文档库 最新最全的文档下载
当前位置:文档库 › spss方差分析操作示范-步骤-例子

spss方差分析操作示范-步骤-例子

spss方差分析操作示范-步骤-例子
spss方差分析操作示范-步骤-例子

第五节方差分析的SPSS操作

一、完全随机设计的单因素方差分析

1.数据

采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):

图 6-3 单因素方差分析数据输入

将上述数据文件保存为“6-6-1.sav”。

2.理论分析

要比较不同组学生成绩平均值之间是否存在显着性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显着的问题。从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。

3.单因素方差分析过程

(1)主效应的检验

假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显着性,可依下列操作进行。

①单击主菜单Analyze/Compare Means/One-Wa y Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:

图6-4:One-Way Anova主对话框

②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。设置如下图6-5所示:

图6-5:One-Way Anova的Options对话框

点击Continue,返回主对话框。

③在主对话框中点击OK,得到单因素方差分析结果

4.结果及解释

(1)输出方差齐性检验结果

Test of Homogeneity of Variances

MATH

Levene Statistic df1df2Sig.

435.313

上表结果显示,Levene方差齐性检验统计量的值为,Sig=>,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。

(2)输出方差分析主效应检验结果(方差分析表)

ANOVA

MATH

Sum of Squares df Mean Square F Sig.

Between Groups4.023

Within Groups35

Total39

上面方差分析结果显示:组间平方和为,组内平方和为;组间自由度为4,组内自由度为35;组间均方为,组内均方为;F检验统计量的值为,对应的概率P值为<,说明在的显着性水平下,在不同班主任的班级中数学成绩有显着差异。

5.单因素方差分析的Post Hoc多重比较

上面分析结果显示,五个组的平均值存在显着差异,但是并不能告诉我们究竟是哪些组之间的差异显着。如果想同时回答存在差异的原因,就需要进行平均数的多重比较。SPSS可以直接进行平均数差异的多重比较,具体操作如下:

(1)在One-Way Anova的主对话窗口,单击按钮Post Hoc…进入多重比较方法选择对话框(如图6-6所示)。

图6-6:单样本方差分析多重比较定义窗口

(2)在上面对话框中有两组不同假设下的方法可供选择,上面为方差齐性前提下(Equal Variances Assumed)的方法,下面为没有假定方差齐性时(Equal Variances Not Assumed)的多重比较方法选择。

单因素方差分析的Post Hoc提供的多重比较的方法在方差齐性的假设条件下常用的主要有:LSD (最小显着差法),Duncan(Duncan多范围检验),S-N-K(Student-Newman-Keuls检验,有称q检验),Tukey(Honestly显着差异检验),Tukey’s-b(Tukey的另一种检验方法),Bonferroni (Bonferroni检验),Scheffe(Scheffe检验)等,不同检验方法所依据的检验准则稍有差异,检验结果也不完全相同,这里不具体介绍各种方法的具体检验原理,感兴趣的读者可以参考有关文献(Miller,1966; Games,1971a,1971b;)。由于在本书中只涉及方差齐性条件满足的情况,所以关于没有方差齐性假设条

件或方差齐性条件不满足时的多重比较方法这里不作介绍。

在上面所举的例子中,不同任课教师担任办主任的班级,其数学成绩存在显着差异,下面我们进一步检验究竟是那两个组的差异显着。在多重比较窗口,选择S-N-K检验,单击Continue返回主对话框。

(3)在主对话框点击OK按钮运行程序,即可输出结果。

6.多重比较结果及解释

这时的输出结果,除了上面显示的方差齐性的检验结果和方差分析表外,还有多重检验的结果,多重检验结果为:

MATH

Student-Newman-Keuls

N S ubset for alpha = .05

GROUP12

48

38

28

58

18

Sig..175.195

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = .

上述分析结果表明,在的显着性水平下,5个组可以分成同质的2个大组,第一大组包括原来的第4组、第3组和第2组;第2大组包括原来的第3组、第2组、第5组和第1组。说明第4组、第5组与第1组的数学平均成绩存在差异,而第4组与第2组和第3组的差异不显着,第1组、第5组和第2组和第3组的差异也不显着。

二、随机区组设计的方差分析

在随机区组设计中,每一区组应接受全部实验处理,每种实验处理在每一区组中重复的次数也应该相同。利用SPSS程序可以进行被试之间的差异检验、处理之间的差异检验及各种交互效应的检验。SPSS 中没有提供可直接用于区组设计的分析程序,但用户可以根据实验设计中具体情况选择普通因素模型(即所有的因素变量都是被试间因素)或重复测量模型(至少有一个因素变量是被试内因素)。同一区组内的每一个被试如果接受了全部实验处理,应该选择重复测量模型;如果同一区组内的被试随机接受不同的实验处理,即一个被试只接受一种处理,则应选择普通因素模型。不同的模型对数据的表现形式会有所不同。普通因素模型要求实验处理结果即因变量只表现为一个,不同水平下的观测结果用因素变量的变量值加以对应区分。在重复测量模型中,不同的实验处理结果应表现为不同的变量,不要求因素变量必须存在。下面我们先介绍普通因素模型。

(一)、随机区组设计的普通因素模型(被试间设计)

1.数据输入

例7.为了研究四种夹角(15度、30度、45度和60度)条件下,缪勒-莱尔错觉试验错觉量之间

的差异,随机选取4组同质被试,每组8名,总共32名被试。每组同质的8名被试再随机分成4组,每组2人随机接受一种夹角下的缪勒-莱尔错觉试验,试验结果如下表:

15度30度45度60度

区组1

区组2

区组3

区组4

分析四种不同夹角条件下,缪勒-莱尔错觉试验的平均错觉量有无显着差异,并进一步说明哪些组存在差异。

我们在句法窗口(syntax)用语句输入数据,具体语句如下(文件6-6-2.sps):

DATA LIST FREE/ BLOCK COND DELUSION.

BEGIN DATA.

1 1

1 2

1 3

1 4

1 1

1 2

1 3

1 4

2 1

2 2

2 3

2 4

2 1

2 2

2 3

2 4

3 1

3 2

3 3

3 4

3 1

3 2

3 3

3 4

4 1

4 2

4 3

4 4

4 1

4 2

4 3

4 4

END DATA.

在句法窗口选择菜单Run/All,得到数据文件,保存为“6-6-2.sav”。

2.理论分析

在上述数据文件中,共有三个变量依次是区组变量BLOCK ,实验处理的条件COND,实验结果即错觉量DELUSION。其中BLOCK 与COND都是因素变量,并且各有四个水平。上述实验数据的表现是基于如下假设:样本容量为32,分4个区组,每个区组有8名被试,共有4种不同的实验处理条件;在实验中,随机安排同一区组内的两名被试接受同一种实验处理,这样每一区组的被试又被随机分成了4组,每一组接受一种不同的实验处理。

现在我们的目的在于检验四种实验处理条件下错觉量是否有显着性差异,也想检验四个区组之间是否存在显着性差异。所以从理论上属于区组设计的实验设计。

3.随机区组被试间设计的SPSS操作过程

(1)单击主菜单Analyze/general linear model / Univariate…,打开主对话框。把变量DELUSION 选入到因变量(dependent)框中,同时我们假定目前的区组数目及实验处理条件已经全部包括在实验中,所以把BLOCK 与COND都选入到固定因素(fixed factors)框中,如下图6-7所示:

图6-7:一般因素方差分析主对话框

(2)指定分析模型

即指定在方差分析中需要哪些因素主效应或交互效应。单击按钮Model…,进入模型(Model)

设置对话框。

①Full factorial 全模型,包括所有因素主效应、交互效应、协变量主效应等。是系统默认的模

型。

②Custom 自定义模型。用户可以选择自己实验中感兴趣的效应。

Build terms单击向下的小三角可以选择多种不同的效应,如本例中我们选择两个因素的主效应Main effects。

③Sum of 提供了四种分解平方和的方法,系统推荐第三种即回归法。

④Include intercept in model 如果选中该复选框,表明在模型中包括截距。如果你能确定回归

线不通过原点,可以把截距排除在外。

⑤Factors&框中所列出的是主对话框中所选的因素,一般包括固定因素(变量名后附以F)、随机

因素(变量名后附以R)、协变量因素(变量名后附以C)。在上面定义的模型中只含有固定因素。

本例中我们所感兴趣的是COND中四种水平下实验结果的差异性,同时也想检验区组效应,对于区组设计假设因素与区组间不存在交互作用,所以只选择了两个固定因素的主效应。点击Continue返回主对话框。上述设置如下图6-8所示:

图6-8:模型定义对话框

(2)选择输出图形

单击主对话框按钮plot…,可进入图形设置对话框。我们在此把BLOCK作为横坐标选入到horizontal axis),把COND选入到Separate lines框中,然后单击ADD按钮。即要求程序为我们在一个图中输出四种处理条件下的折线图,以便于我们判断处理条件与区组是否存在交互作用。点击Continue返回主对话框。上面设置如下图6-9所示:

图6-9:图形设置对话框

(3)选择多重比较的因素变量及方法

单击POST HOC…按钮进入定义事后检验的对话框。左边列出了因素变量,如果需要,用户可以把指定进行多重比较分析的变量选入到右边变量列中,并在下面选择多种比较的方法,请注意,上半部分是方差齐性假设下的方法,下半部分是方差不齐时的方法。在方差齐性假定满足的条件下,系统推荐使用Bonferroni 方法与 Tukey 方法。在本例中,由于我们在OPTIONS中进行COND各水平的比较,所以在此不再重复选择。(本例图略,请读者自行操作并查看。)点击Continue返回主对话框。

(4)选项按钮的使用

单击Options…按钮进入到它的对话框如图6-10所示,我们可以要求显示指定的因变量各水平的平均数并比较各水平下的均值差异性。本例中我们指定显示COND的各水平下的均值并对之进行多重比较。为此我们把COND选入到右边框中,并选中它下面的要求比较主效应的复选框,系统默认的多重比较的方法是LSD。

同时,还需要对对COND各水平的方差是否齐性进行检验。为此,我们选中Homogeneity tests。如果需要观察该变量的残差图,还可以选择Resual plots,系统会产生分别以残差的观测值、预测值和标准化值为坐标的图。

最下面一行用来定义显着性水平,系统默认值是。设置完成后,点击Continue返回主对话框。

图6-10:Options选择对话框

5)点击ok,得到输出结果。

4.随机区组被试间设计SPSS输出结果及解释

(1)输出组间因素描述结果。

Between-Subjects Factors

N

BLOCK18

28

38

48

COND18

28

38

48

上表列出了两个组间因素的水平数及各水平的被试数目,如对于组间因素COND,共有4个不同的处理水平,接受每种处理的被试为8人。

(2)输出因变量不同组方差的齐性检验结果

Levene's Test of Equality of Error Variances

F df1df2Sig.

1516.266

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a Design: Intercept+BLOCK+COND

本例中由于Sig=.266<.05,所以差异不显着,方差齐性。

(3)输出组间因素效应检验结果

Tests of Between-Subjects Effects

Dependent Variable: DELUSION

Source T ype III Sum of Squares df Mean Square F Sig.

Corrected Model6.000

Intercept1.000

BLOCK3.000

COND3.000

Error25.128

Total32

Corrected Total31

a R Squared = .814 (Adjusted R Squared = .770)

上述结果显示:总的平方和()被分解为处理(此处用变量COND表示)平方和()、区组平方和()和误差平方和三个部分。检验结果表明:COND因素主效应显着(F=,P<),BLOCK因素主效应显着(F=,P<。(4)因变量DELUSION在COND四个水平上的平均值、标准差及置信区间

Estimates

Dependent Variable: DELUSION

COND

Mean Std. Error 95% Confidence Interval

Lower Bound Upper Bound

1

.126 2 .126 3 .126 4

.126

上述结果显示,15度夹角条件下,错觉实验得到错觉量的平均值为,标准误为,95%的置信区间为(,);30度夹角条件下,错觉实验得到错觉量的平均值为,标准误为,95%的置信区间为(,);45度夹角条件下,错觉实验得到错觉量的平均值为,标准误为,95%的置信区间为(,);60度夹角条件下,错觉实验得到错觉量的平均值为,标准误为,95%的置信区间为(,)。 (5)因变量DELUSION 在COND 四个水平上的平均数的多重比较表 Pairwise Comparisons

Dependent Variable: DELUSION

(I) COND (J) COND Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

for Difference

Lower Bound Upper Bound

1

2 .150 .179 .409 .518

3 .675*

.179 .001 .307 4 * .179 .000 .944

2 1 .179 .409 .218

3 .525*

.179 .007 .157 .893

4 * .179 .000 .794

3 1 * .179 .001 2 * .179 .007

4 .638*

.179 .001 .269

4

1 * .179 .000

2 * .179 .000 3

*

.179 .001

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

上述多重比较结果显示,第1种条件下错觉量的平均值显着大于第3种(平均数的差为,对应的P<)和第4种条件下(平均数的差为,对应的P<的错觉量;第2种条件下错觉量的平均值也显着大于第3种(平均数的差为,对应的P<)和第4种条件下(平均数的差为,对应的P<的错觉量;第3种条件下错觉量的平均值显着大于第4种(平均数的差为,对应的P<)。

(6) 因变量DELUSION 的边缘平均数显示图(如图6-11所示)

图8-10

通过该图我们可以判断因素变量COND 与BLOCK 之间是否存在交互作用。如果图中四条线呈平行状态,那么两因素没有交互作用存在,如果四条线有相交的情况出现,则说明存在交互作用。现在图中所显示的四条线都呈平行状态,表明两个因素变量不存在交互作用。 (7)输出残差分析图

图6-12:残差图

判断方差是否齐性还有一种图形方法,如图6-12所示是矩阵散点图。所有行变量都是纵坐标,所有列变量都是横坐标。如第一行第二列的图是以Observed 为纵坐标,以Predicted 为横坐标显示的。如第二行第一列的图是以Predicted 为纵坐标,以Observed 为横坐标显示的。如果在以观测值和期望值为坐标的残差图中,散点分布接近于一条直线,说明方差齐性的假设成立,当然这样的判断带有一定的主观性,要想确切了解方差是否齐性最好用上面介绍过的检验方法。

从上面的分析过程可以看出,对于随机区组设计的普通因素模型(被试间),SPSS 实际上是将因素和区组都看成因素来处理,只是在结果解释时才区分区组和因素。读者可以自行比较这一过程与后面多因素完全随机试验设计方差分析的区别和联系。

(二)、随机区组设计的重复测量模型

E s t i m a t e d M a r g i n a l M e a n s

1、数据

例8:随机选取18名被试,按照被试特征分为同质的3各组,每组6名被试;每个被试分别接受四种不同的实验处理,试回答四种处理的实验效果是否相同,并回答3个区组的实验结果是否存在显着差异。用SPSS的句法SYTAX窗口输入数据(6-6-3.sps),语句如下:

Data list free/gender block result1 result2 result3 result4.

Begin data.

1 11 10 11 10

2 10 10 11 10

3 10 10 10 9

1 9 9 9 9

2 10 10 11 10

3 9 10 11 9

1 9 10 10 9

2 8 9 9 8

3 6 5 7 9

1 10 10 11 9

2 10 9 11 6

3 9 9 10 5

1 5 8 9 11

2 10 6 7 10

3 8 10 9 11

1 6 9 6 10

2 10 12 14 15

3 12 13 1

4 15

End data.

执行上述语句,得到数据表现格式如下图6-13所示:

图6-13:重复测量区组设计数据输入

2、理论分析实验设计

样本容量为18,分3个区组(block),每个区组6名被试,4种不同的实验处理(从result1 到

result4)。要求同一区组内的每名被试接受全部实验处理。这种设计可称作重复测量或相关样本设计。现在我们整个实验设计的变量共有两个被试间因素,一个是block(有3个水平),一个被试内因素,我们不妨把它定义为RESULT(共有4个水平)。

在此请读者自行比较本篇上半部分所阐述完全随机设计的方差分析与区组设计的普通因素模型,就会发现它们的差异所在。我们也想再一次说明,由于SPSS统计软件对数据表现形式的要求比较严格,所以数据分析与实验设计必须相结合,不同的实验设计必须采用合适的数据录入方式以及合适的分析程序,否则很容易因机械套用程序命令而导致结果的不准确。

4、SPSS操作过程

(1)获得工作数据后,从主菜单Analyze/General Linear Model/Repeated Measures…进行主对话框如图6-14所示。把Within-Subject Factor后面框中默认的被试内变量的名称factor1改为result,下面的水平数设为4,然后单击Add按钮,完成设置如图6-14中所示。

图6-14:被试内因素定义对话框

(2)单击Define出现重复测量模型定义主对话框(图6-15)。把左边变量列表中的被试内变量水平result1到relult4全部选入到右边被试内变量列表(即Within-Subjects)中去,用鼠标单击block,再单击相应的小三角按钮,把它选入到被试间变量列表中去,完成设置后如下图6-15所示:

图6-15:重复测量模型定义主对话框

(3)单击Con trasts…按钮,打开下面对话框。变量列表中显示了除协变量以外的所有变量名称。如果需要事前检验,可以从Contrasts后面小三角下拉项中选择。下面列出这些检验方法的使用注意事项:

①None无事先检验

②Deviation只能用于被试间因素,不能用于被试内因素。比较每个水平与总体的效应差异,忽略第一个或最后一个水平。

③Simple只用于被试间因素,不能用于被试内因素。每一水平都与参考水平即第一个或最后一个

进行效应差异检验。

④Difference每一个水平的效应都与它前面所有水平的平均效应进行差异检验。

⑤Helmet每一水平的效应都与它后面所有水平的平均效应进行差异检验。

⑥Repeated对相邻水平进行差异检验。只用于被试间因素,不能用于被试内因素。

⑦Polynomial多项式比较。每一级自由度包括线性效应与变量水平的交互效应。第二级包括二次

效应…等等。各水平的效应间距假设相等。

系统对被试内变量的默认设置是多项式比较。如下图6-16所示:

图6-16:事先计划对照定义窗口

(4)单击Options按钮打开的对话框如图6-17所示。假如实验条件可以造成显着性差异,我们需要进行事后检验,在此我们先强制要求进行多重比较,以便在发现差异后可以马上查看多重比较的结果。所以,我们把result变量从左边变量列表中选入到右边Display Means for:表中,并选中下面的复选框Compare main effects。同时为了查看我们整个模型的合适性,我们在最下方的复选项lack of fit test,它可以提供用户所使用的模型的合适性检验结果。

图6-17:Options窗口

单击Continue按钮回到主话框。

(5)单击OK按钮程序进行计算,得到输出结果。

4.结果及解释

(1)显示被试内因素的水平数及名称

Within-Subjects Factors

Measure: MEASURE_1

RESULT Dependent Variable

1RESULT1

2RESULT2

3RESULT3

4RESULT4

表明被试内因素有四个水平,依次被命名为:result1,result2,result3和result4。

(2)显示被试间因素的水平数及样本容量

Between-Subjects Factors

N

BLOCK6

6

6

本例中被试间的区组因素共有3个水平,每个水平被试人数为6人。

(3)显示多元假设检验结果 SPSS提供四种显着性检验结果,四种的判别力相差不大,但一般来说Pillai’s Trace判别力更强一些,基于它的显着性水平,在违反方差分析假设前提的条件下,在多数情况下也是正确的。

Multivariate Tests

Effect Value F Hypothesis df Error df Sig.

RESULT Pillai's Trace.376.096

Wilks' Lambda.624.096

Hotelling's Trace.602.096

Roy's Largest Root.602.096 RESULT * BLOCK Pillai's Trace.208.540.773

Wilks' Lambda.794.528.782

Hotelling's Trace.256.513.793

Roy's Largest Root.246.364

a Exact statistic

b The statisti

c is an upper boun

d on F that yields a lower bound on th

e significance level.

c Design: Intercept+BLOCK Within Subjects Design: RESULT

此处所有的Sig均大于,表明所有的变量及变量交互作用效应均不显着。

(4)球形检验一种假设检验的方法。重复测量的计算并非直接计算平均数之间的差异是否显着,而是先对变量进行转换。一元方法要求变换变量方差协方差阵的对角线上有恒定方差,非对角线上方差为0。而多元方法未对方差协方差阵的特征进行假定。在上述条件满足的情况下,一元方法比多元方法更强,更可能检验出它们之间存在的差异。所以已有建议,在违反假定时,修改一元结果,作校正检验。但校正检验的显着性水平总是大于未作样校正检验的显着性水平。因此,如果未校正的检验不显着,则没必要计算校正值。为了选择一元还是多元结果,我们需要进行球形检验。

球形检验零假设:所有变换变量方差相等。

球形检验备择假设:所有变换变量方差不相等。

在水平上,如果显着性水平小于或等于,则拒绝零假设,接受备择假设。

如果零假设不成立,则SPSS自动计算三个Epsilon,使程序在计算F值时校正分子分母。

Mauchly's Test of Sphericity

Measure: MEASURE_1

Mauchly's W Approx.

Chi-Square

df Sig.Epsilon

Within Subjects Effect Greenhouse-G

eisser

Huynh-Feldt Lower-bound

RESULT.3755.020.622.802.333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b Design: Intercept+BLOCK Within Subjects Design: RESULT

本实验设计中球形检验结果如下表所示:Sig<,所以不能认为变换变量方差相等。如果要用一元结果,需要使用校正结果(见后续表格)。

(5)一元检验结果,包括未作校正的与校正过的结果 Sphericity Assumed所在行为未校正的结果,下面其余三行结果为校正过的结果。

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source Type III Sum of

Squares

df Mean Square F Sig.

RESULT Sphericity

Assumed

3.233

Greenhouse-Geiss

er

.245

Huynh-Feldt.240

Lower-bound.243 RESULT * BLOCK Sphericity

Assumed

6.741.32

7.919

Greenhouse-Geiss

er

.327.846

Huynh-Feldt.924.327.888

Lower-bound.327.726 Error(RESULT)Sphericity

Assumed

45

Greenhouse-Geiss

er

Huynh-Feldt

Lower-bound

应选用一元检验的结果。

从上表结果可以看出,四种检验结果的显着性水平均大于,所以RESULT四个水平或四种实验处理之间不存在显着性差异。结果与多元检验结果一致。

(6)正交多项式检验可以检验是否具有线性趋势、二次趋势及三次趋势的存在。

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source RESULT Type III Sum of Squares df Mean Square

F Sig. RESULT

Linear 1 .189 Quadratic

1 .327

Cubic 1 .942 .347 RESULT * BLOCK

Linear .822 2 .411 .112 .895 Quadratic

.333

2 .167

.086 .918

Cubic

2

.279 Error(RESULT)

Linear 15 Quadratic

15

Cubic

15

结果显示的显着性水平sig>,表明所检验的变量及变量交互效应都没有明显的趋势存在。 (7)常数项与被试间因素的显着性检验

Tests of Between-Subjects Effects Measure: MEASURE_1

Transformed Variable: Average

Source Type III Sum of Squares df Mean Square

F Sig. Intercept

1 .000 BLOCK

2

.229 .798

Error

15

这里常数项显着性水平为0,表明常项为0的假设不成立。BLOCK 显着性水平大于,表明区组效应均不显着。

(8)被试内因素各水平的均值、标准差与置信区间。 RESULT Estimates

Estimates

Measure: MEASURE_1

Mean Std. Error 95% Confidence Interval

RESULT

Lower Bound

Upper Bound

1 .433

2 .456

3 .515 4

.613

上述结果显示,第1种处理下因变量的平均值为,标准误为,95%的置信区间为,。同理可以得出其他处理组的均值、标准误和95%的置信区间。

(9)被试内因素间的多重比较 由于上面所进行的各种差异检验并未发现result 各水平间存在显着性差异,所以忽略对下表的解释。

Pairwise Comparisons Measure: MEASURE_1

Mean Difference

Std. Error Sig. 95% Confidence

Interval for

(I-J)Difference

(I) RESULT(J) RESULT Lower Bound Upper Bound

12.389.333.440

3.383.020

4.682.306.731

21.389.389.333

3.273.041

4.557.558.853

31.383.020.183

2.611.27

3.041

4.278.603.652

41.722.682.306

2.33

3.557.558

3.603.652

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

(10)根据估计边缘平均数计算的RESULT多元显着性检验结果显示也没有显着性差异。

Multivariate Tests

Value F Hypothesis df Error df Sig.

Pillai's trace.376.096

Wilks' lambda.624.096

Hotelling's trace.602.096

Roy's largest root.602.096

Each F tests the multivariate effect of RESULT. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

a Exact statistic

二、完全随机设计的多因素方差分析

上述的单因素方差分析,用于分析只有一个因素的实验设计,但是在实际应用中,经常会遇到几个因素同时影响实验结果的情况,这时就需要用到多因素的方差分析,下面结合实例简单介绍一下用SPSS 如何对完全随机设计的多因素进行方差分析。

采用本章例6所用的关于教学方法和教学态度对儿童识字量影响的完全随机试验设计的例子。

1.数据输入

数据可以以下列方式在句法窗口(Syntax)输入(6-6-4.sps):

data list free/ a b amount.

Begin data

1 1 8

1 1 20

1 1 12

1 1 14

1 1 10

1 2 39

1 2 26

1 2 31

1 2 45

1 2 40

2 1 17

2 1 21

2 1 20

2 1 17

2 1 20

2 2 32

2 2 23

2 2 28

2 2 25

2 2 29

end data.

点击句法窗口主菜单Run/All运行上面的语句,在数据编辑窗口生成所要分析的数据文件(6-6-3.sav)。

2.理论分析

从上面的数据和试验设计过程可以看出,每个被试分别接受一种试验处理,且被试被随机分组,可以看作是被试间随机设计,有两个因素,每个因素各有两个水平,总共有4中试验处理的组合。

3.方差分析过程

(1) 单击主菜单Analyze/General Linear Model/ Univariate …,进入主对话框,请把amount选入到因变量(Dependent list)表中去,把a和b选入到Fixed Factor(s)变量表列中去(这里我们考虑的两个因素的固定效应,如果考虑的是因素的随机效应,则将因素选入Random Factor(s)变量表列中,有关固定效应与随机效应的区别这里不加介绍,感兴趣的读者可以参考有关实验设计方面的书籍进一步了解),如图6-18所示:

图6-18:多因素方差分析主对话框

(2)主效应和交互作用的检验

在图6-18的主对话框,点击Options…,在Options对话框中,选择homogeneity test进行各处理组合方差齐性的检验,点击Continue返回主对话框。

(3)本例中其他选项暂时采用系统默认的设置,点击OK得到上面定义方差分析的模型输出结果。4.结果及解释

(1)显示被试间各因素不同水平的观测值个数

Between-Subjects Factors

N

A10

10

B10

A因素和B因素各有2个水平,每个水平下有10个观测值。

(2)显示方差齐性的检验结果

Levene's Test of Equality of Error Variances

Dependent Variable: AMOUNT

F df1df2Sig.

316.036

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a Design: Intercept+A+B+A * B

Levene'方差齐性检验的结果表明,在的限制性水平下,各组的方差之间存在显着差异,也就是说,不满足方差齐性的假设条件;在的显着性水平下,各组方差之间的差异没有达到显着水平。这里我们为了计算的简单,现认为方差齐性条件满足,实际上在方差齐性假设严格遭到拒绝时,应采用校正的F检验,感兴趣的读者可以查阅有关实验设计方面的资料进一步了解这一问题。

(3)显示方差分析表

Tests of Between-Subjects Effects

Dependent Variable: AMOUNT

Source Type III Sum of Squares df Mean Square F Sig.

Corrected Model3.000

Intercept1.000

A1.357.559

B1.000

A * B1.003

Error16

Total20

Corrected Total19

a R Squared = .804 (Adjusted R Squared = .767)

上面方差分析结果显示,A因素主效应的平方和为,自由度为1,均方为; B因素主效应的平方和为,自由度为1,均方为;A因素与B因素的交互作用A*B的平方和为,自由度为1,均方为;误差平方和为,自由度为16;F检验结果表明,A和B的交互作用达到的显着水平(F=,P=<)。从以上方差分析结果可以看出,两因素之间存在非常显着的交互作用,表明集中识字与分散识字效果的不同是受不同教学态度影响的;同样,不同的教学态度对识字量的影响也受到教学方式的影响,应该注意在交互作用显着的情况下,即使因素主效应不显着,也不能下结论说这一因素对结果没有显着影响。

5.因素交互作用的Post Hoc检验

上面分析结果告诉我们两个因素之间存在显着的交互作用,但是至于B因素的不同水平在A因素的哪个水平上差异显着,或A因素的不同水平在B因素的哪个水平上差异显着并不清楚。为了进一步回答这一问题,下面简单介绍交互作用的事后检验。至于主效应的事后检验与前面介绍的随机区组设计的普通因素模型类似,这里不再重复。

对于交互作用的事后检验,不能通过直接点击SPSS菜单命令得到,需要通过在句法(Syntax)窗

SPSS单因素方差分析步骤

SPSS单因素方差分析步骤

spss教程:单因素方差分析 用来测试某一个控制变量的不同水平是否给观察变量造成显著差异和变动。 方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。所以方差分析就是研究不同水平下各个总体的均值是否有显著的差异。统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,控制变量引起的离差SSA(Between Group离差平方和),另一部分随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。方法/步骤 1.计算检验统计量的观察值和概率P_值:Spss自动计算F统计 值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。

2.方差齐性检验:控制变量不同水平下各观察变量总体方差是否 相等进行分析。采用方差同质性检验方法(Homogeneity of variance),原假设“各水平下观察变量总体的方差无显著差异,思路同spss两独立样本t检验中的方差分析”。图中相伴概率 0.515大于显著性水平0.05,故认为总体方差相等。 趋势检验:趋势检验可以分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。趋势检验可以帮助人们从另一个角度把握控制变量不同水平对观察

变量总体作用的程度。图中线性相伴概率为0小于显著性水平0.05,故不符合线性关系。

3.多重比较检验:单因素方差分析只能够判断控制变量是否对观 察变量产生了显著影响,多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度如何,那个水平显著,哪个不显著。 常用LSD、S-N-K方法。LSD方法检测灵敏度是最高的,但也容易导致第一类错误(弃真)增大,观察图中结果,在LSD项中,报纸与广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。

SPSS软件分析方差分析作业

实验五 SPSS 的方差分析 1*统计**班 邵*** 201****** (二)实践性实验 (1)一家管理咨询公司为不同的客户进行人力资源管理讲座,每次讲座的内容基本上是一样的,但讲座的听课者有高级管理者、中级管理者、低级管理者。该咨询公司认为,不同层次的管理者对两座的满意度是不同的。对听完讲座后的满意度随机调查中,不同层次管理者的满意度评分如下(1~10分,10代表非常满意),取显著性水平05.0=α,试用单因素方差分析判断管理者的水平是否会导致评分的显著性差异?如有差异,具体什么差异? 此表为对不同水平管理者满意度的基本描述统计量及95%的置信区间,此表表明对中级管理者的满意度最高,对高级管理者的满意度次之,对低级管理者满意度最低。 假设:对不同水平下管理者的满意度的方差相同。 对不同水平下的管理者的满意度的方差齐性检验为1.324,概率p 值为0.296,如果显著水平设为0.05,由于概率p 值大于显著水平,不能拒绝原假设,认为对不同水平下管理者的满意度的方差相同。故满足方差分析的前提要求。 采用单因素方差分析。 假设:对不同水平的管理者的满意度没有显著差异。

此表为管理者的不同等级对对管理者的满意度的单因素方差分析结果。可以看出观测变量满意度的总离差平方和是48.5,如果考虑“管理者的不同等级”单因素的影响,则销售额总变差中,不同水平可解释的变差为29.61,抽样误差引起的变差为18.89,他们的方差(平均变差),分别为14.805,1.259.相除所得的F统计量的观测值为11.756,对应的P值近似为0,给定显著水平为0.05,由于概率p值小于显著水平,则拒绝原假设,认为对不同水平的管理者的满意有显著差异。 \采用多重比较检验 原假设:对不同水平管理者的满意度没有显著差别。 此表显示了两两管理者水平下对管理者满意度均值的检验结果。可以看出,尽管在理论上各种检验方法对抽样分布标准误的定义不同,此种软件全部采用了LSD方法的中标准误。因此各种方法计算的前两列计算结果完全相同。表中没有给出检验统计量的观测值,他们都是相等的。表中第三列式检验统计量在不同分布下的概率p值,可以发现各种方法在检验敏感度上的差异。此题用LSD方法。

SPSS方差分析案例实例

SPSS 第二次作业——方差分析 1、案例背景: 在一些大型考试中,为了保证结果的准确和一致性,通常针对一些主观题,都采取由多个老师共同评审的办法。在评分过程中,老师对学生的信息不可见,同时也无法看到其他评分,保证了结果的公正性。然而也有特殊情况的发生,导致了成绩的不稳定,这就使得对不同教师的评分标准考察变得十分必要。 2、案例所需资料及数据的获取方式和表述,变量的含义以及类型: 所需资料:抽样某地某次考试中不同教师对不同的题目的学生成绩的评分; 获取方式:让一组学生前后参加四次考试,由三位教师进行批改后收集数据; 变量含义、类型:一份试卷的每道主观题由三名教师进行评定,3个教师的评定结果可看成事从同一总体中抽出的3个区组,它们在四次评定的成绩是相关样本。 表1如下: 3、分析方法: 用方差分析的方法对四个总体的平均数差异进行综合性的F 检验。 4、数据的检验和预处理: a) 奇异点的剔除:经检验得无奇异点的剔除; b) 缺失值的补齐:无; c) 变量的转换(虚拟变量、变量变换):无; d) 对于所用方法的假设条件的检验:进行正态性和方差齐性的检验。 正态性,用QQ 图进行分析得下图: 教师 题目 1 2 3 a 27.3 28.5 29.1 b 29.0 29.2 28.3 c 26.5 28.2 29.3 d 29.7 25.7 27.2

得到近似满足正态性。 ?对方差齐性的检验: 用SPSS对方差齐性的分析得下表: Test of Homogeneity of Variances 分数 Levene Statistic df1 df2 Sig. .732 2 9 .508 易知P〉0.05,接受方差齐性的假设。 5、分析过程: a) 所用方法:单因素方差分析;方差分析中的多重比较。 b) 方法细节: ●单因素方差分析 第一步,提出假设: H0:μ1=μ2=μ3;(教师的评定基本合理,即均值相同) H1:μi(i=1,2,3)不全相等;(教师的评定不够合理,均值有差异)第二步,为检验H0是否成立,首先计算以下统计量:

SPSS处理多元方差分析例子

实验三多元方差分析 一、实验目的 用多元方差分析说明民族和城乡对人均收入和文化程度的影响。 二、实验要求 调查24个社区,得到民族与城乡有关数据如下表所示,其中人均收入为年 均,单位百元。文化程度指15岁以上小学毕业文化程度者所占百分比。试依此 数据通过方差分析说明民族和城乡对人均收入和文化程度的影响。 三、实验内容 1.依次点击“分析”---- “常规线性模型”----“多变量”,将“人均收入”和“文化程度” 加到“因变量”中,将“民族”和“居民”加到“固定因子”中,如下图一所示。 民族农村城市 人均收入文化程度人均收入文化程度 1 46,50,60,68 70,78,90,93 52,58,72,75 82,85,96,98 2 52,53,63,71 71,75,86,88 59,60,73,77 76,82,92,93 3 54,57,68,69 65,70,77,81 63,64,76,78 71,76,86,90

【图一】 2.点击“选项”,将“输出”中的相关选项选中,如下图二所示: 【图二】 3.点击“继续”,“确定”得到如下表一的输出:

【表一】 常规线性模型 主体间因子 值标签N 民族 1.00 1 8 2.00 2 8 3.00 3 8 居民 1.00 农村12 2.00 城市12 描述性统计量 民族居民均值标准差N 人均收入1 农村56.0000 9.93311 4 城市64.2500 11.02648 4 总计60.1250 10.66955 8 2 农村59.7500 8.99537 4 城市67.2500 9.10586 4 总计63.5000 9.28901 8 3 农村62.0000 7.61577 4 城市70.2500 7.84750 4 总计66.1250 8.40812 8 总计农村59.2500 8.45442 12 城市67.2500 8.89458 12 总计63.2500 9.41899 24 文化程度1 农村82.7500 10.68878 4 城市90.2500 7.93200 4 总计86.5000 9.59166 8

(整理)SPSS 方差分析过程.

One-Way ANOVA过程 One-Way ANOVA过程用于进行两组及多组样本均数的比较,即成组设计的方差分析,如果做了相应选择,还可进行随后的两两比较,甚至于在各组间精确设定哪几组和哪几组进行比较。 界面说明 【Dependent List框】 选入需要分析的变量,可选入多个结果变量(应变量)。 【Factor框】 选入需要比较的分组因素,只能选入一个。 【Contrast钮】 弹出Contrast对话框,用于对精细趋势检验和精确两两比较的选项进行定义。 o Polynomial复选框定义是否在方差分析中进行趋势检验。 o Degree下拉列表和Polynomial复选框配合使用,可选则从线

性趋势一直到最高五次方曲线来进行检验。 o Coefficients框定义精确两两比较的选项。这里按照分组变量升序给每组一个系数值,注意最终所有系数值相加应为0。如果不为0仍可检验,只不过结果是错的。比如有三组数据,要对第 一、三组进行单独比较,则在这里给三组分配系数为1、0、-1, 就会在结果中给出相应的检验内容。 【Post Hoc钮】 弹出Post Hoc Multiple Comparisons对话框,用于选择进行各组间两两比较的方法,有: o Equar Variances Assumed复选框组当各组方差齐时可用的两两比较方法,共有14中种这里不一一列出了,其中最常用的为LSD和S-N-K法。 o Equar Variances Not Assumed复选框组一组当各组方差不齐时可用的两两比较方法,共有4种,其中以Dunnetts's C法较常用。

spss实验报告---方差分析

实验报告 ——(方差分析) 一、实验目的 熟练使用SPSS软件进行方差分析。学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。 二、实验内容 1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集) 石棉肺患者可疑患者非患者 1.8 2.3 2.9 1.4 2.1 3.2 1.5 2.1 2.7 2.1 2.1 2.8 1.9 2.6 2.7 1.7 2.5 3.0 1.8 2.3 3.4 1.9 2.4 3.0 1.8 2.4 3.4 1.8 3.3 2.0 3.5 SPSS计算结果: 在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。 零假设:各水平下总体方差没有显著差异。 相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。

从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。 2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。 (1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题? SPSS计算结果: (1)此为多因素方差分析 相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。

多元方差分析spss实例

多元方差分析 1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。从支持三位候选人的选民中分别 分析:该题自变量为三位候选人,因变量为年龄段和受教育程度。从自变量来看要进行方差分析,从因变量来看是二元分析,所以最终确定使用多变量分析 具体操作(spss) 1、打开spss,录入数据,定义变量和相应的值在此不作详述。结果如图1

图1 被投票人:1、布什2、佩罗特3、克林顿 2、在spss窗口中选择分析——一般线性模型——多变量,调出多变量分析主界面,将年龄段和受 教育程度移入因变量框中,被投票人移入固定因子框中。如图2 图2 多变量分析主界面 3、点击选项按钮在输出框中选择方差齐性分析(既包括协方差矩阵等同性分析也包括误差方差齐 性分析),其它使用默认即可,点击继续返回主界面。如图3

图3 选项子对话框 4、点击确定,运行多变量分析过程。 结果解释 1、协方差矩阵等同性的Box检验结果,如图4 图4 协方差矩阵检验 结果说明:此Box检验的协方差矩阵为三位候选人每个人的支持者的年龄段和受教育程度的协方差矩阵。因为sig>0.05,所以差异不显著,即各个因变量的协方差矩阵在所有三个候选人组中是相等的。可以对其进行多元方差分析。 2、多变量检验结果,如图5

图5 多变量检验 结果说明:被投票人在四种统计方法中的sig均小于0.05,所以差异显著,即三组的总体均值有显著性差异 3、误差方差等同性的Levene检验结果,如图6 图6 Levene检验 结果说明:只考虑单个变量,年龄段或者受教育程度,每位候选人的20名支持者的随机误差是否有显著性差异。因为sig>0.05,差异不显著,所以三位候选人的20名支持者的随机误差相等。 可以进行单因素方差分析。 4、主体间效应的检验结果,如图7 图7 主体间效应的检验 结果说明:被投票人一行中,年龄段的sig<0.05,差异显著,即支持三位候选人的选民中,年龄段之间存在显著差异;而受教育程度的sig>0.05,差异不显著,即支持三位候选人的选民中,受教育程度差异不显著。

spss方差分析操作示范-步骤-例子

第五节方差分析的SPSS操作 一、完全随机设计的单因素方差分析 1.数据 采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。数据输入格式如图6-3(为了节省空间,只显示部分数据的输入): 图 6-3 单因素方差分析数据输入 将上述数据文件保存为“6-6-1.sav”。 2.理论分析 要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。 3.单因素方差分析过程 (1)主效应的检验 假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。 ①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:

图6-4:One-Way Anova主对话框 ②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。设置如下图6-5所示: 图6-5:One-Way Anova的Options对话框 点击Continue,返回主对话框。 ③在主对话框中点击OK,得到单因素方差分析结果 4.结果及解释 (1)输出方差齐性检验结果 Test of Homogeneity of Variances MATH Levene Statistic df1 df2 Sig. 1.238 4 35 .313 上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。 (2)输出方差分析主效应检验结果(方差分析表)

SPSS教程-多因素方差分析

多因素方差分析 多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。 [例子] 研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。 表5-7 不同温度与不同湿度粘虫发育历期表 数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。 1)准备分析数据 在数据编辑窗口中输入数据。建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。然后输入对应的数值,如图5-6所示。或者打开已存在的数据文件“DATA5-2.SAV”。

图5-6 数据输入格式 2)启动分析过程 点击主菜单“Analyze”项,在下拉菜单中点击“General Linear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。 图5-7 多因素方差分析窗口 3)设置分析变量 设置因变量:在左边变量列表中选“历期”,用向右拉按钮选入到“Dependent Variable:”框中。 设置因素变量:在左边变量列表中选“a”和“b”变量,用向右拉按钮移到“Fixed Factor(s):”框中。可以选择多个因素变量。由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。

SPSS-单因素方差分析(ANOVA)-案例解析资料讲解

SPSS- 单因素方差分析( ANOVA) - 案例解 析

SPSS单因素方差分析(ANOVA)案例解析 2011-08-30 11:10 这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近习SPSS单因素方差分析(ANOVA分析,今天希望跟大家交流和分享一下: 继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察鼠死亡和存活情况。 研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关? 样本数据如下所示:(a代表雄性老鼠b代表雌性老鼠0代表死亡1代表着tim 代表注射毒液后,经过多长时间,观察结果) 点击“分析”一一比较均值-------- 单因素AVOVA,如下所示:

从上图可以看出,只有“两个变量”可选,对于“组别(性别)”变量不可选, 进行“转换”对数据重新进行编码, 点击“转换”一“重新编码为不同变量”将a,b"分别用8,9进行替换,得到如下结果”这里可能需

此时的8代表a(雄性老鼠)9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:

“勾选“将定方差齐性”下面的项 点击继续 LSD选项,和“未假定方差齐性”下面的Tamhane's T2 选点击“选项”按钮,如下所示: I固疋和随枫效果(号 IN有建同備性檯验迥) 匚旦rown-Forsythe(B) El Welches} 姑朱値 ?按分析顺序排麒个案? 「I I S3 Affifi 勾选“描述性”和“方差同质检验”以及均值图等选项,得到如下结果:

spss 多因素方差分析例子

作业8:多因素方差分析 1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的? 打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate 打开: 把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model 打开:

选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择, 结果输出:

因无法计算MM e rror,即无法分开MM intercept和MM error,无法检测interaction的影响,无法进行方差分析, 重新Analyze->General Linear Model->Univariate打开: 选择好Dependent Variable和Fixed Factor(s),点击Model打开: 点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:

Univariate对话框,点击Options:

把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框, 输出结果: 可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534; Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01; 所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

SPSS-单因素方差分析(ANOVA) 案例解析

SPSS-单因素方差分析(ANOVA) 案例解析 2011-08-30 11:10 这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下: 继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。 研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关? 样本数据如下所示:(a代表雄性老鼠 b代表雌性老鼠 0代表死亡 1 代表活着 tim 代表注射毒液后,经过多长时间,观察结果) 点击“分析”——比较均值———单因素AVOVA, 如下所示:

从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码, 点击“转换”—“重新编码为不同变量” 将a,b"分别用8,9进行替换,得到如下结果”

此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:

“ 勾选“将定方差齐性”下面的 LSD 选项,和“未假定方差齐性”下面的Tamhane's T2选项点击继续 点击“选项”按钮,如下所示: 勾选“描述性”和“方差同质检验” 以及均值图等选项,得到如下结果:

结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,在一般情况下,不能够进行方差分析 但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的, 由于此样本组少于三组,不能够进行多重样本对比 从结果来看“单因素ANOVA” 分析结果,显著性0.098,由于 0.098>0.05 所以可以得出结论: 生存结局受性别的影响不显著 很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下面我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法)

SPSS单因素方差分析步骤

spss教程:单因素方差分析 用来测试某一个控制变量的不同水平是否给观察变量造成显著差异 和变动。 方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。所以方差分析就是研究不同水平下各个总体的均值是否有显著的差异。统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,控制变量引起的离差SSA(Between Group离差平方和),另一部分随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。方法/步骤 统计值,FSpss计算检验统计量的观察值和概率P_值:自动计算1.,拒绝零假设,认为控制变量不a小于显著性水平如果相伴概率P 同水平下各总体均值有显著差异,反之,则相反,即没有差异。

控制变量不同水平下各观察变量总体方差是否方差齐性检验:2. of (Homogeneity 验同采。用方差质性检方法析行等相进分),原假设“各水平下观察变量总体的方差无显著差异,variance图中相伴概率spss两独立样本t 检验中的方差分析”。思路同,故认为总体方差相等。大于显著性水平0.5150.05趋势检验可以分析随着控制变量水平的变化,观测变量趋势检验:值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。趋势检验可以帮助人们从另一个角度把握控制变量不同水平对观察

小于显著性水平变量总体作用的程度。图中线性相伴概率为0 ,故不符合线性关系。0.05

单因素方差分析只能够判断控制变量是否对观3.多重比较检验:多重比较检验可以进一步确定控制变量的察变量产生了显著影响,哪个不显著。不同水平对观察变量的影响程度如何,那个水平显著,但也容易导方法。LSD方法检测灵敏度是最高的,S-N-KLSD常用、项中,报纸与LSD致第一类错误(弃真)增大,观察图中结果,在广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。

spss方差分析实例

SPSS——单因素方差分析实例 单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measure过程。 [例子] 调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。 表1-1不同水稻品种百丛中稻纵卷叶螟幼虫数 数据保存在“data1.sav”文件中,变量格式如图1-1。 分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。 2)启动分析过程 点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

3)设置分析变量 因变量: 选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。 因素变量: 选择一个因素变量进入“Factor”框中。本例选择“品种”。 4)设置多项式比较 单击“Contrasts”按钮,将打开如图1-3所示的对话框。该对话框用于设置均值的多项式比较。 定义多项式的步骤为: 均值的多项式比较是包括两个或更多个均值的比较。例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值

SPSS多因素方差分析

体育统计与SPSS读书笔记(八)—多因素方差分析(1) 具有两个或两个以上因素的方差分析称为多因素方差分析。 多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。如果再加上性别上的因素,那就成了三因素了。如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。 下面用例子的形式来说说多因素方差分析的运用。还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。形成年级和不同教学法班级双因素。 分析: 1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据), 年级 不同教学方法的班级 定性班 定量班 定性定量班 五年级 (班级每个人) (班级每个人) (班级每个人) 初中二年级 (班级每个人) (班级每个人) (班级每个人) 高中二年级 (班级每个人) (班级每个人) (班级每个人) 2.因为有重复数据,所以存在在数据交互效应的可能。我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。交互作用是多因素实验分析的一个非常重要的内容。如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。在大多数场合,交互作用的信息比主效应的信息更为有用。根据上面的判断。根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。这里假设他们之间有交互作用。

SPSS软件分析5-方差分析作业

实验五SPSS的方差分析 1*统计**班召” *** 201****** (二)实践性实验 (1)一家管理咨询公司为不同的客户进行人力资源管理讲座,每次讲座的内容基本上是一 样的,但讲座的听课者有高级管理者、中级管理者、低级管理者。该咨询公司认为,不同层 次的管理者对两座的满意度是不同的。对听完讲座后的满意度随机调查中,不同层次管理者 的满意度评分如下(1~10分,10代表非常满意),取显著性水平0.05,试用单因素 方差分析判断管理者的水平是否会导致评分的显著性差异?如有差异,具体什么差异? 描述 此表为对不同水平管理者满意度的基本描述统计量及95%的置信区间,此表表明对中级管理者的满意度最高,对高级管理者的满意度次之,对低级管理者满意度最低。 方差齐性检验 管理者满意度 此处采用方差齐性检验 假设:对不同水平下管理者的满意度的方差相同

对不同水平下的管理者的满意度的方差齐性检验为 1.324,概率p值为0.296,如 果显著水平设为0.05,由于概率p值大于显著水平,不能拒绝原假设,认为对不 同水平下管理者的满意度的方差相同。故满足方差分析的前提要求。 ANOVA 采用单因素方差分析。 假设:对不同水平的管理者的满意度没有显著差异。 此表为管理者的不同等级对对管理者的满意度的单因素方差分析结果。可以看出 观测变量满意度的总离差平方和是48.5,如果考虑“管理者的不同等级”单因素的影响,则销售额总变差中,不同水平可解释的变差为29.61,抽样误差引起的变差为18.89,他们的方差(平均变差),分别为14.805,1.259.相除所得的F统计量的观测值为11.756,对应的P值近似为0,给定显著水平为0.05,由于概率p 值小于显著水平,则拒绝原假设,认为对不同水平的管理者的满意有显著差异。 多重比较

SPSS学习系列22.方差分析

22. 方差分析 一、方差分析原理 1. 方差分析概述 方差分析可用来研究多个分组的均值有无差异,其中分组是按影响因素的不同水平值组合进行划分的。 方差分析是对总变异进行分析。看总变异是由哪些部分组成的,这些部分间的关系如何。 方差分析,是用来检验两个或两个以上均值间差别显著性(影响观察结果的因素:原因变量(列变量)的个数大于2,或分组变量(行变量)的个数大于1)。一元时常用F检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks’∧检验)。 方差分析可用于: (1)完全随机设计(单因素)、随机区组设计(双因素)、析因设计、拉丁方设计和正交设计等资料; (2)可对两因素间交互作用差异进行显著性检验; (3)进行方差齐性检验。 要比较几组均值时,理论上抽得的几个样本,都假定来自正态总体,且有一个相同的方差,仅仅均值可以不相同。还需假定每一个观察值都由若干部分累加而成,也即总的效果可分成若干部分,而每一部分都有一个特定的含义,称之谓效应的可加性。所谓的方差是离均差平方和除以自由度,在方差分析中常简称为均方(Mean Square)。

2. 基本思想 基本思想是,将所有测量值上的总变异按照其变异的来源分解为多个部份,然后进行比较,评价由某种因素所引起的变异是否具有统计学意义。 根据效应的可加性,将总的离均差平方和分解成若干部分,每一部分都与某一种效应相对应,总自由度也被分成相应的各个部分,各部分的离均差平方除以各自的自由度得出各部分的均方,然后列出方差分析表算出F检验值,作出统计推断。 方差分析的关键是总离均差平方和的分解,分解越细致,各部分的含义就越明确,对各种效应的作用就越了解,统计推断就越准确。 效应项与试验设计或统计分析的目的有关,一般有:主效应(包括各种因素),交互影响项(因素间的多级交互影响),协变量(来自回归的变异项),等等。 当分析和确定了各个效应项S后,根据原始观察资料可计算出各个离均差平方和SS,再根据相应的自由度df,由公式MS=SS/df,求出均方MS,最后由相应的均方,求出各个变异项的F值,F值实际上是两个均方之比值,通常情况下,分母的均方是误差项的均方。

spss多因素方差分析例子

1, data0806-height 是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及 八种草之间有无差异?具体怎么差异的? 打 开 spss 软 件 , 打 开 data0806-height 数 据 , 点 击 Analyze->General Linear Model->Univariate 打开: 把 plot 和 species 送入 Fixed Factor(s) ,把 height 送入 Dependent Variable ,点击 Model 打开: 选择 Full factorial , Type III Sum of squares , Include intercept in model (即 全部默认选项) ,点击 Continue 回到 Univariate 主对话框,对其他选项卡不做任何选 择, 结果输出: 因无法计算 ???? ??rror ,即无法分开 ???? intercept 的影响,无法进行方差分析, 重新 Analyze->General Linear Model->Univariate 打开: 选择好 Dependent Variable 和 Fixed Factor(s) 点击Custom,把主效应变量 species 和plot 送入 Model 框,点击 Continue 回到Univariate 主对话框,点击 Plots : 把 date 送入 Horizontal Axis ,把 depth 送入 Separate Lines ,点击 Add ,点击 Continue 回到 Univariate 对话框,点击 Options : 把 OVERALL,species, plot 送入 Display Means for 框,选择 Compare main effects , Bonferroni ,点击 Continue 回到 Univariate 对话框, 输出结果: 可以看到: SS species =, df species =7, MS species= ;SS plot =, df plot =7, MS plot= ;SS error =, df error =14, MS error= ; Fspecies= , p=<;Fplot=,p=<; 所以故认为在 5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。 该表说明: SSspecies= ,dfspecies=7 ,MSspecies= ;SSerror= ,dferror=14 ,MSerror= ; Fspecies= , p=<; 物种间存在差异: SSplot= , dfplot=7 , MSplot= ; SSerror= , dferror=14 , MSerror= ; Fplot=,p=<; 不同的物种间在差异: 由边际分布图可知:类似结论:草的高度在不同样地的条件之间有差异( Fplot=,p=< ),具 体是,样地一和样地三之间存在的差异最大;八种不同草的高度也存在差异( Fspecies= , p=<),具体是第四 和 ???? error ,无法检测 interaction ,点击 Model 打开:

SPSS重复测量方差分析例题答案

一、不同性别各阶段体重变化 如图可知,不同性别各阶段的体重平均值均呈逐阶段下降趋势。 通过重复测量方差分析,可知被试内自变量[不同阶段]的球形度检验不显著,p>0.05。根据一元分析,各阶段体重变化显著,F(4,56)=57.534,P<0.05,df=4;被试间自变量[性别]存在显著的主效应,df=1,F=49.948,Sig=.000,P<0.01 各[阶段]与[性别]的交互效应不显著df=4,F=0.193,p>0.05。根据事后检验,仅4,5阶段体重的差异不显著,P>0.05,阶段2体重显著低于阶段1,P<0.05,其他阶段之间体重差异显著,p<0.01。 二、销售地点与销售时间对销售量的影响

根据重复测量方差分析,被试内自变量[销售时间]的球形度检验显著df=2,p<0.01,根据多元分析,可知[销售时间]和[地区]的交互效应显著,F=5.590,p<0.05。被试间自变量[地区]对销售时间的影响显著,df=2,F=58.149,Sig=。000,P<0.01。 由于交互作用显著,现作简单效应分析: ①同一销售时间,不同地区 表1:同一销售时间不同地区的销售量单因素方差分析 齐性检验方差分析 df1 Sig df MS F Sig 销售时间1 2 .790 2 300677.167 47.756 .000** 销售时间2 2 .205 2 571034.389 49,741 .000** 销售时间3 2 .722 2 433628.667 63.121 .000** **p<0.01 由表可得,在同一销售时间(1或2或3)中,不同地区的销售量均差异显著,p<0.01,即自变量[地区]对[销售量]存在显著的主效应。在事后检验中,不同地区的销售量均差异显著,p<0。01,呈现地区1销售量>地区2销售量>地区3销售量。 ②同一地区,不同销售时间 表2:同一地区内不同销售时间的销售量重复测量方差分析 球形度检验一元分析/多元分析 df Sig df MS F Sig 地区1 2 .731 2 173537.167 400.995 .000** error1 10 432.767 地区2 2 .332 2 87855.722 224.319 .000** error2 10 391.656 地区3 2 .064 2 54192.056 17.625 .010* error3 10 3074.789 *p<0.05;**p<0.01 由此可知,同一地区不同销售时间下,销售量存在显著差异,即自变量[销售时间]对[销售量]存在显著主效应。同时,根据事后检验,在三个地区中,销售时间2的销售量均显著高于销售时间1和销售时间3,p<0.01;在地区1中,销售时间1的销售量显著高于销售时间3,p<0.05,在地区2和3中,销售时间1与3的销售量则无显著差异,p>0.05。

SPSS方差分析案例实例

SPSS第二次作业——方差分析 1、案例背景: 在一些大型考试中,为了保证结果的准确和一致性,通常针对一些主观题,都采取由多个老师共同评审的办法。在评分过程中,老师对学生的信息不可见,同时也无法看到其他评分,保证了结果的公正性。然而也有特殊情况的发生,导致了成绩的不稳定,这就使得对不同教师的评分标准考察变得十分必要。 2、案例所需资料及数据的获取方式和表述,变量的含义以及类型: 所需资料:抽样某地某次考试中不同教师对不同的题目的学生成绩的评分; 获取方式:让一组学生前后参加四次考试,由三位教师进行批改后收集数据;变量含义、类型:一份试卷的每道主观题由三名教师进行评定,3个教师的评定结果可看成事从同一总体中抽出的3个区组,它们在四次评定的成绩是相关样本。 表1如下: 3、分析方法: 用方差分析的方法对四个总体的平均数差异进行综合性的F检验。 4、数据的检验和预处理: a) 奇异点的剔除:经检验得无奇异点的剔除; b) 缺失值的补齐:无; c) 变量的转换(虚拟变量、变量变换):无; d) 对于所用方法的假设条件的检验:进行正态性和方差齐性的检验。 ?正态性,用QQ图进行分析得下图:

得到近似满足正态性。 ?对方差齐性的检验: 用SPSS对方差齐性的分析得下表: Test of Homogeneity of Variances 分数 Levene Statistic df1 df2 Sig. .732 2 9 .508 易知P〉0.05,接受方差齐性的假设。 5、分析过程: a) 所用方法:单因素方差分析;方差分析中的多重比较。 b) 方法细节: ●单因素方差分析 第一步,提出假设: H0:μ1=μ2=μ3;(教师的评定基本合理,即均值相同) H1:μi(i=1,2,3)不全相等;(教师的评定不够合理,均值有差异)第二步,为检验H0是否成立,首先计算以下统计量:

spss方差分析作业(1)

统计作业(3) 1、 抽查某地区三所小学五年级男学生的身高,数据见文件:“男生身高”。设各小学五年级男学生的身高服从同方差的正态分布。问该地区三所小学五年级男学生的平均身高是否有显著差异(α=) 解: Test of Homogeneity of Variances 身高 Levene Statistic df1df2Sig. 215.019 因为sig=<,所以所用样本的方差不相等。所以选择Tamhane 又因为P=<,所以三所小学五年级男学生的平均身高有显著差异。 由上表可得,因为1与3:sig=<,所以在α=,第一小学跟第三小学中男生的平均身高有显著差异

同理可得:无法证明在α=,第一小学跟第二小学中,第二小学跟第三小学中男生 的平均身高显著有差异 2、 某钢厂检查一月上旬内的五天中生产钢锭重量,数据见文件:“钢锭重量”,设各日所生产的钢锭重量服从同方差的正态分布,试检验不同日期生产的钢锭的平均重量有无显著差异 因为sig=<,所以所用样本的方差不相等。所以选择Tamhane

2.998 9*.001 10.540 91 2.808 4*.001 10.930 101.964 2.998 4.540 9.930 *. The mean difference is significant at the level. 由上表可得,因为4与9:sig=<,所以在α=下,日期4和日期9生产的钢锭的平均重量有显著差异 同理可得:在α=下,无法说明日期1和日期2,日期1和日期4,日期1和日期9,日期1和日期10,日期2和日期4,日期2和日期9,日期2和日期10,日期4和日期10,日期9和日期 10生产的钢锭的平均重量有显著差异 3、 在某种橡胶的配方中,考虑了3种不同的促进剂,4种不同分量的氧化剂。各种配方各实验一次,测得300%定强数据见文件:“橡胶配方定强”。假定各种配方的定强服从同方差的正态分布。试问不同促进剂、不同分量氧化锌分别对定强有无显著影响(α=)Between-Subjects Factors Value Label N 促进剂1促进剂A14 2促进剂A24 3促进剂A34 氧化锌1氧化锌B13 2氧化锌B23 3氧化锌B33 4氧化锌B43

相关文档