平台 植物转录调控数据与分析平台(PlantRegMap) 基于高通量实验(ChIP-seq和DNase-seq)和比较基因组方法鉴定的多种转录调控元件 基于转录因子结合矩阵和转录调控元件推测的转录调控网络 涉及165物种的GO注释 一套植物转录调控预测与分析工具,包括转录因子结合位点预测、转录调控预测与富集分析、GO富集分析及上游调控因子富集分析等 拟南芥转录调控网络及其结构和演化特征(ATRM) 基于文本挖掘和人工校验的拟南芥转录调控网络 植物转录调控网络的结构和演化特征

网织红细胞检测意义

网织红细胞(reticulocyte)就是介于晚幼红细胞与成熟红细胞之间尚未完全成熟的红细胞。因其质内尚存留多少不等的嗜碱物质,RNA,经煌焦油蓝,新亚甲蓝活体染色法染色后,嗜碱物质凝聚成颗粒,其颗粒又可联缀成线,而构成网织状,此种红细胞即网织红细胞,仍于骨髓内停留一定时间,然后再释放入血流。因此骨髓中的网织红细胞数,不但比外周血约高3倍。而且亦较幼稚。网状结构愈多,表示该细胞越幼稚,有人将其分成一、二、三、与四级。即当红细胞内几乎被网织物充满者为一级,而红细胞内含网织物极少(上个或几个颗粒)者为四级。通常网织红细胞比成熟红细胞稍大,直径为8-9、5μm。 最新血细胞分析仪的应用,为网织红细胞计数提供了更进的测试手段。这类仪器采用荧光染色与激光测量的原理,不但能客观地测量大量网织红细胞,而且还能将其分为高荧光强度、中荧光强度、低荧光强度三类,这种分类法对估计化疗后骨髓造血功能的恢复及骨髓移植效果有较重要的意义。 [方法学评价] 由于玻片法容易使混合血液中的水分蒸发,染色时间偏短,因此结果偏低。试管法容易掌握,重复性效好,必要时还可以从混合血液中再取标本重新涂片复查,避免再次给被检者穿刺造成不必要的痛苦,被列为手工法网织红细胞计数的方法。近年来,国内使用米勒窥盘进行计数,规范了计算区域,减少了实验误差,使结果准确性有所提高。

目前,国外逐步使用网织红细胞仪器法测定大致有流式细胞仪法,网 织红细胞计数仪法与多参数血液分析仪法。流式细胞仪法就是将红细胞染色后使含 RNA网织红细胞可被计数,进而得出网织红细胞的百分比与绝对值,此法就是只能计数网织红细胞当选目,不能分析其成熟 程度,网只红细胞计数仪就是专门进行网织红细胞测定的仪器操作简单,只需将抗凝血液吸入仪器内,仪器可自动染色、自动分析,自动找印各阶段网织红细胞的分布图。结果准确。仪器法的优点就是测量细胞多,避免主观因素,方法易于标准化。但仪器价格昂贵,尚难以广泛应用。 [参考值] 成人:0、008-0、02或(25-75)×109/L 初生儿:0、02-0、06 [临床意义] 1.网织红细胞计数可以判断骨髓红细胞系统造血情况。溶血性贫血时由于大量网织红细胞进入血循环,可使网织红细胞高达0、20或更高。急性失血后5-10天,网织红细胞达高峰。2周后恢复正常。典型再生障碍性贫血病例。网织红细胞百分比常0、005。网织红细胞数低于5×109/L为诊断再生障碍性贫血的标准之一。 2.网织红细胞可作为疗效观察指标。凡就是骨髓增生功能良好的病人,在给予有关抗贫血药物后,其网织红细胞在1周左右可百家高峰,贫 血严重,网织红细胞数升得越高,而且其升高往往在红细胞恢复之前。

转录因子

转录因子 ? 1 简介 ? 2 方法 ? 3 转录因子 转录因子-简介 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 转录因子-方法 这篇文章的试验方法是,通过高密度的寡核苷酸芯片,反映出人21和22号染色体的几乎所有的非重复序列,通过这种芯片,检测三种转录因子,Sp1、 cMyc、和p53的结合位点。结果表明,每种转录因子都有大量的TFBS与之结合。然而,只有22%的转录因子结合位点分布在蛋白编码基因的5'端, 36%的TFBS分布在蛋白编码基因的中部或3'端,并且这36%的TFBS常常和基因组中的非蛋白编码RNA分布在一起。这暗示,在人的基因组中,不仅包含蛋白编码基因,也包含数量相当的非编码基因(noncoding genes),他们都受常见的转录因子所调控。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的

网织红细胞的临床意义

网织红细胞的临床意义网织红细胞计数(尤其是网织红细胞绝对值)是反映骨髓造血功能的重要指标。正 常情况下,骨髓中网织红细胞均值为150×109 /L,血液中为65×109/L 。当 骨髓 Ret 增多,外周血减少时,提示释放障碍;骨髓和外周血 Ret 均增加,提示为释放增加。从网织红细胞成熟类型获得红细胞生成活性的其他信息,正常时,外周血网织红细胞中皿型约占20%?30% ,W型约占70%?80%,若骨髓增生明显,可出现I型和H 型Ret。 1、判断骨髓红细胞造血情况(1)增多:见于①溶 血性贫血:溶血时大量网织红细胞进入血循环, Ret 可达 6%?8%,急性溶血时,可达约20%,甚至50%以上,绝对值超过100×109 /L。急性失血后,5? 10d网织红细胞达高峰,2周后恢复正常。②放疗、化疗后:恢复造血时,Ret 短暂和迅速增高,是骨髓恢复较敏感的指标。③红系无效造血:骨髓中红系增 生活跃,外周血网织红细胞计数正常或轻度增高。(2)减少:见于再生障碍 性贫血、溶血性贫血再障危象。典型再生障碍性贫血诊断标准之一是 Ret 计数常低于0.005,绝对值低于 15×10 9 /L。2、观察贫血疗效缺铁性贫血、巨 幼细胞性贫血患者治疗前,Ret 仅轻度增高(也可正常或减少),给予铁剂或维生素B12、叶酸治疗后,用药3?5天后,Ret开始上升,7?10天达高峰,2周左右,Ret 逐渐下降,表明治疗有效医学 *教育*网整理。 3、骨髓移植后监测骨髓移植后第21天,如Ret大于15×109 /L,表示无移植并发症;小于15×109 / L,伴嗜中性粒细胞和血小板增高,可能为骨髓移植失败。4、网织红细胞生成 指数( RPI)是网织红细胞生成相当于正常人的倍数。不同生理、病理情况下, Ret 从骨髓释放人外周血所需时间不同,故 Ret 计数值不能确切反映骨髓红细胞系统造血功能,还应考虑Ret生存期限。通常Ret生存期限约为2d,若未成熟网织红细胞提前释放人血, Ret 生存期限将延长,为了纠正网织红细胞提前释放引起的偏差,用网织 RPI

转录因子

转录因子 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。而顺式作用因子则指的是基因上与反式作用因子结合的对基因表达起调控作用的基因序列。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的成分。这些因子可能是所有启动子起始转录所必须的。但亦可能仅是譬如说转录终止所必须的。但是,在这一类因子中,要严格区分开哪些是R NA聚合酶的亚基,哪些仅是辅助因子,是很困难的。 (3)某些转录因子仅与其靶启动子中的特异顺序结合。如果这些顺序存在于启动子中,则这些顺序因子是一般转录机构的一部分。如果这些顺序仅存在于某些种类的启动子中,则识别这些顺序的因子也只是在这些特异启动子上起始转录必须的。 黑腹果蝇的RNA聚合酶需要至少两个转录因子方能在体外起始转录。其中一个是B因子,它与含TATA盒的部位结合。人的因子TFⅡD亦和类似的部位结合。同样,CTF(CAAT结合因子)则与腺病毒的主要晚期启动子中与CAAT盒同源的部位相结合。结合在上游区的另一个转录因子是USF(亦称MLTF),则可以识别腺病毒晚期启动子中靠近-55的顺序。转录因子Sp1则能和GC盒相结合。在SC40启动子中有多个GC盒,位于-70到-110之间。它们均能和Sp1相结合。然而含有GC盒的不同的DNA顺序与Sp1的亲和力却各不相同。可见GC盒两侧的顺序对Sp1-GC盒的结合究竟如何能影响转录。有时候需要几个转录因子才能起始转录。例如胞苷激酶的启动子需要S p1与GC盒结合和CTF与CAAT盒结合;腺病毒晚期启动子需要TFⅡD与TATA盒结合和USF与其邻近部位相结合。以上所述的因子是一般转录都需要的,似乎并没有什么调节功能。另一些转录因子则可以调控一组特殊基因的转录。热休克基因就是一个很好的例子。真核生物的热休克基因在转录起始点的上游15bp处有一个共同顺序。H STF因子仅在热休克细胞中有活性。它与包括热休克共同顺序在内的一段DNA相结合,所以这个因子的激活可以引起约包括20个基因的一组基因起始转录。在这里,转录因子和RNA聚合酶Ⅱ之间关系很类似细菌的σ因子与核心酶之间的关系。 转录因子是一种具有特殊结构、行使调控基因表达功能的蛋白质分子,也称为反式作用因子。植物中的转录因子分为二种,一种是非特异性转录因子,它们非选择性地调控基因的转录表达,如大麦(Hordeum vulgare) 中的HvCBF2 (C-repeat/DRE binding factor 2) (Xue et al., 2003)。还有一种称为特异型转录因子,它们能够选择性调控某种或某些基因的转录表达。典型的转录因子含有DNA结合区(DNA-binding domain)、转录调控区(acti vation domain)、寡聚化位点(oligomerization site) 以及核定位信号(nuclear localization signal) 等功能区域。这些功能区域决定转录因子的功能和特性(Liu et al., 1999)。DNA结合区带共性的结构主要有:1)HTH 和HL H 结构:由两段α-螺旋夹一段β-折叠构成,α-螺旋与β-折叠之间通过β-转角或成环连接,即螺旋-转角-螺旋结构和螺旋-环-螺旋结构。2)锌指结构:多见于TFIII A 和类固醇激素受体中,由一段富含半胱氨酸的多肽链构成。每四个半光氨酸残基或组氨酸残基螯合一分子Zn2+ ,其余约12-13 个残基则呈指样突出,刚好能嵌入DNA 双螺旋的大沟中而与之相结合。3)亮氨酸拉链结构:多见于真核生物DNA 结合蛋白的 C 端,与癌基因表达调控有关。由两段α - 螺旋平行排列构成,其α - 螺旋中存在每隔7 个残基规律性排列的亮氨酸残基,亮氨酸侧链交替排列而呈拉链状,两条肽链呈钳状与DNA 相结合。

红细胞生成过程关键步骤确定

红细胞生成过程关键步骤确定 一个健康的成年人每天必须生成1千亿个新红血细胞,才能维持其血液循环中的红细胞数量。来自洛桑联邦理工学院(EPFL)的一个研究人员小组确定了红细胞生成过程中一个关键的步骤。这一研究发现可能不仅有助于阐明如贫血等血液疾病的病因,还使得医生们的梦想离现实更近了一步:在实验室能够制造出红血细胞,由此提供一个潜在的取之不竭的血液主要成分资源,用于输血。 红细胞,其本质就是一袋将氧气输送到全身的血红蛋白。其生命起始于骨髓中的造血干细胞,经历一个高度受控的增殖和分化过程后,获得其最终的身份。 在这一分化过程中的一个关键步骤就是线粒体自噬(mitophagy)。随着线粒体耗尽,细胞血红蛋白负载能力达到最大。然而直到现在,都还没有清楚了解控制线粒体自噬的机制。 在发表在本周《科学》(Science)杂志上的一篇论文中,洛桑联邦理工学院的Isabelle Barde及其同事通过试验证实,KRAB型锌指蛋白与KAP1辅因子协同作用,以精细且复杂的方式调节了线粒体自噬。 论文的资深作者、病毒学家Didier Trono多年来一直对KRAB/KAP1系统感兴趣。众所周知,其在“沉默”哺乳动物基因组反转录因子元件中发挥作用,已有3.5亿年历史。它们最初是可以整合到感染生物体遗传密码中的逆转录病毒。“它做着如此好的一份工作,以致在进化过程中它被指派完成了很多其他的事情,”Trono说。 KRAB/KAP1系统承担的职责之一就是调控线粒体自噬。研究人员发现,遗传改造缺失KAP1的小鼠迅速变得贫血,因为它们无法生成红血细胞。更特别的是,他们发现,干细胞分化过程在成红血细胞(erythroblast,红细胞前体)中线粒体降解的阶段停止。且在人类血细胞中敲除KAP1也会产生相似效应,表明其调控线粒体自噬的作用在从小鼠到人类的整个进化中是保守的。 研究人员进一步证明,KRAB/KAP1系统是通过抑制线粒体自噬阻遏物来发挥功能。换句话说,就像负负得正,它激活了这一靶过程。这表明,这一调控系统中的各种元件突变有可能导致了如贫血和某些类型白血病等血液疾病,从而反过来指出了这些疾病的未来治疗靶点。它还指出了有可能在实验室中模拟红血细胞合成的途径。 但这些研究发现还具有更广泛的意义。虽然线粒体对于许多细胞正常功能至关重要,但如果它们生成破坏性自由基(某些情况下细胞呼吸作用的副产物)对于细胞也会是致命的。这些自由基引起的氧化性应激与肝脏疾病、心脏病和肥胖有关联。因此,了解线粒体自噬受控机制,有可能促成更好地了解以及治疗这些疾病。 Trono认为这一多层次组合调控法则或许适应于广泛的生理系统。“它为自然完成生理活动赋予了极高水平的模块性。”他将之比喻为管风琴的运行方式。 每个风琴师都有一个键盘,以及受他掌控的脚踏板。他通过各种组合应用它们来调整乐器产生的声音。相似的,微调一个或几个控制元件可以在许多生物过程中产生显著的影响。尽管其中任何一个元件发生突变都可能导致故障,但由于每个的贡献很小,损害往往是有限的。反过来,这赋予了系统稳固性。Trono相信,这种稳固性是数亿年来进化一直在选择和改进的。(来源:生物通何嫱) 更多阅读 《科学》发表论文摘要(英文) A KRAB/KAP1-miRNA Cascade Regulates Erythropoiesis Through Stage-Specific Control of Mitophagy 1.Isabelle Barde1,

促红细胞生成素(EPO)在肝缺血

促红细胞生成素(EPO)在肝缺血 再灌注损伤(HIRI)中的作用 周志东徐国海 南昌大学第二附属医院 良好的血液循环是组织细胞获得充足的氧和营养物质供应并排除代谢产物基本保证。各种原因引起组织器官血液灌注量减少时常发生缺血性损伤,而缺血的组织、器官经恢复血流灌注后不但不能使其功能和结构恢复,反而加重其功能障碍和结构损伤的现象称为缺血-再灌注损伤(ischemi-a-reperfusion injury)。肝缺血再灌注损伤(Hepatic ischemia reperfusion injury HIRI)是肝脏外科手术期间非常重要的并发症,一些长时间的肝脏大手术尤其是肝脏移植手术往往会存在肝脏缺血的过程[1],同时肝缺血再灌注损伤还可以影响肝切除后肝脏的再生及肝功能的恢复,因此,如何进行围术期的肝脏保护研究,合理用药,防治肝脏缺血再灌注损伤将具有重要的临床意义。 肝缺血再灌注损伤主要产生机制主要为(1)氧自由基生成:(2)钙超载的损伤作用;(3)细胞凋亡;(4)炎性介质的释放;(4)kupffer细胞激活及中性粒细胞的聚集、黏附并活化,增强与内皮细胞黏附[2];(5)内皮素(ET)和一氧化氮(NO)浓度的失衡;(6)血小板激活因子的作用;(7)微循环功能障碍等。HIRI是由于各种机制相互影响,综合作用的结果。 促红细胞生成素(erythropoietin,EPO)是一种刺激骨髓造血的糖蛋白类激素,是一种含唾液酸的酸性蛋白。人类EPO基因位于7号染色体长臂22区,相对分子量为34,000,有4个糖基化位点。自从1989年美国Amgen公司[3]在国际上首次研制成功重组人红细胞生成素(recombinant human erythropoietin, rHuEPO), 其理化性质和生物学活性与天然内源性红细胞生成素相同。EPO 通过与靶细胞上特异性的EPO 受体(erythropoietin receptor,EPO-R)结合发挥生物效应。传统认识中,EPO 是一种作用于骨髓造血细胞,促进红系祖细胞增生、分化和成熟的内分泌激素,对机体供氧状况发挥重要的调控作用。随着近年来研究不断深入,对于 EPO 的认识产生了一次革命性的飞跃,EPO 还可表现出非促红细胞生成作用。最近的研究[4]认为EPO是一种由缺氧诱导因子 ( hypoxia-inducibh factor, HIF)家族诱导产生的多功能细胞因子超家族成员,对于多种器官均有保护作用[5]。 研究已经发现,EPO 不仅在肾脏和肝脏中分泌,而且在脑、卵巢、输卵管、子宫和睾丸都有EPO 的分泌,而EPO 受体在骨髓的红细胞的前体细胞

网织红细胞的临床意义

网织红细胞的临床意义 网织红细胞计数(尤其是网织红细胞绝对值)是反映骨髓造血功能的重要指标。正常情况下,骨髓中网织红细胞均值为150×109/L,血液中为65×109/L。当骨髓Ret增多,外周血减少时,提示释放障碍;骨髓和外周血Ret均增加,提示为释放增加。从网织红细胞成熟类型获得红细胞生成活性的其他信息,正常时,外周血网织红细胞中Ⅲ型约占20%~30%,Ⅳ型约占70%~80%,若骨髓增生明显,可出现Ⅰ型和Ⅱ型Ret。1、判断骨髓红细胞造血情况(1)增多:见于①溶血性贫血:溶血时大量网织红细胞进入血循环,Ret可达6%~8%,急性溶血时,可达约20%,甚至50%以上,绝对值超过100×109/L。急性失血后,5~10d网织红细胞达高峰,2周后恢复正常。②放疗、化疗后:恢复造血时,Ret 短暂和迅速增高,是骨髓恢复较敏感的指标。③红系无效造血:骨髓中红系增生活跃,外周血网织红细胞计数正常或轻度增高。(2)减少:见于再生障碍性贫血、溶血性贫血再障危象。典型再生障碍性贫血诊断标准之一是Ret计数常低于0.005,绝对值低于15×10 9/L。2、观察贫血疗效缺铁性贫血、巨幼细胞性贫血患者治疗前,Ret仅轻度增高(也可正常或减少),给予铁剂或维生素B12、叶酸治疗后,用药3~5天后,Ret开始上升,7~10天达高峰,2周左右,Ret逐渐下降,表明治疗有效医学*教育*网整理。3、骨髓移植后监测骨髓移植后第21天,如Ret大于15×109/L,表示无移植并发症;小于15×109/L,伴嗜中性粒细胞和血小板增高,可能为骨髓移植失败。4、网织红细胞生成指数(RPI)是网织红细胞生成相当于正常人的倍数。不同生理、病理情况下,Ret从骨髓释放人外周血所需时间不同,故Ret计数值不能确切反映骨髓红细胞系统造血功能,还应考虑Ret生存期限。通常Ret生存期限约为2d,若未成熟网织红

转录因子SP1对肿瘤转移的调控

转录因子Sp1对肿瘤转移的调控 闫隆鑫1,刘波1*,任海军2* 摘要转录因子SP1(transcription factor Sp1,SP1)在人体细胞中普遍表达并参与调控细胞增殖、凋亡及胚胎发育等生理活动。实验证实SP1在肿瘤细胞中存在异常表达,并积极调控肺癌、胃癌、乳腺癌等肿瘤的转移、恶变,但对其参与肿瘤细胞转移的机制,尤其在不同细胞系中,SP1的表达量及蛋白修饰,对肿瘤转移各阶段的影响,还不甚明确。本文整理了近期关于SP1参与调控肿瘤转移的研究及SP1的协同调控因子,藉此探究SP1在肿瘤监测及治疗中的发展方向。 关键词:转录因子SP1; 肿瘤; 转移 0 引言 肿瘤细胞的转移意味着肿瘤恶性程度增加,大部分肿瘤患者在临床确诊时已经存在肿瘤转移,常规治疗死亡率极高;而一旦诊断为肿瘤,由于不能确定其是否转移,往往会接受过度治疗,因此有关肿瘤细胞转移活性的检测是肿瘤治疗的关键。良性肿瘤发展为转移性肿瘤至少包括四个相互关联的过程:肿瘤细胞表面黏附分子减少,肿瘤间粘附能力下降;原细胞间基质分解,并在肿瘤细胞诱导下重建适宜肿瘤生长的基质;肿瘤细胞变形并生长出伪足,通过血管、淋巴管迁移到特定的侵入点;肿瘤细胞分裂增殖,在新区域生成血管,成为肿瘤组织[1]。转录调控因子参与调控相关蛋白的表达,往往存在异常表达的情况,在肿瘤转移过程中起到至关重要的调控作用。因此对肿瘤中转录调控因子的检测,能够在早期判断肿瘤转移的情况并对肿瘤转移的活性加以抑制。 SP1是人体细胞中广泛存在的转录调控因子,属于Sp/KLF锌指家族,通常作为主要的GC盒转录激活因子参与调控目标基因的表达。SP1的羧基端含有三个锌指结构,能够特异性结合DNA启动子的GC盒;SP1蛋白中段为其活化区,参与调控目的基因表达以及与其他转录调控因子的结合[2];氨基端有一蛋白水解位点,能够引起泛素化诱导的SP1分解[3]。SP1在结合到目的基因启动子的同时,可以招募其他调控因子及SP1本身参与表达调控,因而与DNA的结合能力、转录调控区活性以及SP1在细胞内的含量对SP1参与的调控有重要的意义[4, 5]。SP1在肿瘤初期大量积累并积极调控肿瘤发展的各个阶段[6],过表达的SP1参与诱导肿瘤增殖、凋亡,但对肿瘤转移的调控,不同肿瘤细胞系对SP1过表达有着不同 基金项目:大连市卫生局医学研究课题(WSJ/KJC-01-JL-01);中央高校基本科研业务费(DUT15LK16); 作者单位:1.大连理工大学生物医学工程系,辽宁省大连市,116024;2.大连市友谊医院普外科,辽宁省大连市,116100; 通信作者:任海军,E-mail:renhaijun369@https://www.wendangku.net/doc/7515235694.html,; 刘波,E-mail: lbo@https://www.wendangku.net/doc/7515235694.html,; 作者简介:(1996-),男,本科,在读本科生,主要研究方向生物医学工程

促红细胞生成素的作用

促红细胞生成素的作用 良好的血液循环是组织细胞获得充足的氧和营养物质供应并排除代谢产物基本保证。各种原因引起组织器官血液灌注量减少时常发生缺血性损伤,而缺血的组织、器官经恢复血流灌注后不但不能使其功能和结构恢复,反而加重其功能障碍和结构损伤的现象称为缺血-再灌注损伤(ischemi-a-reperfusion injury)。肝缺血再灌注损伤(Hepatic ischemia reperfusion injury HIRI)是肝脏外科手术期间非常重要的并发症,一些长时间的肝脏大手术尤其是肝脏移植手术往往会存在肝脏缺血的过程[1],同时肝缺血再灌注损伤还可以影响肝切除后肝脏的再生及肝功能的恢复,因此,如何进行围术期的肝脏保护研究,合理用药,防治肝脏缺血再灌注损伤将具有重要的临床意义。 肝缺血再灌注损伤主要产生机制主要为(1)氧自由基生成:(2)钙超载的损伤作用;(3)细胞凋亡;(4)炎性介质的释放;(4)kupffer细胞激活及中性粒细胞的聚集、黏附并活化,增强与内皮细胞黏附[2] ;(5)内皮素(ET)和一氧化氮(NO)浓度的失衡;(6)血小板激活因子的作用;(7)微循环功能障碍等。HIRI是由于各种机制相互影响,综合作用的结果。 促红细胞生成素(erythropoietin,EPO)是一种刺激骨髓造血的糖蛋白类激素,是一种含唾液酸的酸性蛋白。人类EPO基因位于7号染色体长臂22区,相对分子量为34,000,有4个糖基化位

点。自从1989年美国Amgen公司[3]在国际上首次研制成功重组人红细胞生成素(recombinant human erythropoietin, rHuEPO), 其理化性质和生物学活性与天然内源性红细胞生成素相同。EPO 通过与靶细胞上特异性的EPO 受体(erythropoietin receptor,EPO-R)结合发挥生物效应。传统认识中,EPO 是一种作用于骨髓造血细胞,促进红系祖细胞增生、分化和成熟的内分泌激素,对机体供氧状况发挥重要的调控作用。随着近年来研究不断深入,对于EPO 的认识产生了一次革命性的飞跃,EPO 还可表现出非促红细胞生成作用。最近的研究[4]认为EPO是一种由缺氧诱导因子( hypoxia-inducibh factor, HIF)家族诱导产生的多功能细胞因子超家族成员,对于多种器官均有保护作用[5]。 研究已经发现,EPO 不仅在肾脏和肝脏中分泌,而且在脑、卵巢、输卵管、子宫和睾丸都有 EPO 的分泌,而 EPO 受体在骨髓的红细胞的前体细胞(erythroidprecursors)、巨核细胞(megakar -yocytes)、内皮细胞、脑的一些区域培养的神经元细胞以及胎盘、肾脏、心脏、肝脏均有表达。现有研究显示:rHuEPO 可与机体各处的 EPO-R 受体结合,发挥器官保护作用。目前,国内外研究报道,rHuEPO 对心、脑、肾等的 IRI 有保护作用,尤其对心、脑缺血再灌注损伤研究较多,而对肝脏的IRI的保护作用研究较少。研究表明促红细胞生成素除能调节红细胞生成以增加组织供氧外,还具有抗氧化、抗凋亡、抗炎及促进血管生成的作用,在对肝脏缺血再灌注损伤的保护具有一定的生物学机制。

ER对雌激素共调节因子NFAT3的转录调节

目的:NFAT (Nuclear factor of activated T-cell )家族在人体生理和病理过程中发挥着重要的作用,但是对NFAT3的转录调节因子却知之甚少。通过本室前期的实验,我们了解到NFAT3可以调节ER (Estrogen Receptors )的转录活性,因此,反过来,我们检测了ER 对NFAT3转录活性的影响。 方法:通过活性实验、点突变实验及RNA 干扰实验,验证ER 、雌激素及NFAT 激活剂PMA+ION 对NFAT3转录活性的影响,并通过免疫共沉淀(Co-immunoprecipitation ,Co-IP )实验检测ER 与NFAT3的相互作用,通过染色质免疫共沉淀(CHIP )实验确定ER α能否被募集到IL-2启动子上,并用核质分离实验,揭示ER α在细胞内对NFAT3定位的影响。 结果: 1. 在293T 及MDA-MB-453细胞中,ERs 可以抑制NFAT3的转录活性。 2. IP 实验证实,NFAT3和ERs 在体内存在相互作用,并且该作用不受NFAT 激活剂PMA+ION 的影响。 3. 敲低293T 细胞中的内源NFAT3后,ER α对NFAT-LUC 活性的抑制作用基 本消除,证实ER α对NFAT-LUC 报告基因的抑制需要NFAT3的参与。 4. 在分别敲低MCF-7细胞中的内源性ER α和ER β后,NFAT3的转录活性都大 幅增强。 5. 构建了两个ER α雌激素结合位点突变体,与野生型ER α相比,两个突变体 对NFAT3活性的抑制依然存在,而在加入雌激素后,对NFAT3的进一步抑制被消除,证实雌激素对NFAT3转录活性的抑制依赖ER 的活性。 6. AKT 和MAPK 重现了ER α磷酸化位点突变体ER α(S167A )和ER α(S118A ) 对NFAT3转录活性的影响。 7. CHIP 实验证实,加入ER α后,NFAT3与其靶基因IL-2启动子的结合增强, 而加入PMA+ION 后,能进一步促进该结合。 8. 通过核质分离实验发现ER α促使NFAT3入核,并且加入PMA+ION 后, NFAT3的表达增强。 结论:ER α是NFAT3的一个转录调控因子,ER α对NFAT3的转录调节受到雌激素和PMA+ION 的影响。对受NFAT3影响的多种免疫疾病、神经性疾病、心血管疾病和癌症的研究和治疗提供了新的线索。 关键词:ER ,NFAT3,相互作用,磷酸化,转录活性 致谢:该工作得到国家自然科学基金(30530320,30625035,30500191),973计划 P2-44 ER 对雌激素共调节因子NFAT3的转录调节 秦玺,王晓辉,杨智洪,丁丽华,徐小洁,程龙,牛畅,孙慧伟,张浩,叶棋浓 军事医学科学院生物工程研究所,北京市海淀区太平路27号院工作区北楼2121,100850 (xiba315@https://www.wendangku.net/doc/7515235694.html,)

网织红细胞的临床意义

网织红细胞的临床意义标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

网织红细胞的临床意义 网织红细胞计数(尤其是网织红细胞绝对值)是反映骨髓造血功能的重要指标。正常情况下,骨髓中网织红细胞均值为150×109/L,血液中为65×109/L。当骨髓Ret增多,外周血减少时,提示释放障碍;骨髓和外周血Ret均增加,提示为释放增加。从网织红细胞成熟类型获得红细胞生成活性的其他信息,正常时,外周血网织红细胞中Ⅲ型约占20%~30%,Ⅳ型约占70%~80%,若骨髓增生明显,可出现Ⅰ型和Ⅱ型Ret。 1、判断骨髓红细胞造血情况(1)增多:见于①溶血性贫血:溶血时大量网织红细胞进入血循环,Ret可达6%~8%,急性溶血时,可达约20%,甚至50%以上,绝对值超过 100×109/L。急性失血后,5~10d网织红细胞达高峰,2周后恢复正常。②放疗、化疗后:恢复造血时,Ret短暂和迅速增高,是骨髓恢复较敏感的指标。③红系无效造血:骨髓中红系增生活跃,外周血网织红细胞计数正常或轻度增高。(2)减少:见于再生障碍性贫血、溶血性贫血再障危象。典型再生障碍性贫血诊断标准之一是Ret计数常低于,绝对值低于15×10 9/L。 2、观察贫血疗效缺铁性贫血、巨幼细胞性贫血患者治疗前,Ret仅轻度增高(也可正常或减少),给予铁剂或维生素 B12、叶酸治疗后,用药3~5天后,Ret开始上升,7~10天达高峰,2周左右,Ret逐渐下降,表明治疗有效医学*教育*网整理。 3、骨髓移植后监测骨髓移植后第21天,如Ret大于15×109/L,表示无移植并发症;小于15×109/L,伴嗜中性粒细胞和血小板增高,可能为骨髓移植失败。 4、网织红细胞生成指数(RPI)是网织红细胞生成相当于正常人的倍数。不同生理、病理情况下,Ret从骨髓释放人外周血所需时间不同,故Ret计数值不能确切反映骨髓红细胞系统造血功能,还应考虑Ret生存期限。通常Ret生存期限约为2d,若未成熟网织红细胞提前释放人血,Ret生存期限将延长,为了纠正网织红细胞提前释放引起的偏差,用网织RPI来反映Ret生成速率。计算公式为:被测网织红细胞百分比。在估计红细胞生成有效性方面,使用RPI较准确。

红细胞的生成与破坏

红细胞的生成与破坏 红细胞的生成过程 红细胞系发育的过程是从原红细胞开始的。原红细胞体积大,胞核也大而圆,染色质细粒状,核仁1~3个,胞质呈强碱性。由原红细胞发育成为早幼红细胞时,核染色质变粗,胞质内开始合成血红蛋白。早幼红细胞约经四次分裂发育为中幼红细胞。中幼红细胞胞体较小,核染色质呈粗块状,胞质内血红蛋白渐增多。中幼红细胞再增殖,分化,发育成为胞体更小、核固缩、胞质内充满血红蛋白的晚幼红细胞。晚幼红细胞已无分裂能力,它脱去细胞核后就成为网织红细胞,网织红细胞再发育成为成熟红细胞而释放入血液循环。 红细胞生成的调节 组织缺O2是促进红细胞生成的有效刺激。不论何种原因而引起的组织缺氧,都能促进红骨髓加速生成和释放红细胞。实验表明,缺O2能促进肾脏产生一种红细胞生成酶,此酶作用于血浆中促红细胞生成素原,使它转化为促红细胞生成素(激素)。这种激素由血液运送至骨髓,作用于原红细胞膜上的受体,促使这些细胞加速增殖分化并发育为成熟的红细胞,此外,肝细胞和巨噬细胞也可能产生促红细胞生成素。 雄性激素不但能直接刺激骨髓成血组织,加速红细胞生成,而且还能作用于肾脏使红细胞生成酶的活性提高,从而使血液中红细胞数量增多。这就可能解释成年男性红细胞的数量多于女性的原因。 红细胞的破坏 红细胞因衰老而被破坏,但也可因其他物理的、化学的或其他病理原因而被破坏。正常时红细胞的更新率每日约为1%,比其他组织为高。红细胞衰老时,细胞膜的可塑性减小而脆性增加,它可因血流撞击血管壁或因穿过毛细血管被压挤变形而破裂,此时膜内酶活性下降也影响膜的坚固性而导致破裂。此外,麻醉剂和毒素等也可使红细胞膜的脂质溶解;在免疫过程中,抗体和补体吸附到细胞膜上可使红细胞致敏并产生凝集现象,最终导致细胞破裂。红细胞破坏后,血管中的中性粒细胞和单核细胞可将其吞噬,也可当血液流经肝和脾脏时,被其中的网状内皮系统的巨噬细胞清除。红细胞被吞噬后,血红蛋白分解成珠蛋白和血红素,二者均可被摄取回收再利用。 红细胞异常增多与贫血 红细胞不断被破坏,也不断再生成,形成动态平衡,使红细胞数量保持相对稳定。如生成或与破坏发生异常,即造成红细胞数量过多或过少。 红细胞增多症红细胞数高达6~8百万/mm3,或以上时,称之为红细胞增多症。例如由于空气中氧含量减少或由于机体运输氧的功能发生障碍,造成组织缺氧,使造血器官活动加强,生成更多的红细胞。它也可以由于造血器官过多增生或癌发而造成。红细胞数量增多可使血液粘滞度增加,使微血管易于阻塞,循环阻力加大,心脏负担加重。 贫血外周血液中血红蛋白量或红细胞计数低于正常值,均称为贫血。它的发生可以由于①生成原料缺乏:最常见的为缺乏Fe2+时,为缺铁性贫血;其次是缺乏VB12、叶酸等促使红细胞分化和成熟的物质,为恶性贫血。②造血器官功能障碍:某些化学毒物或X、γ射线的

网织红细胞的临床意义

网织红细胞的临床意义 This model paper was revised by the Standardization Office on December 10, 2020

网织红细胞的临床意义 网织红细胞计数(尤其是网织红细胞绝对值)是反映骨髓造血功能的重要指标。正常情况下,骨髓中网织红细胞均值为150×109/L,血液中为65×109/L。当骨髓Ret增多,外周血减少时,提示释放障碍;骨髓和外周血Ret均增加,提示为释放增加。从网织红细胞成熟类型获得红细胞生成活性的其他信息,正常时,外周血网织红细胞中Ⅲ型约占20%~30%,Ⅳ型约占70%~80%,若骨髓增生明显,可出现Ⅰ型和Ⅱ型Ret。 1、判断骨髓红细胞造血情况(1)增多:见于①溶血性贫血:溶血时大量网织红细胞进入血循环,Ret可达6%~8%,急性溶血时,可达约20%,甚至50%以上,绝对值超过 100×109/L。急性失血后,5~10d网织红细胞达高峰,2周后恢复正常。②放疗、化疗后:恢复造血时,Ret短暂和迅速增高,是骨髓恢复较敏感的指标。③红系无效造血:骨髓中红系增生活跃,外周血网织红细胞计数正常或轻度增高。(2)减少:见于再生障碍性贫血、溶血性贫血再障危象。典型再生障碍性贫血诊断标准之一是Ret计数常低于,绝对值低于15×10 9/L。 2、观察贫血疗效缺铁性贫血、巨幼细胞性贫血患者治疗前,Ret仅轻度增高(也可正常或减少),给予铁剂或维生素 B12、叶酸治疗后,用药3~5天后,Ret开始上升,7~10天达高峰,2周左右,Ret逐渐下降,表明治疗有效医学*教育*网整理。 3、骨髓移植后监测骨髓移植后第21天,如Ret大于15×109/L,表示无移植并发症;小于15×109/L,伴嗜中性粒细胞和血小板增高,可能为骨髓移植失败。 4、网织红细胞生成指数(RPI)是网织红细胞生成相当于正常人的倍数。不同生理、病理情况下,Ret从骨髓释放人外周血所需时间不同,故Ret计数值不能确切反映骨髓红细胞系统造血功能,还应考虑Ret生存期限。通常Ret生存期限约为2d,若未成熟网织红细胞提前释放人血,Ret生存期限将延长,为了纠正网织红细胞提前释放引起的偏差,用网织RPI来反映Ret生成速率。计算公式为:被测网织红细胞百分比。在估计红细胞生成有效性方面,使用RPI较准确。

相关文档