文档库 最新最全的文档下载
当前位置:文档库 › 19-活页作业-第十二章-量子物理-

19-活页作业-第十二章-量子物理-

19-活页作业-第十二章-量子物理-
19-活页作业-第十二章-量子物理-

第十二章 量子物理(一)

1.已知一单色光照射在钠表面上,测得光电子的最大动能是1.2eV ,而钠的红限波长是540nm ,那么入射光的波长是

(A ) 535nm . (B ) 500nm . (C ) 435nm . (D ) 355nm .

2.用频率为ν的单色光照射某种金属时,逸出光电子的最大动能为E k ,若改用频率为2ν的单色光照射此种金属,则逸出光电子的最大动能为

(A ) h ν+E k . (B ) 2h ν-E k . (C ) h ν-E k . (D ) 2E k ..

3.在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的

(A) 2倍。 (B) 1.5倍。 (C) 0.5倍。 (D) 0.25倍。

4.光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此过程,在以下几种理解中,正确的是:

(A )光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程.

(B )两种效应都相当于电子与光子的弹性碰撞过程.

(C )两种效应都属于电子吸收光子的过程.

(D )两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律.

5.电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是0.04nm ,则U 约为:

(A ) 150V. (B ) 330V . (C ) 630V . (D ) 940V .

6.如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的

(A) 动量相同。 (B) 能量相同。

(C) 速度相同。 (D) 动能相同。

7.光子的波长为λ,则其能量ε = ;动量的大小为p = ;质量为m = .

8.低速运动的质子P 和α粒子,若它们的德布罗意波长相同,则它们的动量之比 αp p :p = ;动能之比αE E :p = 。

9.如果电子被限制在边界x 与x x ?+之间,5.0=?x ?,则电子动量x 分量的不确定量x p ?近似地为 -1s m kg ??。(不确定关系式h p x x ≥???,普朗克常量s J 1063.634??=-h )

10.用波长λ0 =0.1nm 的光子做康普顿实验.(1)散射角?= 90?的康普顿散射波长是多少?(2)分配给反冲电子的动能有多大?

11.波长为5000A

的光沿x 轴传播,若光的波长不确定量为310

A λ-?= ,求坐标的不确定量x ?至少多少?(提示:2h P λλ?=

?)

12.一质量为40g 的子弹以1. 0 ? 103 m/s 的速率飞行,求:(1)其德布罗意波的波长;(2)若子弹位置的不确定量为0.10 mm ,求其速率的不确定量。

量子力学作业习题

第一章量子力学作业习题 [1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅; ( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率; ( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m2时的窗子所衍射. [2] 用h,e,c,m(电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 ) 经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂 [3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内, ( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0 介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命. [4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由. ( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz实验;( 4 ) Davisson -Ger - mer 实验;散射. [5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器 能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1 2 ;(3)hc

量子力学初步-作业(含答案)

量子力学初步 1. 设描述微观粒子运动的波函数为(),r t ψ ,则ψψ*表示______________________________________;(),r t ψ 须满足的条件是_______________________________; 其 归 一 化 条 件 是 _______________________________. 2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变) 3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为 ()()30x x x a a πψ= << 粒子出现的概率最大的各个位置是x = ____________________. 4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ?= _________N·s. (普朗克常量h =6.63×10-34 J·s) 5. 波长λ= 5000 ?的光沿x 轴正向传播,若光的波长的不确定量λ?= 10-3 ?,则利用不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为_________. 6. 粒子做一维运动,其波函数为 ()00 x Axe x x x λψ-≥= ≤ 式中λ>0,粒子出现的概率最大的位置为x = _____________. 7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现. 8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________. 9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而

量子力学作业答案

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5

如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 1.4 利用玻尔——索末菲的量子化条件,求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子轨道的可能半径。 已知外磁场H=10T ,玻尔磁子124109--??=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。 解 玻尔——索末菲的量子化条件为 ?=nh pdq 其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。 (1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有 2 22 12kx p E +=μ 这样,便有 )2 1(22kx E p - ±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据 221 kx E = 可解出 k E x 2± =± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有 ?? -+ + - =--+-x x x x nh dx kx E dx kx E )2 1 (2)()21(222μμ

第19章 量子力学简介(1)作业答案

(黑体辐射、光电效应、康普顿效应、玻尔理论、波粒二象性、波函数、不确定关系) 一. 选择题 [ C ]1.(基础训练2)下面四个图中,哪一个正确反映黑体单色辐出度M B λ(T )随λ 和T 的变化关系,已知T 2 > T 1. 【提示】(1)黑体的辐射度(即曲线下的面积)满足: 4 0()M T T σ=,所以0()M T 随温度的增高而迅速增 加。 (2)单色辐出度最大值所对应的波长m λ满 足:m T b λ=,所以,随着T 的升高,m λ向短波方向移动。 [ D ]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K . (B) 2h ν - E K . (C) h ν - E K . (D) h ν + E K . 【提示】设金属逸出功为A ;设频率为2ν 的单色光照射金属时,逸出光电子的最大动能为 'K E ;则根据爱因斯坦光电效应方程,有: k h E A ν=+ 2'k h E A ν=+ 两式相减即可得出答案。 [ C ]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV . (B) 3.4 eV . (C) 10.2 eV . (D) 13.6 eV . 【提示】赖曼系中最长波长的谱线,来自21E E →的跃迁,所以至少应使基态氢原子先 吸收一个光子的能量h ν跃迁到E 2能级,然后向下跃迁发出谱线。所以有 212213.613.610.221eV eV h E E eV ν???? =-=- --= ? ?? ???

第十二章-量子物理学

第十二章 量子物理学 §12.1 实物粒子的波粒二象性 一、 德布罗意物质波假设 νλ h E h P == h E P h = = νλ 二、 德布罗意物质波假设的实验证明 1、 戴维森——革未实验 2、 电子单缝实验 例1、运动速度等于300K 时均方根速率的氢原子的德布罗意波长是 1.45A 0 。质量M=1Kg ,以速率v=1cm/s 运动的小球的德布罗意波长是 6.63×10-14A 0 。(h=6.63×10-34J.s 、K=1.38×10-23J.K 、m H =1.67×10-27kg ) 解:(1) m k T v 32= 045.13A k Tm h mv h p h ==== λ (2)0191063.6A Mv h p h -?=== λ 例2、若电子的动能等于其静止能量,则其德布罗意波长是康谱 顿波长的几倍? 解:电子的康谱顿波长为c m h e c =λ,罗意波长为p h = λ 由题知:c v c m c m E k 2 32)1(2020= ?=?=-=γγ c m h v m h p h e e 2 3 2=== γλ,故 3 1= c λλ 三、 德布罗意物质波假设的意义 四、 电子显微镜 例子、若α粒子(电量为2e)在磁感应强度为B均匀磁场中沿半径为R的圆形轨道运动,则α粒子的德布罗意波长是:[A] (A )h/(2eRB) . (B )h/(eRB) .

(C)1/(2eRBh).(D)1/(eRBh).例2、如图所示,一束动量为p的电子,通过缝宽为a的狭缝,在距离狭缝为R处放置一荧光屏,屏上衍射图样中央最大的宽度d等于:[D] (A)2a2/R.] (B)2ha/p. (C)2ha/(Rp). (D)2Rh/(ap).

第十三章 量子力学基础2作业答案

(薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1. (基础训练 10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,2 1 -). (B) (2,0,0,21). (C) (2,1,-1,2 1 -). (D) (2,0,1,21). ★提示:2p 电子对应的量子数n = 2; l = 1,只有答案(C )满足。 [ C ]2. (基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3. (自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4. (自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图19-6所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. ★提示:隧道效应。 二. 填空题 1. (基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是___4___. ★提示:主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如 仅考虑自旋磁量子数2 1 =s m 的量子态,则能够填充的电子数为上述值的一半。 图 19-6

对量子力学的认识

对量子力学的认识 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。它有很多基本特征,如不确定性、量子涨落、波粒二象性等,其基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。量子力学的关键现象有黑体辐射、光电效应、原子结构和物质衍射,前人正是在在这些现象的基础上建立了量子力学。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。 黑体是一个理想化了的物体,它可以吸收所有照射到它上面的辐射,并将这些辐射转化为热辐射,这个热辐射的光谱特征仅与该黑体的温度有关。但从经典物理学出发得出的有关二者间关系的公式(维恩公式和瑞利公式)与实验数据不符(被称作“紫外灾变”)。1900年10月,马克斯·普朗克通过插值维恩公式和瑞利公式,得出了一个于实验数据完全吻合的黑体辐射的普朗克公式。但是在诠释这个公式时,通过将物体中的原子看作微小的量子谐振子,他不得不假设这些原子谐振子的能量,不是连续的,而是离散的。1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。 1905年,阿尔伯特·爱因斯坦通过扩展普朗克的量子理论,提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释光电效应。海因里希·鲁道夫·赫兹和菲利普·莱纳德等人的实验,发现通过光照,可以从金属中打出电子来。同时他们可以测量这些电子的动能。不论入射光的强度,只有当光的频率,超过一个临限值后,才会有电子被射出。此后被打出的电子的动能,随光的频率线性升高,而光的强度仅决定射出的电子的数量。爱因斯坦提出了光的量子理论,来解释这个现象。光的量子的能量在光电效应中被用来将金属中的电子射出和加速电子。假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。照射时间有多长,都不会发生光电效应,而入射光的频率高于极限频率时,即使光不够强,当它射到金属表面时也会观察到光电子发射。 20世纪初卢瑟福模型是当时被认为正确的原子模型。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。在这个过程中库仑力与离心力必须平衡。但是这个模型有两个问题无法解决。首先,按照经典电磁学,这个模型不稳定。按照电磁学,电子不断地在它的运转过程中被加速,同时应该通过放射电磁波丧失其能量,这样它很快就会坠入原子核。其次原子的发射光谱,由一系列离散的发射线组成,比如氢原子的发射光谱由一个紫外线系列(来曼系)、一个可见光系列(巴耳麦系)和其它的红外线系列组成。按照经典理论原子的发射谱应该是连续的。1913年,尼尔斯·玻尔提出了以他名字命名的玻尔模型,这个模型为原子结构和光谱线,给出了一个理论原理。玻尔认为电子只能在一定能量的轨道上运转。假如一个电子,从一个能量比较高的轨道,跃到一个能量比较低的轨道上时,它发射的光的频率为通过吸收同样频率的光子,可以从低能的轨道,跃到高能的轨道上。玻尔模型可以解释氢原子,改善的玻尔模型,还可以解释只有一个电子的离子,即He+, Li2+, Be3+ 等。 1919年克林顿·戴维森等人,首次成功地使用电子进行了衍射试验,路易·德布罗意由此提出粒子拥有波性,其波长与其动量相关。简单起见这里不详细描写戴维森等人的试验,

第十九章 量子力学基础2(答案)

第十九章 量子力学基础(Ⅱ) (薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1.(基础训练10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,21?). (B) (2,0,0,21 ). (C) (2,1,-1,21?). (D) (2,0,1,2 1 ). 【提示】p 电子:l =1,对应的m l 可取-1、0、1, m s 可取 21或2 1?。 [ C ]2.(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3.(自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4.(自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如附图所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. 【提示】隧道效应 二. 填空题 1.(基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是_________. 【提示】L 壳层:n =2,能够填充的最大电子数是2n 2=8。考虑到本题m s 只取2 1 ,此时能够填充的最大电子数是4。 2.(基础训练20)在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:(2) (3 ) (4) (5). (1)自发辐射.(2)受激辐射.(3)粒子数反转.(4)三能极系统.(5)谐振腔. x O U (x )U 0 a

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

11第十九章量子力学基础2作业答案.doc

3.(自 提高16)有一种原子,在基态时 =1和〃 =2的主壳层都填满电子, 3s 次壳层也 作业+—(第十九章 量子力学简介(II)) (薛定谱方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 电子组态 [C ]1.(基础训练10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(〃,I, 可能 取的值为 (A ) (2, 2, 1, ")? (B ) (2, 0, 0, O (C ) (2, 1, -1, 少 (D ) (2, 0, 1, 1 【提示】P 电子:Z=b 对应的叫可取一1、0、1,风可取上或一 2 2 2.(基础训练17)在主量子数// =2,自旋磁量子数=上的量子态中,能够填充的最大电 2 子数是 4 . 【提示】主量子数〃 =2的L 克层上最多可容纳2^=8个电子(电子组态为2$22p6),如 仅考虑自旋磁量子数=-的量子态,则能够填充的电子数为上述值的一半。 2 填满电子,而3p 壳层只填充一半.这种原子的原子序数是_15 ,它在基态的电子组态为 “2 2s? 2I )6 3S 2 31)3 . 4.(自测提高17)在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子 中电子的状态: 1 I (1) n =2, / = 1 ,如=一1, in.=—. 2 n 1 (2) (2) n =2, / =0, nil = 0 , in,=—. ------ 2 If 1 (3) 〃 =2, / =1? mi — m s =—或-—. 2 2 【提示】/的取值:0,1,2,……(〃-1); 叫的取值:0,±1,±2,……±/; 的取值:±1 激光 [C ]5,(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性.

第二章 量子物理学基础

第二章 量子物理学基础 思 考 题 2.1 什么是光的波粒二象性? 2.2 有人认为微观客体的波动性表示粒子运动的轨迹是一条正弦或余弦的曲线,这种看法对吗? 2.3 对于运动着的宏观实物粒子,德布罗意关系式也适用,为什么我们不考虑它们的波动性? 2.4 有哪些实验证实了微观粒子的波动性? 2.5 德布罗意波和经典波有何区别? 2.6 汤姆孙原子模型有什么缺点? 2.9 从经典物理看来,卢瑟福原子的核式模型遇到些什么困难? 2.8 在玻尔的氢原子理论中,势能为负值,而且在数值上比动能大,这个结果有什么含义? 2.9 试根据玻尔的氢原子能级公式,说明当量子数n 增大时,能级怎么变化.能级间的距离怎样变化? 2.10 若氢原于和氦离子都是从4=n 的轨道跃迁到2=n 的轨道,问两个原子发出的光的波长是否相同? 2.11 对应原理的内容是什么? 2.12 试从原子核运动引起的修正这一角度解释里德伯常数的理论值与实验值的区别。 2.13 弗兰克—赫兹实验证明了什么? 1.14 为什么说玻尔理论是半经典半量子的混合?它有什么局限性? 2.15 为什么说波函数是描述粒子的统计行为的一个物理量? 2.16 若) (t z y x ,,,ψ表示波函数,则dxdydz t z y x 2)(,,,ψ和1)(2=???dxdydz t z y x ,,,ψ各表示什么物理意义? 2.17 波函数的标准条件是什么? 2.18 波函数为什么要归一化? 2.19 薛定谔方程在量子力学中的地位怎样?试写出定态薛定谔方程. 2.20 什么是隧道效应? 2.21 描写氢原子中电子的状态需要几个量子数? 习 题 2.1 试求出质量为0.01kg 、速度为s m 10的一个小球的德布罗意波长. 2.2 一个质子从静止开始,通过lkV 的电压受到加速,试求它的德布罗意波长.(质子的质量为 kg 1067.127-?) 2.3 电子和光子的波长都是 A 2,它们的动量和总能量都相等否? 2.4 设卢瑟福散射用的α粒子动能为eV 1068.76?,散射物质是原子序数79=Z 的金箔.试求散射角尹 150=φ所对应的瞄准距离b 多大? 2.5 试计算氢原子帕邢系第二条谱线的波长. 2.6 已知氢原子莱曼系的最长波长是 A 1216,里德伯常量是多少? 2.7 用巴耳末公式计算巴耳末系中三条最长的波长. 2.8 将氢原子从1=n 激发到4=n 的能级. (1)计算氢原子所吸收的能量; (2)当它从4=n 的能级向低能级跃迁时,可能发出哪些波长的光子(17m 10097.1-?取R )?画出能级跃迁图.

作业10量子力学基础( I ) 作业及参考答案

() 一. 选择题 [ C]1.(基础训练2)下面四个图中,哪一个 正确反映黑体单色辐出度 M Bλ (T)随λ 和T的变化关 系,已知T2 > T1. 解题要点: 斯特藩-玻耳兹曼定律:黑体的辐 射出射度M0(T)与黑体温度T的四次方成正比,即 . M0 (T)随温度的增高而迅速增加 维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长 m λ向短波方向移动。 [ D]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能 为E K;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K.(B) 2hν - E K.(C) hν - E K.(D) hν + E K. 解题要点: 根据爱因斯坦光电效应方程:2 1 2m h mv A ν=+, 式中hν为入射光光子能量, A为金属逸出功,2 1 2m mv为逸出光电子的最大初动能,即 E K。所以有:0 k h E A ν=+及' 2 K h E A ν=+,两式相减即可得出答案。 [ C]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁 到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV.(B) 3.4 eV.(C) 10.2 eV.(D) 13.6 eV. 解题要点: 根据氢原子光谱的实验规律,莱曼系: 2 11 (1 R n ν λ ==- 式中,71 1.09677610 R m- =?,称为里德堡常数,2,3, n= 最长波长的谱线,相应于2 n=,至少应向基态氢原子提供的能量1 2E E h- = ν, 又因为 2 6. 13 n eV E n - =,所以l h E E h- = ν=?? ? ? ? ? - - - 2 21 6. 13 2 6. 13eV eV =10.2 eV [ A]4.(基础训练8)设粒子运动的波函数图线 分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒 子动量的精确度最高的波函数是哪个图? 解题要点: 根据动量的不确定关系: 2 x x p ???≥ (B) x (A) x (B) x (C) x (D)

量子力学练习题

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E= kT 2 3(k 为 玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能 量E n = ,相应的波函数=)(x n ψ() a x a x n a n <<=0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6.132 -=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() ) +-'+'+∑ ≠0 2 0m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+ ∑ ≠00 2 0m m n n m mn n E E H ψ ψ , 其中微扰矩阵元 ' mn H =()() ?'τψψ d H n m 00?; 而 ' nn H 表示的物理意义是 。该方法的适用条件是 本征值, 。

量子力学第一章习题答案

第一章 1.1 由黑体辐射公式导出维恩位移定律: 能量密度极大值所对应的波长λm 与温度T 成反 比,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。 解:黑体辐射的普朗克公式为:) 1(833 -=kT h e c h ν νν πρ ∵ v=c/λ ∴ dv/dλ= -c/λ2 又 ∵ ρv dv= -ρλdλ ∴ ρλ=-ρv dv/dλ=8πhc/[λ5(e hc/λkT -1)] 令x=hc/λkT ,则 ρλ=8πhc(kT/hc)5x 5/(e x -1) 求ρλ极大值,即令dρλ(x)/dx=0,得: 5(e x -1)=xe x 可得: x≈4.965 ∴ b=λm T=hc/kx ≈6.626 *10-34*3*108/(4.965*1.381*10-23) ≈2.9*10-3(m K ) 1.2√. 在0 K 附近,钠的价电子能量约为3电子伏,求其德布罗意波长。 解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J 故其德布罗意波长为: 07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ? 1.3 √.氦原子的动能是E= 32 KT (K B 为波尔兹曼常数),求T=1 K 时,氦原子的德布罗意波长。 解:h = 6.626×10-34 J ·s , 氦原子的质量约为=-26-2711.993104=6.641012 kg ???? , 波尔兹曼常数K B =1.381×10-23 J/K 故其德布罗意波长为: λ = 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2 ≈0 1.2706A 或λ= 而KT E 23 =601.270610A λ-==? 1.4利用玻尔-索末菲量子化条件,求: a ) 一维谐振子的能量: b ) 在均匀磁场作圆周运动的电子轨道的可能半径。 解: a )解法一:设一维谐振子的质量为m ,广义坐标为 q=Acos(ωt+φ) 根据玻尔—索末菲量子化条件 ∮pdq = nh 得:∮m(dq/dt)dq = m ωA 2∮sin 2θd θ=m ωA 2π=nh ∴ A 2 =nh/(πm ω)=2nh/m ω (其中h=h/2π) 又 ∵ 一维谐振子的周期 T =2π(m/k)0.5

2020年高中物理竞赛名校冲刺讲义设计—第十二章 量子物理:光的量子性

2020高中物理竞赛 江苏省苏州高级中学竞赛讲义 第十二章 量子物理 §12-2 光的粒子性 一、光电效应的实验规律 1 光电效应(photoelectric effect) 光电效应:当光照射到金属表面上时,电子从金属表面逸出的现象叫光电效应现象。 逸出的电子称光电子(photoelectron)。 2 实验装置 GD 为光电管; 当A 接正极、K 接负极,光通过石英 窗口照射阴极K ,光电子从阴极表面逸出。 光电子在电场加速下向阳极A 运动,形成 光电流。 当K 接正极、A 接负极,光电子离开K 后, 将受反向电场阻碍作用,当反向电压为U 0时, 从K kmax 逸出的最大动能的电子刚好不能到达A, 电路中没有电流。此时U 0称为截止电压。有 3 实验规律 1) 饱和光电流强度 I S ∝ 入射光强 当光电流达到饱和时,阴极 K 上 逸出的光电子全部飞到了阳极A 上。 单位时间内从金属表面逸出的光电子数与入射光强成正比。 2)光电子的最大初动能随入射光频率的增加而增加,与入射光强无关。 c max 0 k E eU =

当电压U = 0 时,光电流并不为零; 只有当两极间加了反向电压 U = -U c < 0时,光电流才为零。 U c :截止电压(cutoff voltage) 表明:从阴极逸出的光电子必有初动能。 设u m 为光电子的最大初速度,则有最大初动能 其中m 和e 分别为电子的质量和电量。 显然,光电子的最大初动能与入射光强无关。 3) 截止电压U c 与入射光频率 ν 呈线性关系 U c =K ν - U 0 K :普适常数 (即直线斜率) 代入得 4)只有当入射光频率 ν 大于一定的红限频率时,才会产生光电效应。 令 代入可得 当 ν = ν0 时,光电子的最大初动能为零 若 ν < ν0 时,则无论光强多大都没有光电子产生,不发生光电效应。 ν0 称截止频率(cutoff frequency)或红限频率。 5)光电效应是瞬时发生的 只要入射光频率 ν > ν0,无论光多微弱,从光照射阴极到光电子逸出,驰豫时间不超过10- 9 s 。 二、经典物理学所遇到的困难 按照光的经典电磁理论:光波的能量与频率无关,电子吸收的能量也与频率无关,更不存在截止频率;光波的能量分布在波面上,电子积累能量需要一段时间,光电效应不可能瞬时发生! 1/2(m υm 2 )= eU c U -2 01()2 m mv e k U ν=-00U k ν= 2 000 1()2m eU mv ννν=-

大学物理习题答案 第17章 量子物理学基础

第17章 量子物理学基础 参考答案 一、选择题 1(D),2(D),3(C),4(B),5(A),6(C),7(C),8(C),9(D),10(C) 二、填空题 (1). λ/hc ,λ/h ,)/(λc h . (2). 2.5,4.0×1014 . (3). A /h ,))(/(01νν-e h . (4). π,0 . (5).3/ 1 (6). 1.66×10-33 kg ·m ·s -1 ,0.4 m 或 63.7 mm . (7). 1, 2. (8).粒子在t 时刻在(x ,y ,z )处出现的概率密度. 单值、有限、连续. 1d d d 2 =???z y x ψ (9). 2, 2×(2l +1), 2n 2 . (10). 泡利不相容, 能量最小. 三 计算题 1. 用辐射高温计测得炼钢炉口的辐射出射度为2 2.8 W ·cm -2,试求炉内温度. (斯特藩常量σ = 5.67×10-8 W/(m 2·K 4) ) 解:炼钢炉口可视作绝对黑体,其辐射出射度为 M B (T ) = 22.8 W ·cm -2=22.8×104 W ·m -2 由斯特藩──玻尔兹曼定律 M B (T ) = σT 4 ∴ T = 1.42×103 K 2.已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2 . (1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度. (地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4 )) 解: (1) 太阳在单位时间内辐射的总能量 E = 1.37×103×4π(R SE )2 = 3.87×1026 W (2) 太阳的辐射出射度 =π= 2 04S r E E 0.674×108 W/m 2 由斯特藩-玻尔兹曼定律 4 0T E σ= 可得 5872/4 0== σE T K 3.图中所示为在一次光电效应实验中得出的曲线 (1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19 C) 解:(1) 由 A h U e a -=ν 得 e A e h U a //-=ν |U 14 Hz)

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ? ),故: 2e E P /(2)=μ 69 h /p h / hc / 1.2410/0.7110 m 0.71nm --λ====?=?=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 10 2.07K 1K J 10 381.12 32 323 1 23 ---?=????= = kT E 于是有 一维谐振子处于2 2 /2 ()x x Ae α ψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x 2 (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ===α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 2 2 22 2 2 22 22 22 22 2 * 2x /2 x /22 2 2 x /2 x /2 2 2 x /2 2x /2 2 222x 2x /2 2 2 24 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞-∞ ∞-α-α-∞∞-α-α-∞ ∞ ∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=- μ =- -αμ=- -α- -αμ = α = μμ ? ?? ? ? ? =(= = 22 2 2 2 2 4 x 22 24 x x 2 2 22 24 21()xd(e ) 21A (){xe e dx}221A ()2442∞-α-∞ ∞ ∞-α-α-∞ -∞ α- α =α- -- μααα- - μ α μ μ α ? ? 若αT 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 2 22 d 1H x 2dx 2 =- + μωμ 它的基态能量01E 2 = ω 选择 为参量,则: 0dE 1d 2 = ω ; 2 2 2 d H d 2d 2()T d dx 2dx =- = - = μμ d H 20 0T d = 由F-H 定理知: 0dE d H 210 T d d 2= ==ω 可得: 1T 4 = ω

量子力学教程高等教育出版社周世勋课后答案详解

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

相关文档
相关文档 最新文档