文档库 最新最全的文档下载
当前位置:文档库 › 高压电机、变压器差动保护动作的几种原因及分析

高压电机、变压器差动保护动作的几种原因及分析

高压电机、变压器差动保护动作的几种原因及分析

装置与应用

258 2015年9月下

高压电机、变压器差动保护动作的几种原因及分析

张培龙 李洪佳 刘 伟

中石化中原油田分公司供电服务中心,河南 濮阳 457000

摘要:随着微机保护装置的广泛应用,特别是在保护装置改造、新设备投产中,会遇到电机、变压器差动保护动作的情况,本文就我们实践中出现的问题及解决办法介绍给大家,以求少走弯路。

关键词:高压电机(发电机、电动机);变压器;差动保护动作 中图分类号:TM772 文献标识码:A 文章编号:1002-1388(2015)09-0258-01

高压变压器、电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。

1 电机差动保护动作原因分析

1.1 已经投产运行中的电机

已经投产运行的电机当出现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置出现了问题。

解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断出故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及CT 和二次回路的问题。

投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其二次线错接在了测量级上,其电机两侧CT 的特性不一致。当给2号35kV 主变充电时就会有直流分量和谐波串到6kV 电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值1.6A 左右,动作整定值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误动。

2 改造或新设备第一次投产时,电机差动保护动作原因分析

由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设备第一次投产试运行时,往往会出现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所出现过的几种情况。

(1)郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值6.2A-7.2A 。动作整定值5.2A )。对装置的参数整定,CT 的极性、接线进行反复检查均没问题,电机试验也正常。后来确认,由于电机距离开关柜较远(1000m ),电机中心点CT 的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流出现。测量电动机尾端到开关柜保护装置的接线直阻为3.5欧,CT 带负载能力为2.2欧。我们从厂家制造了两只专用CT ,二次绕组都制成保护级且变比相同,把其副边串接起来,在不改变变比的情况下,提升了带负载能力。改造后正常。

(2)郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A ,动作整定值21.7A 。我们对电机、电缆、CT 变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT 极性接反(相角差180度),接反后其动作值应在42A 以上,更像是差动回路或一次回路相序不对,其动作电流肯定大于21.7A ,一般小于42A 。其动作值与启动电流

的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算出来理想状态下的动作电流。经过仔细检查,发现电机中心点电缆出线A 相接到了C 相上,也就是说,开关侧与电机中心点侧的CT 差的不是同相电流。这与分析和计算结果相一致。濮一变也出现过此情况。

(3)郭村变再次改造微机保护装置后,第一次投运时,622注水电机保护装置的差速动作(动作值44A ,动作整定值21.7A ),根据动作值来看,应该是CT 的极性接反,但反复检查,按照惯例是“正确的”。后经过分析,可能是保护装置(型号PSM641U 国电南自)设计与原产品有变化,把电机开关侧CT 的极性调反后,电机启动正常。濮一变622注水电机也出现过此情况。

3 变压器差动保护动作原因及分析

(1)赵村变一号110kV 主变微机保护装置(PST622,国电南自)改造后,差动保护越线报警(报警电流整定值0.7A )。我们当时没有经验,误认为没有问题。当35kV 赵特蒙线短路后,一号主变差动保护动作,造成主变跳闸。我们经过仔细查找,发现主变35kV 侧差动CT 变比本应600/5却错接为400/5,而且未做变比试验。更改后差动保护越线电流降低为0.2A-0.3A 之间。差动保护装置检测到的差动电流ISA 、ISB 、ISC 在0.025-0.04之间。究其原因就是因为在外部短路时,电流很大,由于35kV 侧与110kV 、6kV 侧CT 变比不匹配,造成差流过大,致使主变三侧开关跳闸。但正常运行时,差流不会达到跳闸值。

(2)赵村变二号主变在第二次改造投运后,发现差动电流IUMA 、IUMC 偏大(为0.4A 左右。正常值值应为0.02-0.04A 之间),ISB 正常。我们分析是CT 的二次相序接反了。经过查找就是因为建站初期,因110kV 进线通道问题,相序故意接反的。我们调整后,一切正常。

(3)郭村变一号主变微机保护装置改造完投运后,未发现异常。当35kV 郭胡线短路后,一号主变却跳闸了。经过仔细检查发现主变(Y/Y/△11接法)110kV 侧CT 二次(△接线方式)有一处接地(不能接地),当外部出线发生短路时,变压器三侧的二次电流差自然会加大,造成差动保护动作。解掉后正常。现在的微机保护装置都可以根据需要实现内部相位补偿,差动CT 的副边都可以接成星型,无需考虑变压器的接法。

(4)金堤变一号主变差动保护动作。我们到现场进行了仔细分析和试验,没发现什么问题,施工单位反映,他们在一号主变的110kV 进线开关上焊接接地极。根据这个线索,我们进行了分析和查找,发现110kV 侧差动CT 中性点在101CT 端子箱上接了地,在主变保护屏端子上也接了地,造成重复接地。当施工人员在110kV 端子箱上焊接接地极时,会在CT 回路上加上一个20V 的电压,造成CT 回路电流超过差动保护动作电流整定值(2.2A ),致使主变三侧开关跳闸。因此,检修、验收时一定要详细检查CT 回路的中性点接地情况。

参考文献

[1]何彤,薛文俊,梁乐.变压器差动保护误动作分析[J].中国新技术新产品,2013(1):156.

[2]董智勇.变压器差动保护动作原因的分析方法[J].中国机械,2013(11):150-151.

发电机差动保护动作原因分析

发电机差动保护动作原因分析 一、事故经过 2012年10月23日07时29分,网控值班员听见巨响声同时发现盘面柴发电源二103-16断路器跳闸,网控值班员立即前往网控10KV配电室发现浓烟,经检查柴发电源二103-16高压柜后盖已被甩出,柜内已烧黑。2号发电机纵差保护动作,2号发电机组跳闸。07时33分,低频保护动作,甩负荷至第5轮。07时33分41秒,1号、3号机组跳闸,全厂失电。 二、故障分析 继电保护人员随后调取事故动作报告,发现发电机差动保护动作时刻,差动电流确实已经远超过了整定值,说明在103-16柜故障时刻发抗组差动回路确实存在很大的不平衡电流。与此同时为验证发电机差动回路内一次设备是否有故障,对发电机绕组及其一次母线进行对地及相间绝缘检查,未发现异常。证明发电机等一次设备未发生故障,发抗组保护装臵本身在这次大修期间已经对保护装臵及二次回路连线可靠性及差动极性正确性进行检查均未发现有误之处。差动动作时间和103-16柜发生故障时间基本同时发生,但是就算在故障过程中产生的瞬间大电流对发电机差动回路来说也应该是一个穿越性电流,不应该对发电机差动保护产生影响。随后保护人员调取录波图进行分析,发现故障时刻发电机中性点B相电流波形严重畸变。经过计算,发电机中性点B相电流与发电机机端B相电流之差正好等于装臵

采样的差流值。 从录波图上可以看出,故障时刻发电机中性点B相电流波形发生严重畸变,且故障时刻发电机中性点B相电流与发电机机端电流在同一时刻的相位及幅值均不相同,说明故障电流对发电机中性点电流互感器和发电机机端电流互感器造成的影响不同。 三、波形畸变分析 1、从录波图上可以看出,B相电流波形开始发生畸变前一刻波形

(新)高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。 2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

DMP300型微机变压器差动保护测控装置说明书

一、简介 1.概述 DMP300型微机变压器差动保护测控装置,适用于110KV及以下电压等级的三圈变或两圈变,具有开入采集、脉冲电度量采集、遥控输出、通讯功能。其中DMP321适用于三圈变,DMP322适用于两圈变。 保护功能:a)差电流速断保护 b)二次谐波制动的比率差动保护 c)CT断线识别和闭锁功能 d)过负荷告警 e)过载启动风冷 f)过载闭锁有载调压 遥信量采集:a)本体轻、重瓦斯信号 有载轻、重瓦斯信号 压力释放信号 变压器超温告警 b)主变一侧开关的弹簧未储能、压力异常闭锁、报警 c)从主变一侧开关操作箱中采集开关跳、合位,手跳、手合开关量脉冲电量:一路有功脉冲电度、一路无功脉冲电度 遥控:遥控主变一侧开关 2.特点: 1)差动保护中各侧电流平衡补偿由软件完成,中低压侧电流不平衡系数均以高压侧为基准。变压器各侧CT二次电流相位也由软件自动校正,即变压器各侧CT二次回路可接成丫型(也可选择常规接线),这样简化了CT二次接线,增加了可靠性。 1)变压器保护的差动保护与后备保护完全独立,各侧后备也完全独立,独立的工作电 源、CPU实现真正意义上的主、后备保护,极大地提高了主变保护的可靠性。 2)通过菜单可直接查看主变各侧电流值的大小、相位关系,差电流大小,方便用户调 试与主变投运。 3)选用高性能、高可靠性的80C196单片机,高度集成的PSD可编程外围芯片;宽温军 用、工业级芯片;高精度阻容元件;进口密封继电器。 4)抗干扰、抗震动的结构设计

全封闭金属单元机箱,箱内插板间加装隔离金属屏蔽板;高可靠性的进口接插件,加装固定挡条。 5)独到的多重抗干扰设计 单元装置采取了隔离、软硬件滤波、看门狗电路、智能诊断各种开放闭锁控制,ALL IN ONE的主板电路设计原则,新型结构设计等多种抗干扰措施,取得了良好的效果。 6)体积小、模块化,既可安装于开关柜,构成分散式系统,又可集中组屏。 7)大屏幕液晶汉字显示运行参数、菜单,具有极好的人机界面,操作简单、直观、易 学、易用。 8)所有保护功能均可根据需要直接投退,操作简单。 9)软件实现交流通道的模拟量精度调整,取消了传统的采保通道的误差补偿电位器, 不但简化了硬件,更方便了现场调试、校验,还提高了精度。 10)独到的远动试验菜单功能。装置中设有“远动试验”菜单,通过菜单按钮进行远动信息 传输试验,如“差动速断动作”、“高压侧CT断线告警”等,无需试验接点真正闭合,可在线试验,方便了远动调试。 11)多层次的PASSWORD:运行人员口令、保护人员口令、远动人员口令。 12)事件记录分类记录32条故障信息,32条预告信息,8条自检信息,并具掉电保持功 能。

高压电机差动保护动作的几种原因

咼压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、 变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1电机差动保护动作原因分析 1.1已经投产运行中的电机 已经投产运行的电机当岀现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置岀现了问题。解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断岀故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及 CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这 种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。 这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其 二次线错接在了测量级上,其电机两侧CT的特性不一致。当给 2号35kV主变充电时就会有直流分量和 谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值 1.6A左右,动作整定 值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误 动。 2改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设 备第一次投产试运行时,往往会岀现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所岀现过的几种情况。 ⑴郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值 6.2A-7.2A。动作整定 值5.2A )。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认, 由于电机距离开关柜较远(1000m ),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流岀现。测量电动机尾端到开关柜保护装置的接线直阻为 3.5欧,CT带 负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起 来,在不改变变比的情况下,提升了带负载能力。改造后正常。 ⑵郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在 42A以上,更像是差 动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算岀来理想状态下

变压器纵差动保护动作电流的整定原则是什么

变压器纵差动保护动作电流的整定原则是什么? .(1)大于变压器的最大负荷电流; (2)躲过区外短路时的最大不平衡电流; (3)躲过变压器的励磁涌流。 39.什么是自动重合闸?电力系统为什么要采用自动重合 闸? 答:自动重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。电力系统运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性故障一般不到10%。因此,在由继电保护动作切除短路故障之 后,电弧将瞬间熄灭,绝大多数情况下短路处的绝缘可以自动恢复。因此,自动将断路器重合,不仅提高了供电的安全性,减少了停电损失,而且还提高了电力系统的暂态稳定水平,增大了高压线路的送电容量。所以,架空线路要采用自动重合闸装置。 什么是主保护、后备保护、辅助保护? 答:主保护是指能满足系统稳定和安全要求,以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是指当主保护或断路器拒动时,起后备作用的保护。后备保 护又分为近后备和远后备两种:(1)近后备保护是当主保护拒动时, 由本线路或设备的另一套保护来切除故障以实现的后备保护(2)远后 备保护是当主保护或断路器拒动时,由前一级线路或设备的保护来切 除故障以实现的后备保护. 辅助保护是为弥补主保护和后备保护性能的不足,或当主保护及后备 保护退出运行时而增设的简单保护。 、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分)

变压器差动保护

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

高压变频器电动机保护的配置

高压变频器电动机保护的配置 根据国家能源政策的要求,节能减排工作已全面展开,而在大型火力发电厂,厂用电率的降低势在必行。对于占厂用电绝大部分的高压电动机来说,节能领域的重要技术措施就是高压变频技术的应用。随着电力电子技术的发展,变频器在电厂得到了广泛应用。目前的新建电厂,重要辅机如风机、水泵等,一般均要求考虑配置变频器拖动;越来越多的已建电厂正在进行或已完成高压电动机采用变频器的改造。高压电动机采用采用变频器拖动后,电动机保护如何配置才能保证机组安全可靠的运行,成为电厂、设计院、保护厂家关注的问题。 1传统电动机保护配置 异步电动机的故障有定子绕组相间短路故障、绕组的匝间短路故障和单相接地故障;不正常运行状态主要有过负荷、堵转、起动时间过长、三相供电不平衡或断相运行、电压异常等。因此,对于高压电动机,根据规程以差动保护或电流速断为主保护,以过负荷保护、过流保护、负序保护、零序保护及低电压保护等作为后备保护。 2目前变频器电动机保护配置 发电厂为保证系统的可靠性,高压电动机一般采用变频器带工频旁路,以便即使在变频器检修时也可通过工频旁路,保证电动机的正常运行。图1为现场高压电动机变频器改造的示意图,其中K1、K2开关保证变频器检修时,与主回路无接触点,此时K3开关闭合,电动机通过旁路运行。 当电动机通过旁路运行,此时由厂用电中高压母线工频电压直接驱动电动机,进线开关QF处保护装置的保护对象是开关出线以及电动机本体。因此,此时应该按照常规电动机保护的要求配置电动机保护,有差动保护要求的,需要配置电动机差动保护。

当旁路开关K3断开,电动机由变频器拖动时,进线开关QF处保护装置的保护对象是开关出线以及变频器。由于目前发电厂使用的变频器一般由整流变压器、控制柜等部分构成,即进线开关QF处保护装置的保护对象是开关出线以及整流变压器。此时电动机成为与厂用电母线隔离后高压变频器的负荷,因而电动机的保护应由高压变频系统的控制器实现。对于6~10kV整流变压器,一般对其配置常规变压器后备保护,在整定时和常规变压器略有差异。此时电动机常规差动保护由于开关处电流和电动机中性侧电流频率不一致,无法进行差动保护,只能退出。 前一般变频器电动机保护配置有:电动机保护测控装置、电动机差动保护装置、变压器保护测控装置。电动机保护装置和变压器保护装置通过旁路开关进行功能的投退:即旁路开关断开,此时为变频器拖动电动机方式,变压器保护装置投入,电动机保护装置和电动机差动保护装置退出;当旁路开关闭合,此时为工频电网直接拖动电动机,电动机保护装置和电动机差动保护装置投入,变压器保护装置退出。 目前此种保护配置方式主要存在两个问题: (1)对于2000kW以上的电动机,需要配置差动保护。因此,在变频器拖动电动机情况下,电动机差动保护退出,保护的可靠性受到影响。 (2)任意时刻,变压器保护装置、电动机保护装置只有一台投入使用,降低了装置的使用效率。 3变频器电动机差动保护 在使用变频器拖动电动机的情况下,传统电动机差动保护无法使用的原因为:电动机机端CT为图1中开关柜处的CT1和电动机中性侧CT即CT3这两处CT的电流频率不相同。文献提出采用磁平衡差动保护来实现,但实际中存在几个问题:

电动机差动保护的原理及应用

电动机差动保护的原理及应用 摘要:本文阐述了大型电动机差动保护原理。分析了差动保护的分类及对灵敏度的影响并介绍了差动原理逻辑图。 关键词:差动保护、比率差动、二次谐波闭锁比率差动 引言 大型高压电动机作为昂贵的电气主设备在发电厂,化工厂等大企业得到广泛的应用。如果发生严重故障导致电机烧毁,将严重影响生产的正常进行,造成巨大的经济损失,因此必须对其提供完善的保护。现有电动机综合保护装置主要针对中小型电动机,为其提供电流速断,热过载反时限过流,两段式定时限负序,零序电流,转子停滞,启动时间过长,频繁启动等保护功能。而对于2000KW以上特大容量电动机,则无法满足其内部故障时对保护灵敏度与速动性的要求,因而研制此装置并配合综合保护装置,为高压电动机提供更可靠更灵敏的保护措施。按照《电力装置的继电保护和自动装置设计规范》GB50062的要求:2MW 及以上的电机应装设纵差保护。 一概述 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s 的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下:

变压器纵差动保护动作电流的整定原则

变压器纵差动保护动作电流的整定原则差动保护初始动作电流的整定原则,是按躲过正常工况下的最大不平衡电流来整定;拐点电流的整定原则,应使差动保护能躲过区外较小故障电流及外部故障切除后的暂态过程中产生的最大不平衡电流。比率制动系数的整定原则,是使被保护设备出口短路时产生的最大不平衡电流在制动特性的边界线之下。 为确保变压器差动保护的动作灵敏、可靠,其动作特性的整定值(除BCH型之外)如下: Idz0=(0.4,0.5)IN, Izd0=(0.6,0.7)IN, Kz=0.4,0.5 式中,Idz0为差动保护的初始动作电流;I,zd0为拐点电流;Kz =tgα点电流等于零的;IN为额定电流(TA二次值)。 电流速断保护限时电流速断保护定时限过电流保护的特点 速断保护是一种短路保护,为了使速断保护动作具有选择性,一般电力系统中速断保护其实都带有一定的时限,这就是限时速断,离负荷越近的开关保护时限设置得越短,末端的开关时限可以设置为零,这就成速断保护,这样就能保证在短路故障发生时近故障点的开关先跳闸,避免越级跳闸。定时限过流保护的目的是保护回路不过载,与限时速断保护的区别在于整定的电流相对较小,而时限相对较长。这三种保护因为用途的不同,不能说各有什么优缺点,并且往往限时速断和定时限过流保护是结合使用的。 瞬时电流速断保护与限时电流速断保护的区别就是,瞬时是没有带时限的,动作值达到整定值就瞬时出口跳闸,不经过任何延时。而限时电流速断是带有延时的,动作值达到整定值后经过一定的延时才启动出口跳闸;

瞬时电流速断保护与限时电流速断保护的区别,限时电流速断保护与过电流保护有什么不同, 瞬时电流速断和限时电流速断除了时间上的区别外就是他们在整定的大小和范围的不同,瞬时速断保护的范围比限时的要小,整定动作值要比限时速断的要大。 过电流保护和限时电流速断的区别? 电流速断,限时电流速断和过电流保护都是反映电流升高而动作的保护装置。 区别:速断是按躲开某一点的最大短路电流来整定,限时速断是按照躲开下一级相邻元件电流速断保护的动作电流来整定,而过流保护是按躲开最大负荷电流来整定的。 由于电流速断不能保护线路的全长,限时电流速断又不能作为相邻元件的后备保护,因此保证迅速而又有选择的切除故障,常将三者组合使用,构成三段电流保护。 过电流保护的整定值为什么要考虑继电器的返回系数,而电流速断保护则不需要考虑, 这是综合考虑保护的灵敏性和可靠性的结果。为了保证保护的灵敏性,动作的整定值 应当尽量小,但是过电流的动作值与额定运行电流相差不大,这样有可能造成保护误动作,从而降低了供电的可靠性。所以我们为过电流保护加了时限,过电流必须要持续一定的时间才会动作,如果在时限内电流降到返回值以下,那么保护就复归不用动作了,从而在不降低灵敏性的情况下增加了可靠性。而电流速断本身动作电流比较大,且没有时间的限制,只要电流一超过速断的整定值,马上动作跳闸,所以不需要设置返回值。 何谓线路过电流保护,瞬时电流速断保护?和它们的区别, 两种保护的基本原理是相同的。

变压器差动保护

第二节变压器差动保护 1.概述 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电机上的应用是比较简单的,但是作为变压器内部故障的主保护,差动保护将有许多特点和困难。 变压器有两个和更多个电压等级,构成差动保护所用电流互感器的额定参数各不相同,由此产生的差动保护不平衡电流将比发电机大得多。 变压器每相原副边电流之差(正常运行时的励磁涌流)将作为变压器差动保护不平衡电流的一种来源,特别是当变压器过励磁运行时,励磁电流可达变压器额定电流的水平,势必引起差动保护误动作。更有甚者,在空载变压器突然合闸时,或者变压器外部短路被切除而变压器端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小可与短路电流相比拟,在这样大的不平衡电流下,要求差动保护不误动,是一个相当复杂困难的技术问题。 正常运行中的变压器,根据电力系统的要求,需要调节分接头,这又将增大变压器差动保护的不平衡电流。 变压器差动保护能反应高、低压绕组的匝间短路,而匝间短路时虽然短路环中的电流很大,但流入差动保护的电流可能不大。 变压器差动保护还应能反应高压侧(中性点直接接地系统)经高阻接地的单相短路,此时故障电流也较小。 综上所述,差动保护用于变压器,一方面由于各种因素产生较大和很大的不平衡电流,另一方面又要求能反应具有流出电流的轻微匝间短路,可见变压器差动保护要比发电机差动保护复杂得多。 2.配置原则 对变压器引出线、套管及内部的短路故障,应装设相应的保护装置,并应符合下列规定: (1) 10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动 保护。6.3MVA及以下单独运行的重要变压器,亦可装设纵联差动保护。 (2) 10MVA以下的变压器可装设电流速断保护和过电流保护。2MVA及以上的变压器,当电 流速断灵敏系数不符合要求时,宜装设纵联差动保护。 (3) 0.4MVA及以上,一次电压为10kV及以下,线圈为三角-星形连接的变压器,可采用两 相三继电器式的过流保护。 (4) 以上所述各相保护装置,应动作于断开变压器的各侧断路器。 3.要求达到的性能指标 (1) 具有防止区外故障误动的制动特性; (2) 具有防止励磁涌流引起误动的功能; (3) 宜具有TA断线判别功能,并能选择闭锁差动或报警,当电流超过额定电流的 1.5~2倍 时可自动解除闭锁; (4) 动作时间(2倍整定值时)不大于50ms; (5) 整定值允差±5%。 4.原理及其微机实现 4.1四方 4.1.1 保护原理 变压器差动包括主变差动、发变组差动、厂用变差动、起/备变差动、励磁变差动等,对于高压侧为500kV的一个半开关接线方式,发变组差动及主变差动保护应反应四侧的电流量。

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析 1、摘要 2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。 2、基本概况及事故发生经过 内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统. 根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患. 3、光纤差动保护误动的原因分析 经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

最新DMP322微机变压器差动保护装置汇总

D M P322微机变压器差 动保护装置

1 适用范围 DMP322微机变压器差动保护装置适用于两圈变压器,可集中组屏,也可分散于开关柜。 2 主要功能 2.1保护功能 ①差动速断保护 ②二次谐波制动的比率差动保护 ③CT断线闭锁比率差动保护并告警 ④差流告警 ⑤过负荷告警 ⑥过载启动风冷 ⑦过载闭锁有载调压 ⑧本体保护信号 以上各种保护均有软件开关,可分别投入和退出。 2.2远动功能 主变一侧开关位置遥信及开关事件遥信。 主变本体信号如下:本体轻重瓦斯信号、有载轻重瓦斯信号、超温告警信号、超温跳闸信号、压力释放信号、风扇故障、油位过高、油位异常、油位过低。 主变一侧开关遥控。 2.3录波功能 装置具有故障录波功能,记忆最新8套故障波形,记录故障前10个周波,故障后10个周波,返回前10个周波,返回后5个周波,可在装置上查看、显示故障波形,进行故障分析,也可上传当地监控或调度。 3 技术指标 3.1额定数据 交流电流 5A、1A 交流电压 100V 交流频率 50HZ

直流电压 220V、110V 3.2功率消耗 交流电流回路 IN=5A 每相不大于0.5VA 交流电压回路 U=UN 每相不大于0.2VA 直流电源回路正常工作不大于10W 保护动作不大于20W 3.3过载能力 交流电流回路 2倍额定电流连续工作 10倍额定电流允许10S 40倍额定电流允许1S 交流电压回路 1.2倍额定电压连续工作 直流电源回路 80%—110%额定电压连续工作 3.4测量误差 测量电流电压不大于±0.3% 有(无)功功率不大于±0.5% 保护电流不大于±3% 3.5温度影响 正常工作温度: -10℃~ 55℃ 极限工作温度: -25℃~ 75℃ 装置在-10℃~55℃温度下动作值因温度变化而引起的变差不大于±1%。 3.6安全与电磁兼容 ①脉冲干扰试验 能承受频率为1MHZ及100KHZ电压幅值共模2500V,差模1000V的衰减震荡波脉冲干扰试验. ②静电放电抗扰度测试 能承受IEC61000-4-2标准Ⅳ级、试验电压8KV的静电接触放电试验。 ③射频电磁场辐射抗扰度测试 能承受IEC61000-4-3标准Ⅲ级、干扰场强10V/M的幅射电磁场干扰试验。 ④电快速瞬变脉冲群抗扰度测试 能承受IEC61000-4-4标准Ⅳ级的快速瞬变干扰试验。 ⑤浪涌(冲击) 抗扰度试验 能承受IEC61000-4-5标准Ⅳ级、开路试验电压4KV的浪涌干扰试验。

实用文档之高压电动机差动保护原理及注意事项

实用文档之"高压电动机差动保护原理及注意事项" 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之

差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s 的延时动作于跳闸。如果是微机保护装置,则只需将CT 二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下: ≥1 & & ≥1 ACT BTJ ACT BTJ t dz 差动速断(投跳) 比率差动(投跳) I da >I sd I ∑>I N I d >I set I ∑I sd I d >I set 差动 速断 保护 分相 比率 差动 保护

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

相关文档
相关文档 最新文档