文档库 最新最全的文档下载
当前位置:文档库 › 归纳二重积分的计算方法

归纳二重积分的计算方法

归纳二重积分的计算方法
归纳二重积分的计算方法

归纳二重积分的计算方法

摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限.

关键词 :函数极限;计算方法;洛必达法则; 四则运算

前言

二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧.

1. 预备知识

1.1二重积分的定义]1[

设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数

ε

,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和

都有

()1

,n

i

i

i

i f J ξησ

ε=?-<∑,

则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作

(),D

J f x y d σ=??,

其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域.

1.2二重积分的若干性质

1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D

kf x y d σ??(),D

k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且

()()[,,]D

f x y

g x y d σ±??()(),,D

D

f x y d

g x y d σσ=±????.

1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且

()12

,D D f x y d σ?? ()()1

2

,,D D f x y d f x y d σσ=±????

1.3在矩形区域上二重积分的计算定理

设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d

c f x y dy ?存

在,则累次积分(),b d

a

c

dx f x y dy ??也存在,且

(),D

f x y d σ??

(),b d

a

c

dx f x y dy =??.

同理若对每个[],y c d ∈,积分(),b

a

f x y dx ?存在,在上述条件上可得

(),D

f x y d σ??

(),d b

c

a

dy f x y dx =??

2.求的二重积分的几类理论依据

二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算

X -型区域: ()()(){}12

,,D x y y x y y

x a x b =≤≤≤≤

Y -型区域: ()()(){}1

2

,,D x y x y x x y c y d =

≤≤≤≤

定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则

(),D

f x y d σ??()()()

21,b

y x a

y x

dx f x y dy =??

即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

(),D

f x y d σ

??

()()()21

,d

x y c

x y d x f x y d

y =?? 例1求两个底面半径相同的直交圆柱所围立体的体积V . 解:设圆柱底面半径为a ,两个圆柱方程为 222x y a +=与222x z a +=.

只要求出第一卦限部分的体积,然后再乘以8即得所求的体积.

第一卦限部分的立体式以

z =为曲顶,以四分之一圆域D

:

00,y x a ??≤≤?

≤≤??

为底的曲顶柱体,所以

2230012()83a a D

V dx a x dx a σ===-=??

于是3

163

V a =

. 另外,一般常见的区域可分解为有限个X -型或Y -型区域,用上述方法求得各个小区域上的二重积分,再根据性质1.23求得即可.

2.2 二重积分的变量变换公式

定理: 设(),f x y 在有界闭域D 上可积,变换T : (),x x u v =, (,)y y u v =将平面uv 由按段光

滑封闭曲线所围成的闭区域?一对一地映成xy 平面上的闭区域D ,函数

(),x x u v

=,(,)y y u v =在?内分别具有一阶连续偏导数且它们的函数行列式 ()()

()

,,0,x y J u v u v ?=

≠?, (),u v ∈?,

()()()()(),,,,,D

f x y dxdy f x u v y u v J u v dudv ?

=????.

用这个定理一般有两个目的,即被积函数化简单和积分区域简单化. 例1 求

x y x y

D

e

dxdy -+??,其中D 是由0x =,0y =,1x y +=所围区域.

解 为了简化被积函数,令u x y =-,v x y =+.为此作变换T :1()2x u v =

+,1

()2

y u v =-,则

()111

2

2,01122

2

J u v =

=>-. 即

111100111()2224x y u u v x y

v

v

v D

e e e

dxdy e dudv dv e du v e e dv ---+-?

-==-=???????

例2 求抛物线2y mx =,2y nx =和直线y x β=,y x α=所围区域D 的面积()D μ

(0,0)m n αβ<<<<.

解D 的面积()D

D dxdy μ=

??.

为了简化积分区域,作变换T : 2

u x v =,u

y v

=.它把xy 平面上的区域D 对应到uv 平面上的矩形区域[][],,m n αβ?=?.由于

()2

3

421

2,01u

u v v J u v u v v

v

-

=

=>-,(),u v ∈?, 所以

()()22334433()6n m D n m u

dv D dxdy dudv udu v v βαβαμαβ?

--====?????? 2.3 用极坐标计算二重积分

定理: 设(),f x y 在有界闭域D 上可积,且在极坐标变换T :cos sin x r y r θ

θ=??

=?

0r ≤<+∞,

02θπ≤≤下,xy 平面上有界闭区域D 与r θ平面上区域?对应,则成立

()(),cos ,sin (,)D

f x y dxdy f r r J r drd θθθθ?

=????.

其中cos sin (,)sin cos r J r r r θθθθ

θ

-=

=.

当积分区域是源于或圆域的一部分,或者被积函数的形式为()

22

,f x y 时,采用该极坐标变

换.

二重积分在极坐标下化累次积分的计算方法:

(i )若原点O D ?,且xy 平面上射线θ=常数与D 边界至多交与两点,则?必可表示成

12()()r r r θθ≤≤,αθβ≤≤,

于是有

21()

()

(,)(cos ,sin )r r D

f x y dxdy d f r r rdr β

θα

θθθθ=??

??

类似地,若xy 平面上的圆r =常数与D 的边界多交于两点,则?必可表示成

12()()r r θθθ≤≤,12r r r ≤≤,

所以

221

1()

()

(,)(cos ,sin )r r r r D

f x y dxdy rdr f r r d θθθθθ=??

??

.

(ii )若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则?可表示成0()r r θ≤≤,

02θπ≤≤.

所以

2()

(,)(cos ,sin )r D

f x y dxdy d f r r rdr

π

θθθθ=???

?

.

(iii)若原点O 在D 的边界上,则?为0()r r θ≤≤,αθβ≤≤, 于是

()

(,)(cos ,sin )r D

f x y dxdy d f r r rdr βθαθθθ=????

例1 计算2

2()

x

y D

I e d σ-+=??,其中D 为圆域: 222x y R +≤.

解 利用极坐标变换,由公式得

22

20

(1)R

r R I re dr e π

π--==-?

?

.

与极坐标类似,在某些时候我们可以作广义极坐标变换:

T :cos sin x ar y br θ

θ

=??

=? 0r ≤<+∞,02θπ≤≤,

cos sin (,)sin cos a ar J r abr b br θθθθ

θ

-=

=.

如求椭球体222

2221x y z a b c

++≤的体积时,就需此种变换.

2.4利用二重积分的几何意义求其积分

当(,)0f x y ≥时,二重积分(,)D

f x y dxdy ??在几何上就表示以(,)z f x y =为曲顶,D 为底的曲

顶体积.当(,)1f x y =时,二重积分

(,)D

f x y dxdy ??的值就等于积分区域的面积.

例6

计算:D

I σ=,其中D :22221x y a b +≤.

因为被积函数z =0≥,

所以I 表示D

为底的z =

由平行xoy 面的截面面积为

()(1)A x ab z π=-,(01)z ≤≤,

根据平行截面面积为已知的立体体积公式有

101

(1)3

I ab z dz ab ππ=-=?

2.5 积分区域的边界曲线是由参数方程表示的二重积分有关计算 2.51利用变量代换计算

设D 为有界闭域,它的边界曲线,()t αβ≤≤且{}(,),()D x y a x b c y y x =≤≤≤≤,当x a

=时,t α=;当x b =时,t β=。设(,)f x y 在D 上连续,且存在(,)P x y ,(,)x y D ∈使得

(,)P

f x y y

?=?,则 '

(,){[(),()][(),]}()D

f x y dxdy P t t P t c t dt β

α=Φψ-ΦΦ???

2.52利用格林公式计算

定理 若函数(,)P x y ,(,)Q x y 在闭区域D 上连续,且有连续的一阶偏导数,则有

(

)L D

Q P

d Pdx Qdy x y

σ??-=+????? 这里L 为区域D 的边界线,并取正方向. 计算步骤: (1)

构造函数(,)P x y ,(,)Q x y 使Q x ??(,)P

f x y y

?-=?,

但(,)P x y ,(,)Q x y 在D 上应具有一阶连续偏导数;

(2)利用格林公式化曲线积分求之.

例7计算34D

x y dxdy ??,D 是由椭圆cos x a θ=,sin y b θ=所围成.

解法一(利用变量代换)设1D 为D 在第一象限,则

1

352

4

2

4

2535352

0444cos ,sin cos sin (sin )5564D D a b x y dxdy x y dxdy x y dx x a y b a b d ππθθθθθθ====-=??????作变换 解法二(利用格林公式)令2515P x y =-

,0Q =,则24P

x y y

?=-?,0Q x ?=?. 3522

4

2525

011(cos )(sin )(sin )5564L D

a b x y dxdy x y dx a b a d ππθθθθ=-=--=???? 2.7 积分区域具有对称性的二重积分的简便算法 2.71积分区域关于坐标轴对称

性质1 若(,)f x y 在区域D 内可积,且区域D 关于y 轴(或x 轴)对称,则二重积分

满足下列性质:

1

0,(,)(,)2(,),(,)D

D f x y x y f x y dxdy f x y dxdy f x y x y ?

?

=?????

??为关于(或)的奇函数为关于(或)的偶函数

其中1D 为区域D 被y 轴(或x 轴)所分割的两个对称子域之一. 例 计算

(23)D

h x y dxdy --??

,其中D 是由222

x y R +=所围成的闭区域. 解析 由于积分区域D 关于x 轴\y 轴均对称性,只需考虑被积函数(,)23f x y h x y =--关于x 或y 的奇偶性.易见,(,)f x y 关于x 或y 既非奇函数,也非偶函数.若记()2f x x =-,

()3f y y =-,则(,)()()f x y h f x f y =++且()f x 为x 的奇函数,()f y 为y 的奇函数.由此

由性质1,有

4

1

12

20

00cos()cos()02

2

2cos()2cos()1

2

y

y D dxdy LDy y xx x y x y x y D D x y dxdy dy x y dx ππ

π

π

ππ

-=====

≤+=

≤++≤=+=+=

-????,

2

0D

hdxdy hR π=??

故有

(,)D

f x y dxdy =

??

()D

f x dxdy ??

+

()D

f y dxdy ??

+

D hdxdy ??=D

hdxdy ??

=2

hR π 2.72积分区域关于某直线L 对称

性质2 若(,)f x y 在区域D 内可积,且区域D 关于L 对称,则二重积分满足下列性质:

1

0,(,)(,)2(,),(,)D

D f x y L f x y dxdy f x y dxdy f x y L ?

?

=?????

??为关于直线的奇函数为关于直线的偶函数

其中1D 为区域D 被L 所分割的两个对称子域之一. 例 求,其中D 由直线0y =,y x =,2

x π

=

围成.

解析 对任意(,)x y D ∈,有0x y π≤+≤.而当02

x y π

≤+≤

时,cos()0x y +≥.当

2

x y π

π≤+≤时,cos()0x y +≤.故作直线L :2

x y π

+=

,把D 分成1D 和2D 两部分,而1

D 和2D 关于直线L 对称.又cos()x y +关于直线L 偶对称.故

}cos()D x y dxdy +??1

202cos()2cos()12

y

y D x y dxdy dy x y dx π

π

π

-=+=+=

-????

2.8 运用导数的定义求极限

例10 计算)0(ln )ln(lim

0>-+→h x

h

x h x

思路:对具有0

00

)

()(lim

x x x f x f x --→或h x f h x f h )()(lim 000-+→形式的极限,可由导数的定义来进行计算. 解:原式=h

x h x 1

|)'(ln =

= 2.9运用定积分的定义求极限]3[

例11

计算01lim n n →+

思路:和式极限,利用定积分定义1001

1lim ()()n n i i

f f x n n →==∑?dx 求得极限.

解:原式

0100

1lim 2

n n i n x

dx ππ

→====

=

∑??

2.10 运用微分中值定理求极限

例12:计算sin 0lim sin x x x e e x x

→--

思路:对函数()f x 在区间[sin ,]x x 上运用拉格朗日中值定理,即可求得. 解:原式0

lim 1e αα→== (其中α在[sin ,]x x 区间内)

总上所述,在不同的类型下,所采用的技巧是各不相同的,求极限时,可能有多种求法,有难有易,也可能在求题的过程中,需要结合上述各种方法,才能简单有效的求出,因此学会判断极限的类型,另外对以上的解法能活学活用,是必要的.

参考文献:

[1]华东师范大学数学系. 数学分析(第五版)[M]. 高等教育出版社,2001. [2]钱志良. 谈极限的求法[J]. 常州信息职业技术学院学报,2003. [3] 李占光. 函数极限的计算方法[J]. 长沙民政职业技术学院学报,2004.

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

不定积分计算的各种方法论文.doc

不定积分计算的各种方法 广东石油化工学院高州师范学院312数学(1)班梁多彬 【摘要】本论文将要介绍常见的不定积分的各种计算方法以及某些特殊不定积分的求解方法,如:直接积分法(公式法)、分部积分法、换元积分法(第一换元积分法和第二换元积分法)、以及一些特殊函数的积分技巧与方法(有理函数的不定积分以及简单无理函数与三角函数的不定积分),并将结合例题探讨快捷方便的解题方法。 【关键词】不定积分直接积分法分部积分法换元积分法有理函数不定积分简单无理函数与三角函数有理式的不定积分 一、引言 不定积分是《数学分析》中的一个重要内容,它是定积分、广义积分,瑕积分、重积分、曲线积分以及各种有关积分的基础,掌握不定积分的计算方法对于学习这些后续内容具有重要意义。不定积分的解法不像微分运算有一定的法则,它需要根据不同的题型特点采用不同的解法,因此积分运算比起微分运算来,方法更多样,技巧性更强。下面将不定积分的各种计算方法分类归纳,以便于更好的掌握、运用。 二、不定积分的概念 定义:函数f(x)在区间I的所有的原函数()()R F∈ x C C +称为函数f(x)的不 ? 定积分,表为

?+=C x F dx x f )()( ()()('x f x F =,C 为积分常数), 其中∫称为积分符号,x 称为积分变量,f(x)称为被积函数,f(x)dx 称为被积表达式,C 称为积分常数。 在这里要特别注意:一个函数的不定积分既不是一个数,也不是一个函数,而是一个函数族。列如: at at =??? ? ??' 221,而?+=C at atdt 221; () x x cos sin ' =,而?+=C x xdx sin cos ; 2 ' 331x x =??? ? ??,而?+=C x dx x 3231. 这也就是说: ()?)(d x f dx 和?dx x f )(' 是不相等的,即前者的结果是一个函数, 而后者是无穷多个函数,所以,在书写计算结果时一定不能忘记积分常数。 三、不定积分的计算方法 1.直接积分法 既然积分运算是微分运算的逆运算,那么自然地可以从导数公式得到相应的积分公式,并且我们把一些基本的积分公式列成一个表,这个表通常叫作基本积分表: (1)、?+=C ax adx ,其中a 是常数. ?+=C x dx . (2)、?++= +C x dx 11 1 x ααα,其中α是常数,且α≠-1. (3)、? +=C x x dx ln ,x ≠0. (4)、C a a dx a x x +=?ln 1 ,其中a>0,且a ≠1.

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

二重积分的计算方法(1)

1 利用直角坐标系计算 1.1 积分区域为X 型或Y 型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,)f x y 在积分区域D 上连续时,若D 为x 型区域(如图1),即 {}12(,)()(),D x y x x x a x b ??=≤≤≤≤,其中12(),()x x ??在[,]a b 上连续,则有 21() () (,)(,)b x a x D f x y d dx f x y dy ??σ=?? ?? ; (1) 若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有 21() () (,)(,)d y c y D f x y d dy f x y dx ψψσ=?? ?? .[1] (2) 例1 计算2 2D y dxdy x ?? ,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ?? ≤≤≤≤????.确定了积分区域然后可以 利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ?? ≤≤≤≤???? 则 2 2 21221x x D y y dxdy dx dy x x =???? y y=x xy=1 D2 D1 x O 2 1 1 2 图3 图1

32 121 3x x y dx x ??= ???? 2 51 133x dx x ?? =- ???? 221412761264x x ??=+= ??? 1.2 积分区域非X 型或Y 型区域二重积分的计算 当被积函数的原函数比较容易求出,但积分区域并 不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计 算,这是可以将复 杂的积分区域划分为若干x 型或y 型区域,然后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不 是y 型区域,但是将可D 划分为 ()(){}12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型区 域,进而通过公式 (3)和(1)可进行计算. 解 D 划分为 ()1,01,22x D x y x y x ??=≤≤≤≤???? , (){}2,13,23D x y x y y x =≤≤≤≤- 则 1 2 D D D d d d σσσ=+??????12230 12 2 x x x x dx dy dx dy -=+?? ?? 1 20112322x x dx x dx ? ???=-+-- ? ???? ??? 1 2 22013333442x x x ??? ?=+-=??????? ? 1.3 被积函数较为复杂时二重积分的计算 3D o x y 1 D 2D 图 4 y x O x=2y y=2x x+y=3 图5

定积分论文

§ 1 定积分概念 教学要求: 知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题; 教学重点:深刻理解并掌握定积分的思想. 一、问题背景: 1. 曲边梯形的面积; 2. 变力所作的功 二、定积分的定义 从上面两个例子看出,不管是求曲边梯形的面积或是计算变力作的功,它们都归结为对问题的某些量进行“分割、近似求和、取极限”,或者说都归结为形如 ∑=?n i i i x f 1 )(ξ 的和式极限问题。我们把这些问题从具体的问题中抽象出来,作为一个数学概念提出来就是今天要讲的定积分。由此我们可以给定积分下一个定义 定义 设 )(x f 是定义在区间],[b a 上的一个函数,在闭区间],[b a 上任取 n-1个分b x x x x a n i i =<<<<<<-ΛΛ11 把 [a,b] 分成 n 个小闭区间,我们称这些分点和小区间构成的一个分割,用T 表示, 分割的细度用}max {||||i x T ?=表示,在分割T 所属的各个小区间内各取一点],[1i i i x x -∈ξ称为介点,作和式 ∑=?n i i i x f 1 )(ξ 以后简记为 ∑)(T f

此和式称为)(x f 在],[b a 上属于分割T 的积分和(或黎曼和,设J 是一个确定的数,若对任意0>ε总存在某个0>δ,使得 ],[b a 上的任何分割T ,只要它的细度δ<||||T ,属于分割T 的所有积分和 ∑)(T f 都有 ε<-∑|)(|J T f 则称)(x f 在],[b a 上可积,称J 为函数)(x f 在区间],[b a 上的定积分(或黎曼积 分),记作 ?b a f(x)dx 其中)(x f 称为积分函数,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为积分 的上限和下限。 利用积分的定义,前面提到曲边梯形面积可简洁的表示为 ?=b a dx x f S )( 变力作功问题可表示为 ?=b a dx x F W )( 三.理解定积分定义要注意以下三点: 1)定积分定义与我们前面讲的函数极限的“δε-”定义形式上非常相似,但是两者之间还是有很大差别的。对于定积分来说,给定了细度||||T 以后,积分和并不唯一确定,同一细度分割由无穷多种,即使分割确定,介点i ξ仍可以任意选取,所以积分和的极限比前面讲的函数极限要复杂的多。 2)定积分是积分和的极限,积分值与积分变量的符号无关 ???==b a b a b a du u f dx x f dt t f )()()(

二重积分的计算方法

重庆三峡学院数学分析课程论文 二重积分的计算方法 院系数学与统计学院 专业数学与应用数学(师范) 姓名 年级 2010级 学号 指导教师刘学飞 2014年5月

二重积分的计算方法 (重庆三峡学院数学与统计学院10级数本1班) 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 引言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重 要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被 积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求 二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),D J f x y d σ= ??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??. 1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????.

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分的数值计算方法[含论文、综述、开题-可编辑]

设计 (20 届) 定积分的数值计算方法 所在学院 专业班级信息与计算科学学生姓名学号 指导教师职称 完成日期年月

摘要:数值计算是许多科学与工程计算的核心.定积分的数值计算方法有很多,其中一些常用的计算方法有牛顿-科茨求积公式,梯形求积公式,辛普森求积公式,复合求积公式,龙贝格积分法,高斯求积公式,切比雪夫求积法等.本篇论文主要介绍定积分数值计算的多种方法,并对其中几种做了比较评述,最后给出了梯形求积公式,龙贝格积分法在Matlab环境中的编程实现. 关键词:牛顿-科茨求积公式;复合求积公式;高斯求积公式

Some numerical methods of definite integral Abstract: Numerical calculation is the core of many science and engineering calculation. There are many numerical calculation methods, including some commonly used numerical methods are Newton – Cotes Quadrature formula, Trapezoidal Quadrature formula, Simpson formula,Composite Quadrature formula, Romberg Quadrature method, Gaussian Quadrature formula, chebyshev Quadrature formula, and so on. This theies mainly introduces Some numerical methods of definite integral and compare several of these methods, finally gives the Trapezoidal Quadrature formula, Romberg Quadrature method in the Matlab environment for programming realize. Key words:Newton – Cotes Quadrature formula; Composite Quadrature formula; Gaussian Quadrature formula

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

二重积分的计算方法

第二节 二重积分的计算法 教学目的:熟练掌握二重积分的计算方法 教学重点:利用直角坐标和极坐标计算二重积分 教学难点:化二重积分为二次积分的定限问题 教学内容: 利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的. 一、利用直角坐标计算二重积分 我们用几何观点来讨论二重积分的计算问题. 讨论中,我们假定 ; 假定积分区域可用不等式 表示, 其中, 在上连续. 据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积. 在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为

一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为 利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为 从而有 (1) 上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对 计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分. 这个先对, 后对的二次积分也常记作 在上述讨论中,假定了,利用二重积分的几何意义,导出了二重积分的计算公式(1).但实际上,公式(1)并不受此条件限制,对一般的(在上连续),公式(1)总是成立的. 例如:计算 解: 类似地,如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2)

显然,(2)式是先对,后对的二次积分. 二重积分化二次积分时应注意的问题 1、积分区域的形状 前面所画的两类积分区域的形状具有一个共同点: 对于I型(或II型)区域, 用平行于轴(轴 )的直线穿过区域内部,直线与区域的边界相交不多于两点. 如果积分区域不满足这一条件时,可对区域进行剖分,化归为I型(或II型)区域的并集. 2、积分限的确定 二重积分化二次积分, 确定两个定积分的限是关键.这里,我们介绍配置二 次积分限的方法 -- 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交 点与,这里的、就是将,看作常数而对积分时的下限和上限; 又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为 . 例1计算,其中是由轴,轴和抛物线在第一象限内所围成的区域.

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

定积分心得范文

【一】:定积分总结 定积分讲义总结内容一定积分概念 一般地,设函数f(x)在区间[a,b]上连续,用分点ax0x1x2将区间[a,b]等分成n个小区间,每个小区间长度为x(x xi1xixnb ba ),在每个小区间xi1,xi上取一点n ii1,2,,n,作和式Snf(i)x i1 i1 nn ba f(i) n 如果x无限接近于0(亦即n)时,上述和式Sn无限趋近于常数S,那么称该常数S为函数f(x)在区间[a,b]上的定积分。记为S b a f(x)dx 其中f(x)成为被积函数,x叫做积分变量,[a,b]为积分区间,b积分上限,a积分下限。说明(1)定积分 b

a f(x)dx是一个常数,即Sn无限趋近的常数S(n时)称为f(x)dx,而不是Sn. a b (2)用定义求定积分的一般方法是①分割n等分区间a,b;②近似代替取点ixi1,xi; ③求和 nbbaba ;④取极限 f()f(x)dxlimfiiannni1i1n 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力Fxkx(k为常数,x是伸长量),求弹簧从平衡位置拉长b所作的功. 分析利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解.解将物体用常力F沿力的方向移动距离x,则所作的功为WFx. 1.分割 在区间0,b上等间隔地插入n1个点,将区间0,1等分成n个小区间 0, n1bbb2b ,,,,b ,nnnn ,n),其长度为x ibi1bb nnn 记第i个区间为 i1bib ,(i1,2,nn 把在分段0,

n1bbb2b ,,,,b上所作的功分别记作W1,W2,,Wn ,nnnn (2)近似代替定积分心得。 i1bbi1b有条件知WiF (i1,2,n, )xk nnn (3)求和 n n WnWi i1 i1 i1bbkb2k=012 n定积分心得。 n n2 kb2nn1kb21 n11 n2 22n kb21 从而得到W的近似值 WWn1

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε ,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且 ()12 ,D D f x y d σ?? ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}12 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()()() 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

相关文档
相关文档 最新文档