文档库 最新最全的文档下载
当前位置:文档库 › 标记化合物的合成――Ⅳ.呋喃丙胺-1-~(14)C和γ-六六六-~(14)C的合成

标记化合物的合成――Ⅳ.呋喃丙胺-1-~(14)C和γ-六六六-~(14)C的合成

标记化合物的合成――Ⅳ.呋喃丙胺-1-~(14)C和γ-六六六-~(14)C的合成
标记化合物的合成――Ⅳ.呋喃丙胺-1-~(14)C和γ-六六六-~(14)C的合成

苯并呋喃合成

1、苯并呋喃的基本性质: 苯并呋喃的中文名称:2,3-苯并呋喃,别名:苯并呋喃,β-苯并呋喃,氧茚,香豆酮,古马隆,氧杂茚,苯并[B]呋喃,英文名称:2,3-benzofuran,Coumarone,Benzofuran . 苯并呋喃是一种杂环芳香有机化合物。常温下为油状液体,具有芳香味。能随水蒸气挥发,能被高锰酸钾和其他氧化剂分解。 【英文名】Coumarone; 2,3-Benzofuran; Benzo[b]furan 【分子式】C8H6O 【分子量】118.14 【密度】1.078(15/15℃) 【熔点】-18以下 【沸点】173-174 【闪点】56 【粘度】【蒸气压】【折射率】1.5689(16.5℃) 【毒性LD50】【性状】无色液体,有芳香气 2、实验目的: ⑴了解香豆酮的合成方法及其性质; ⑵掌握苯酚合成香豆酮的方法。 3.实验合成路线:

4.实验内容: 1、实验试剂的基本性质 (1)苯酚:为无色针状结晶或白色结晶熔块,可燃,腐蚀力强,有毒。不纯品在光和空气作用下变为淡红或红色,遇碱变色更快。与大约8水混合可液化。可吸收空气中水分并液化。有特殊臭味和燃烧味,极稀的溶液具有甜味。相对密度1.0576,凝固点41℃,熔点43℃,沸点181.7℃(182℃),折射率1.54178,闪点79.44℃(闭杯),85℃(开杯),自燃点715℃,蒸气密度3.24,蒸气压0.13kPa(40.1℃),蒸气与空气混合物燃烧极限1.7-8.6。1g苯酚溶于约15ml水(0.67,25℃加热后可以任何比例溶解)、12ml苯。易溶于乙醇、乙醚、氯仿、甘油、二硫化碳、凡士林、挥发油、固定油、强碱水溶液。几乎不溶于石油醚。水溶液pH 值约为6.0。 (2)氯仿:无色透明、高折射率、易挥发的液体,有特殊香甜气味。凝固点-63.5℃,沸点61.3℃,熔点-63.2℃,相对密度1.4984(15/4℃),1.4840(20/20℃),折光率1.4476,折射率1.4422,黏度(20℃)0.563mPa·s。不易燃,与火焰接触会燃烧,并放出光气。一般加入0.6-1的乙醇作稳定剂。微溶于水(25℃时1ml能溶于200ml水),能与醇、苯、醚、石油醚、四氯化碳、二硫化碳和油类混溶。临界温度263.4℃,临界压力5.45kPa,在氯甲烷中最易水解成甲酸和HCl,稳定性差,450℃以上发生热分解,能进一步氯化为CCl4。 (3)水杨醛:淡黄色到淡红色,澄清油状液体,有苦杏仁气味,工业品为淡黄色到淡红色。熔点-7℃,沸点196-197℃,闪点76℃。相对密度1.167(20/4℃),折光率1.5735。溶于乙醇、乙醚和苯,微溶于水。

苯并呋喃类化合物的合成研究新进展

· 266 ·
广 东 化 工 https://www.wendangku.net/doc/7415767792.html,
2010 年 第 6 期 第 37 卷 总第 206 期
苯并呋喃类化合物的合成研究新进展
(华南理工大学 化学与化工学院,广东 广州 510640)
[摘 要]文章介绍了苯并呋喃的生物活性研究及最新应用,并综述了近几年来苯并呋喃类化合物结构骨架的构建与合成方法。 [关键词]苯并呋喃;生物活性;合成 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2010)06-0266-02
亓金萍
Advances in the Synthesis of Benzo[b]furans
Qi Jinping (School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China)
Abstract: The paper gave a review on the recent advances of the synthesis of benzo[b]furan compounds, and introduced the bioactivities and some recent applications of benzo[b]furan. Keywords: benzo[b]furan;iological activity;synthesis
苯并呋喃类化合物因其广泛的药理活性以及它们在自然 界的广泛存在而引起人们的注意[1]。比如,从丹参、百部、野 茉莉等植物中提取出来的 2-芳基取代的苯并呋喃类化合物具 有良好的生理活性,如抗病毒、抗肿瘤、抗菌、抗自由基、抗 氧化作用等,常用于选择性腺苷 A1 受体拮抗剂、免疫抑制剂 等[2-7]。 最近又发现官能化的单或二苯并呋喃类衍生物还可以作 为蓝光发光材料[8]应用于 OLED 中,而 Jung 等[9]也对含有苯 并呋喃单体的有机染料聚合物在太阳能电池中的应用进行了 研究;Romagnoli 等[10]合成了一系列 2-(3’,4’,5’-三甲氧基苯甲 酰基)-苯并呋喃衍生物,发现这类化合物在抑制癌细胞的生长 方面具有潜在的活性。 前人对苯并呋喃类化合物的生物活性研究以及从天然产 物中提取筛选并进行化学合成的研究已较深入,庞冀燕[11]等 人对此进行了总结, 但是基于科学的发展日新月异, 文章基础 上对近几年来文献报道的苯并呋喃的合成新方法进行概述。
R OHC Cl Fe 1 O HO K2CO3/CH3CN 6-12h R Fe O 2a-2n O (1)
Carril 等[16]以水做溶剂,使烷基(或芳基)苄基酮衍生物在 CuI- TMEDA 的催化下生成相应的苯并呋喃化合物(Eq. 2)。
O R1 Br R2 CuI, TMEDA H2O, 120℃ R1 O R2 (74-99%)
(2)
1 苯并呋喃衍生物的合成新进展
Yue 等[12]在 2005 年从邻碘代茴香醚出发,先与端基炔发 生 Sonogashira 偶联,后在 I2, PhSeCl, 或者 p-O2NC6H4SCl 的 存在下发生亲电子环化作用, 以较高的收率生成 2,3-二取代苯 并呋喃环(Scheme 1)。Cho 等[13]在此基础上采用并行合成法对 苯并呋喃类化合物进行了库合成, 成功得到了 121 种多取代的 苯并呋喃化合物。
OCH3 I OCH3 E R O E CH2Cl2, r.t.,
Sanz 等[17]从苄基-2-卤代苯醚出发,用 3 当量的 t-BuLi 处 理形成有机锂中间体, 然后再与羧酸酯反应, 再经酸化或者脱 水就得到相应的 2-芳基-3-取代苯并呋喃衍生物(Scheme 2)。
X G O Ar X=Br, I G=Me, Cl,… A=Ph, 1-Np,… G O Li HO Li Ar G O R Ar G O R=Alk, Ar, HetAr R Ar
Scheme 2 Sanz 等[18]从间卤代氨基甲酰酯出发,用 NaH 或 n-BuLi 处理后接着与相应的亲电试剂反应,得到 o-2(F, Cl)-3-卤代苯 氨基甲酰酯,经水解、Sonogashira 偶联及关环反应得到 4-卤 代苯并呋喃衍生物(Scheme 3),4-位的卤素很容易转化为其他 的官能团,而 4-位官能化基团取代的苯并呋喃化合物用其他 的方法是不易得到的。
OCONEt2 OCONEt2 Li X X=Hal X O R=Ar, Alk, X R G , O G=Alk, Ar, SnBu3,… R
R E =ICl, I2, PhSeCl, p-NO2C6H4SCl
Scheme 1 高文涛等[14]氯乙酰基二茂铁与水杨醛或取代水杨醛在聚 乙二醇-400 作相转移催化剂条件下,使 Williamson 反应与 Knoevenagel 反应在一锅内完成,以 40.2 %~70.0 %的总收率 得到了由羰基相连的二茂铁与苯并呋喃组成的结构新颖的闭 环产物(苯并[b]呋喃-2-酰基)二茂铁衍生物 2a-2n,以期取得多 种生物活性的优化叠加(Eq. 1)。 2005 年 Tamariz,J.等[15]报道了路易斯酸催化分子内环化 的方法合成苯并呋喃。 该方法从苯酚出发, 经历醚化、 酯化后, 用 DMA 进行甲叉化,然后路易斯酸催化得到苯并呋喃产物, 后两步反应可用一锅法处理得到苯并呋喃产物。 此外, 该合成 策略也成功的应用于天然产物的合成。
Scheme 3 Chen 等[19]以 2-卤代芳基取代酮为底物,在 CuI 催化下发
[收稿日期] 2010-05-27 [作者简介] 亓金萍(1983-),女,山东莱芜人,在读硕士,主要研究方向为有机合成。

盐酸西那卡塞的合成工艺研究

Hans Journal of Medicinal Chemistry 药物化学, 2014, 2, 1-5 https://www.wendangku.net/doc/7415767792.html,/10.12677/hjmce.2014.21001 Published Online February 2014 (https://www.wendangku.net/doc/7415767792.html,/journal/hjmce.html) Synthesis Process of Cinacalcet Hydrochloride Xueguo Bian1, Junwei Wang1,2, Qihua Zhu2, Yungen Xu2* 1Nanjing Industrial Pharmaceutical Technology Institute Co., Ltd., Nanjing 2Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing Email: *xyg@https://www.wendangku.net/doc/7415767792.html, Received: Jan. 20th, 2014; revised: Feb. 20th, 2014; accepted: Feb. 27th, 2014 Copyright ? 2014 Xueguo Bian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unre-stricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of the Creative Commons At-tribution License all Copyrights ? 2014 are reserved for Hans and the owner of the intellectual property Xueguo Bian et al. All Copyright ? 2014 are guarded by law and by Hans as a guardian. Abstract:Objective: In order to get a suitable process of cinacalcet hydrochloride for industrial production. Methods: Cinacalcet hydrochloride was synthesized from 1-acetonaphthone via six steps, including Leuckart-Wallch reaction, hydrolysis, chiral resolution, condensation, reduction and finally salification. Results: Through improvement, we sim-plified the operations, improved the safety of the process and reduced the costs. The overall yield was 14.38% (The overall yield of this synthetic route was unreported) with a purity of 99.9%. Conclusion: This synthetic process is of mild conditions, easy operation, low cost and high yield, and is suitable for large-scale production. Keywords: Cinacalcet Hydrochloride; Synthesis; Process Research 盐酸西那卡塞的合成工艺研究 卞学国1,王均伟1,2,朱启华2,徐云根2* 1南京医工医药有限公司,南京 2中国药科大学药物化学教研室,南京 Email: *xyg@https://www.wendangku.net/doc/7415767792.html, 收稿日期:2014年1月20日;修回日期:2014年2月20日;录用日期:2014年2月27日 摘要:目的:确定一条适合工业化生产的盐酸西那卡塞的合成工艺。方法:以1-萘乙酮为起始原料,经Leuckart- Wallch反应、水解、手性拆分、缩合、还原、成盐6步反应合成盐酸西那卡塞。结果:通过工艺改进,简化了操作过程,提高了安全性,降低了生产成本,总收率14.38%(此合成路线总收率未经文献报道),纯度99.9%。结论:本方法条件温和,操作简单,成本低,收率高,适合大规模生产。 关键词:盐酸西那卡塞;合成;工艺研究 1. 引言 盐酸西那卡塞(Cinacalcet hydrochloride),化学名为N-[(1R)-1-(1-萘基)乙基]-3-[3-(三氟甲基)苯基]丙基胺盐酸盐,是由美国NPS Pharmaceuticals公司开发研究的第二代拟钙剂,于2004年首次在美国上市。临床上用于治疗进行透析的慢性肾病(CKD)患者的继发性甲状旁腺功能亢进症及甲状旁腺肿瘤患者的高钙血症。本品的主要药理作用是降低Ca2+调定点,提高钙敏感受体对细胞外钙的敏感性,降低甲状旁腺素水平,使血清Ca2+浓度降低,从而产生一系列临床治疗作用。具有安全性高、耐受性好、服用方便等特点[1]。 盐酸西那卡塞的合成方法已有多篇文献报道,主要有以下七条合成路线:1) 以3-三氟甲基苯丙胺和 *通讯作者。

槟榔碱的合成的工艺流程

槟榔碱的合成的工艺流程 主要成分: 槟榔含生物碱0.3%~0.6%,缩合鞣质15%, 脂肪14 %及槟榔红色素(Areca red)。生物碱主要为槟榔碱(Arecoline),含量为0.1%~0.5%;其余有槟榔次碱(Arecaidine,即Arecaine)、去甲基槟榔次碱(Guvacine)、去甲基槟榔碱(Guvacoline)、槟榔副碱(Arecolidine)、高槟榔碱(Homoarecoline)等。生槟榔含生物碱量比制品为高。 槟榔含脂肪油14%, 槟榔油的组成脂肪酸为:月桂酸(Lauric acid)19.5%,肉豆蔻酸(Myristic acid)46.2%,棕榈酸(Palmitic acid)12.7%,硬脂酸(Stearic acid)1.6%,癸酸(Capric acid)0.3%,油酸(Oleic acid)6.2%,亚油酸(Linoleic acid)5.4%,十二碳烯酸(Dodecenoic acid)0.3%,十四碳烯酸(Tetradecenoic acid)7.2%。 槟榔所含自由氨基酸中脯氨酸(Proline)超过15%,酪氨酸(Tyrosine)、苯丙氨酸(Phenylalanine)和精氨酸(Arginine)超过10%,槟榔成熟则非蛋白氮含量减少。 槟榔内胚乳(Endosperm)含儿茶精(Cate- chin)、花白素(Leucoanthocyanidin)及其聚合物。 槟榔碱(Arecoline)化学名为“N-甲基-1,2,5,6-四氢烟酸甲酯”,它是一种M、N受体激动剂,对中枢神经系统有抗胆碱作用,也可作为合成其它M受体激动剂的原料 理化性质 无色无臭油状液体。沸点209°。与水、乙醇及乙醚混溶,溶于氯仿。盐酸盐(C 8H 13 NO 2 2HCl)为针状结晶,溶 点158°,溶于水和乙醇。 药理作用

苯并呋喃酮

苯并呋喃酮 1.产品介绍: 1.1产品名称:苯并呋喃酮;苯并呋喃-2(3H)-酮;3H-苯并呋喃-2-酮; 2(3H)-苯并呋喃酮; 2-香豆冉酮;苯丙呋喃-2(3H)-酮。 1.2英文名:2-Coumaranone 1.3CAS号:553-86-6 1.4分子式及分子量:C8H6O2=134.13; 1.5用途:农药及医药中间体; 1.6结构式: 1.7理化性质: 2.工艺技术路线介绍 2.1工艺路线A:以邻硝基甲苯为原料在乙醇钠催化下与草酸二乙酯缩合后,经水解、双氧 水氧化、酸化后制得邻硝基苯乙酸;再经还原、重氮化、水解反应得到苯并呋喃酮。 2.1.1原料:邻硝基甲苯、金属钠、草酸二乙酯、乙醇、氢氧化钠、30%双氧水、8%硫化 铵溶液、亚硝酸钠、浓硫酸等九种 2.1.2反应原理: 2.2工艺路线B:以邻氯苯乙腈为原料,经过皂化、水解、酯化、环化合成苯并呋

喃酮。 2.2.1原料:邻氯苯乙腈、氢氧化钠、催化剂A、盐酸、催化剂B、甲苯等六种。 2.2.2反应原理: 2.2.3选用B工艺路线,只有六种原材料,两步合成步聚,具有原料少,反应 工艺步聚少的优点,也具有更加节能降排的优点。所以我们选择是B路线。具体大生产的数据如下: 3. 投料: 3.1在5000L反应釜1#内抽入自来水1200kg,30%液碱2065kg,投料毕,升温 到95~104℃,滴加邻氯苯乙腈600kg,正常保持回流滴加,时间4小时;滴毕104~105℃保温5小时,保温结束抽氨气3.5小时,降温取样。 3.2在不锈钢压力釜2#中,投入8-羟基喹啉铜100kg,把1#釜中的料液转入压力 釜中,升温到95℃,放空6~7秒,自然升温3小时后压力上升到2.8~3公斤,釜温142~147℃,保温6小时,降温到90℃以下,取样分析。 3.32#压力釜内的物料转入到3#釜中,降温到24℃开始滴加30%的盐酸,温度 严格控制在24~27℃,大约滴加到450kg左右,时间6小时左右,最终PH 值为6.5~6.8之间,滴毕,保温1小时,放料、抽滤、离心,母液抽入4#釜,滤饼为8-羟基喹啉铜,回收套用。 3.4母液抽入4#釜内后,温度降低到18~22℃,开始滴加30%的盐酸,大约滴加 680kg左右;滴加结束降温到18℃,加水300kg,再降温到5~8℃,保温1小时,放料离心,得中间体邻羟基苯乙酸。 3.5在3000L反应釜内投入邻羟基苯乙酸,催化剂6~8kg,抽入甲苯1000kg,搅 拌、升温,冷凝器回流分水。直至无水分出,大约要脱水10~13小时,降温到90℃以下,取样分析;降温至24~28℃,加水200kg,搅拌20分钟,静置30分钟,分去水层和乳化层,再加入3.5%盐酸水100kg,搅拌10分钟,静置20分钟,分去水层后,转入脱溶釜;脱溶、负压脱溶,真空度

相关文档