文档库 最新最全的文档下载
当前位置:文档库 › Ilumina测序原理

Ilumina测序原理

Ilumina测序原理
Ilumina测序原理

1. Illumina测序仪原理:

Illumina新一代测序技术可以高通量、并行对核酸片段进行深度测序,测序的技术原理是采用可逆性末端边合成边测序反应,首先在DNA片段两端加上序列已知的通用接头构建文库,文库加载到测序芯片Flowcell上,文库两端的已知序列与Flowcell基底上的Oligo序列互补,每条文库片段都经过桥式PCR扩增形成一个簇,测序时采用边合成边测序反应,即在碱基延伸过程中,每个循环反应只能延伸一个正确互补的碱基,根据四种不同的荧光信号确认碱基种类,保证最终的核酸序列质量,经过多个循环后,完整读取核酸序列。

利用该技术,可以对任何物种(包括动物、植物、细菌、病毒、寄生虫等)在DNA水平上进行全基因组测序、基因组靶向区域测序,检测基因组范围内的遗传变异或多态性,在细菌、病毒等病原溯源上分辨率最高;在RNA水平上进行基因的表达测序分析,准确检测基因表达量和表达片段的序列信息;对DNA处理后,可以对基因组甲基化水平进行检测,从表观遗传学角度对影响基因表达的因素进行分析;利用转录因子的抗体对DNA进行处理,寻找转录因子影响的DNA序列信息,定位影响基因表达的片段;自然界存在的微生物基本上都是混合物,传统的Sanger法测序技术无法对混合物中的各微生物进行准确检测,利用新一代测序的高通量、并行性特点,通过宏基因组分析方法,可以从整体上对自然界本来状态进行分析,得到最客观信息。

DNA测序原理和方法.

DNA测序原理和方法 DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PE ABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310型DNA测序仪的测序原理和操作规程。 【原理】ABI PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3''''末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD摄影机检测器,使DNA 测序缩短至2.5h,PCR片段大小分析和定量分析为10~40min。 由于该仪器具有DNA测序,PCR片段大小分析和定量分析等功能,因此可进行DNA测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。【试剂与器材】 1.BigDye测序反应试剂盒主要试剂是BigDye Mix,内含PE专利四色荧光标记的ddNTP 和普通dNTP,AmpliTaq DNA polymerase FS,反应缓冲液等。 2.pGEM-3Zf (+) 双链DNA对照模板0.2g/L,试剂盒配套试剂。 3.M13(-21)引物TGTAAAACGACGGCCAGT,3.2μmol/L,即3.2pmol/μl,试剂盒配套试剂。 4.DNA测序模板可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR 反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/μl。 5.引物需根据所要测定的DNA片段设计正向或反向引物,配制成3.2μmol/L,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。 6.灭菌去离子水或三蒸水。 7.0.2ml或和0.5ml的PCR管盖体分离,PE公司产品。 8.3mol/L 醋酸钠(pH5.2) 称取40.8g NaAc·3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。 9.70%乙醇和无水乙醇。 10.NaAc/乙醇混合液取37.5ml无水乙醇和2.5ml 3mol/L NaAc混匀,室温可保存1年。11.POP 6测序胶ABI产品。

几种常见的基因测序技术的优缺点及应用复习过程

几种常见的基因测序技术的优缺点及应用

随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以 Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不

三代测序原理技术比较

导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序 技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为 sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

表观遗传学测序_ _总结

Bioinformatics Analysis of Next-Generation Sequencing Data – Epigenome and Chromatin Interactome 要点: Enhancers are marked by multiple modifications Characteristic histone methylation patterns at active genes 涉及的相关技术: NGS Epigenetics CHIP-Seq 3C NGS(Next-Generation Sequencing)的原理: 最近市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪、Dover/Harvard公司的Polonator测序仪以及美国Helicos公司的HeliScope单分子测序仪。所有这些新型测序仪都使用了一种新的测序策略——循环芯片测序法(cyclic-array sequencing),也可将其称为“新一代测序技术或者第二代测序技术”。所谓循环芯片测序法,简言之就是对布满DNA样品的芯片重复进行基于DNA的聚合酶反应(模板变性、引物退火杂交及延伸)以及荧光序列读取反应。2005年,有两篇论文曾对这种方法做出过详细介绍。与传统测序法相比,循环芯片测序法具有操作更简易、费用更低廉的优势,于是很快就获得了广泛的应用。  传统的Sanger测序法及新一代DNA测序技术工作流程图

三代测序原理技术比较

三代测序原理技术比较

三代测序技术和原理介绍 导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术 (Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。

第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中

分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

picbio三代测序原理

三代测序之PacBio SMRT技术全解析 2017-05-11 11:29 来源:基因谷技术 气温回升,天气渐暖, 花儿开了一簇又一簇~ 在这美好的季节里, 我们准备聊点新话题。 今天小编要来和你分享: PacBio SMRT测序那些事儿~ 测序技术在近几年中又有里程碑的发展,Pacific Biosciences公司成功推出商业化的第三代测序仪平台,让三代测序正式走入我们的视线。与前两代相比,第三代测序有什么不同呢?今天小编带大家详细了解测序界新宠-PacBio SMRT测序平台。 PacBio SMRT测序原理 Pacific Biosciences公司研发的单分子实时测序系统(Single Molecule Real Time,SMRT)应用了边合成边测序的原理,并以SMRT芯片为测序载体。基本原理如下: 聚合酶捕获文库DNA序列,锚定在零模波导孔底部 4种不同荧光标记的dNTP随机进入零模波导孔底部 荧光dNTP被激光照射,发出荧光,检测荧光 荧光dNTP与DNA模板的碱基匹配,在酶的作用下合成一个碱基 统计荧光信号存在时间长短,区分匹配碱基与游离碱基,获得DNA序列 酶反应过程中,一方面使链延伸,另一方面使dNTP上的荧光基团脱落 聚合反应持续进行,测序同时持续进行 PacBio SMRT测序原理 PacBio SMRT的单分子测序和超长读长是如何实现的?我们重点看一下该技术的两点关键创新:分别是零模波导孔(zero-mode waveguides, ZMWs)和荧光标记在核苷酸焦磷酸链上(Phospholinked nucleotides)。 SMRT Cell含有纳米级的零模波导孔,每个ZMW都能够包含一个DNA聚合酶及一条DNA样品链进行单分子测序,并实时检测插入碱基的荧光信号。ZMW是一个直径只有10~50 nm的孔,当激光打在ZMW底部时,只能照亮很小的区域,

焦磷酸测序技术的原理

Pyrosequencing技术的原理 Pyrosequencing是一项全新的DNA测序技术,可以快速、准确地测定一段较短的目标片段。其基本原理如下: 第1步:1个特异性的测序引物和单链DNA模板结合,然后加入酶混合物(包括DNA Polymerase、ATP Sulfurylase、Luciferase和Apyrase)和底物混合物(包括APS和Luciferin)。 第2步:向反应体系中加入1种dNTP,如果它刚好能和DNA模板的下一个碱基配对,则会在DNA 聚合酶的作用下,添加到测序引物的3‘末端,同时释放出一个分子的焦磷酸(PPi)。 第2步图示(图片来自互联网) 第3步:在ATP硫酸化酶的作用下,生成的PPi可以和APS结合形成ATP;在荧光素酶的催化下,生成的ATP又可以和荧光素结合形成氧化荧光素,同时产生可见光。通过CCD光学系统即可获得一个特异的检测峰,峰值的高低则和相匹配的碱基数成正比。 第3步图示(图片来自互联网) 第4步:反应体系中剩余的dNTP和残留的少量ATP在Apyrase的作用下发生降解。 第4步图示(图片来自互联网) 第5步:加入另一种dNTP,使第2-4步反应重复进行,根据获得的峰值图即可读取准确的DNA序列信息。

第4步图示(图片来自互联网) Pyrosequecing技术操作简单,结果准确可靠,可应用于SNP位点检测、等位基因频率测定、细菌和病毒分型等领域。 →如果您认为本词条还有待完善,请编辑词条 上一篇SNP(单核苷酸多态性)下一篇阅读质粒图谱 具体事例 【摘要】建立了一种将序列标记反转录聚合酶链反应(PCR)与焦磷酸测序技术结合的相对基因表达量测定法(简称“SRPP”)。先用来源特异性引物对不同来源的同一基因通过反转录标记上特异性标签,PCR后用焦磷酸测序法对扩增产物进行序列解码,使得测序结果中的序列代表基因的来源,峰高代表基因在不同来源中的相对表达量。用实时荧光定量PCR法对本方法的准确性进行了验证,结果表明,SRPP可以同时准确测定同一基因在3个不同来源中的表达量,并实际测定了Egr1基因在糖尿病、肥胖和正常小鼠肝中的表达量差异。 【关键词】序列标记反转录, 聚合物链反应,焦磷酸测序,基因表达 1 引言 差异表达基因与疾病密切相关,深入研究可在基因水平揭示疾病的发病机制。目前,用于检测基因表达水平的技术主要有SAGE法[1]、实时荧光定量PCR法[2,3]和基因芯片法[4]等。但这些方法存在仪器设备昂贵、定量性能差以及同时测定基因表达量的来源数目受限等缺点。 焦磷酸测序技术是新近发展起来的一种基于酶催化化学反应的测序技术[5~8],不需要使用荧光标记,定量性能好。目前,焦磷酸测序技术多用于单核苷酸多态性(SNP)分析、微生物分型和基因甲基化分析等。本研究将焦磷酸测序技术用于基因表达量差异的比较分析,考察了其可行性和准确性,并将其应用于检测Egr1基因在糖尿病、肥胖症和正常小鼠中的差异表达。 2 实验部分 仪器、试剂与材料

illumina 转录组测序简明实验流程(PE-oligodT NEB)

illumina 转录组测序简明实验流程一、实验基本流程图 mRNA Library Construction

二、mRNA建库流程 1.材料准备 1.2. 1.3.

2.样品准备和QC 选择质量合格的Total RNA作为mRNA测序的建库起始样品,其质量要求通过Agilent 2100 BioAnalyzer检测结果RIN≥7,28S和18S的RNA 的比值大于或等于1.5:1,起始量的要求范围是0.1∽1ug。用QUBIT RNA ASSAY KIT对起始的Total RNA进行准确定量。 3.建库实验步骤 3.1.mRNA纯化和片段化 3.1.1.mRNA纯化 纯化原理是用带有Oligod(T)的Beads对Total RNA中mRNA进行纯化。 3.1.2.mRNA片段化 3.2.1st Strand cDNA 合成 3.3.2nd Strand cDNA 合成 根据下表制备反应体系,然后在PCR仪上运行Program3,然后将第2链cDNA合成产物用144uL AMPure XP Beads进行纯化,最后用60μL的Nuclease free water进行重悬,取出 55.5μL以备下一步使用;

3.4.Perform End Repair/dA-tail 3.5.Adaptor Ligation 根据下表制备反应体系,然后在PCR仪上运行Program5、Program6,然后100uL AMPure XP Beads进行纯化后用52.5μL的Resuspension Buffer进行重悬,再用50uL AMPure XP Beads 3.6.PCR扩增 根据下表制备反应体系,然后在PCR仪上运行Program7,然后再45μL用AMPure XP Beads 进行纯化,最后用23μL的Resuspension Buffer进行重悬,取出20μL以备下一步使用;

picbio三代测序原理

p i c b i o三代测序原理 Revised by Jack on December 14,2020

三代测序之PacBio SMRT技术全解析 2017-05-11 11:29 来源: 气温回升,天气渐暖, 花儿开了一簇又一簇~ 在这美好的季节里, 我们准备聊点新话题。 今天小编要来和你分享: PacBio SMRT测序那些事儿~ 测序技术在近几年中又有里程碑的发展,Pacific Biosciences公司成功推出商业化的第三代测序仪平台,让三代测序正式走入我们的视线。与前两代相比,第三代测序有什么不同呢今天小编带大家详细了解测序界新宠-PacBio SMRT 测序平台。 PacBio SMRT测序原理 Pacific Biosciences公司研发的单分子实时测序系统(Single Molecule Real Time,SMRT)应用了边合成边测序的原理,并以SMRT芯片为测序载体。基本原理如下: 聚合酶捕获文库DNA序列,锚定在零模波导孔底部 4种不同荧光标记的dNTP随机进入零模波导孔底部 荧光dNTP被激光照射,发出荧光,检测荧光 荧光dNTP与DNA模板的碱基匹配,在酶的作用下合成一个碱基 统计荧光信号存在时间长短,区分匹配碱基与游离碱基,获得DNA序列 酶反应过程中,一方面使链延伸,另一方面使dNTP上的荧光基团脱落 聚合反应持续进行,测序同时持续进行 PacBio SMRT测序原理 PacBio SMRT的单分子测序和超长读长是如何实现的我们重点看一下该技术的两点关键创新:分别是零模波导孔(zero-mode waveguides, ZMWs)和荧光标记在核苷酸焦磷酸链上(Phospholinked nucleotides)。

分子标记的实验原理及操作流程

AFLP分子标记实验 扩增片段长度多态性 Amplified fragment length polymorphism(AFLP 是在随机扩增多态性(RAPD和限制性片段长度多态性(RFLP技术上发展起来的DNA多态性检测技术,具有RFLP技术高重复性和RAPD技术简便快捷的特点,不需象RFLP 分析一样必须制备探针,且与RAPD标记一样对基因组多态性的检测不需要知道其基因组的序列特征,同时弥补了 RAPD技术重复性差的缺陷。同其他以PCR为基础的标记技术相比,AFLP技术能同时检测到大量的位点和多态性标记。此技术已经成功地用于遗传多样性研究,种质资源鉴定方面的研究,构建遗传图谱等。 其基本原理是:以PCR(聚合酶链式反应为基础,结合了 RFLP、RAPD的分子标记技术。把DNA进行限制性内切酶酶切,然后选择特定的片段进行PCR扩增(在所有的限制性片段两端加上带有特定序列的’接头”用与接头互补的但3-端有几个随机选择的核苷酸的引物进行特异PCR扩增,只有那些与3-端严格配对的片段才能得到扩增,再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。 一、实验材料 采用青稞叶片提取总DNA 实验设备 1. 美国贝克曼库尔特CEQ8000毛细管电泳系统, 2. 美国贝克曼库尔特台式冷冻离心机, 3. 美国MJ公司PCR仪,

4. 安玛西亚电泳仪等。 三、实验试剂 1. 试剂:请使用高质量产品,推荐日本东洋坊TOYOBO公司的相关产品 DNA提取试剂盒; EcoRI酶,Msel酶,T4连接酶试剂盒; Taq 酶,dNTP, PCR reactio n buffer; 琼脂糖电泳试剂:琼脂糖,无毒GeneFinder核酸染料替代传统EB染料;超纯水(18.2M ? ? cm 2. 其他实验需要物品 微量移液枪(一套及相应尺寸Tip头,PCR管,冰浴等。 四、实验流程 1、总DNA提取 使用DNA提取试剂盒提取植物基因组DNA,通过紫外分光光度计检测或用标准品跑胶检测。一般来说,100ng的基因组DNA作为反应模板是足够的。 2、EcoR1酶消化(20ul体系/样品 EcoR1 1ul

三代测序

第一代测序技术 1977年,Sanger发明的DNA双脱氧核苷酸末端终止测序法(chainter?minatorsequencing)和A.M.Maxam和W.Gilbert 报道的DNA化学降解测序法(chemicaldegradationse?quencing)为代表的第一代测序技术诞生,但由于化学降解法的程序复杂,后来逐渐被Sanger测序法代替。 Sanger测序法原理: 双脱氧核苷酸没有3′-OH,且DNA聚合酶对其没有排斥性。当添加放射性同位素标记的引物时,在聚合酶作用下ddNTP被合成到链上,但其后的核苷酸无法连接,合成反应也随之终止,后续再根据各个合成片段的大小不同进行聚丙烯酰胺凝胶电泳分离,放射自显影后,便可根据片段大小排序及相应泳道的末端核苷酸信息读出整个片段的序列信息。通过调节加入的dNTP和ddNTP的相对量即可获得较长或较短的末端终止片段。 一代测序的特点:速度快,但是一次只能测一条单一的序列,且最长也就能测1000-1500bp。所以被广泛应用在单序列测序上。 在小型的细菌基因组测序、质粒测序、细菌人工染色体末端测序、突变位点验证等研究领域中较为常见。 第二代测序技术 第二代测序技术也称为新一代测序技术NGS(Next Generation Sequencing),相比第一代测序技术,总体往高通量、低成本方向发展。第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕捉新合成末端的标记来确定DNA的序列。其特点是能一次并行几十万到几百万条DNA分子的序列测定,且一般读长较短。 通过物理或是化学的方式将DNA随机打断成无数的小片段(250-300bp),之后通过建库)富集了这些DNA片段。接下来将建完的库放入测序仪中测序,测序仪中有着可以让DNA片段附着的区域,每一个片段都有独立的附着区域,这样测序仪可以一次检测所有附着的DNA序列信息。最后通过生物信息学分析将小片段拼接成长片段。 第二代测序技术平台主要包括Roche/454 FLX、Illumina/HiSeq/MiSeq、Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。 1、Illumina原理: 桥式PCR+4色荧光可逆终止+激光扫描成像 主要步骤: ①DNA文库制备——超声打断加接头 ②Flowcell——吸附流动DNA片段 ③桥式PCR扩增与变性——放大信号 ④测序——测序碱基转化为光学信号 2、Roche454 油包水PCR+4种dNTP车轮大战+检测焦磷酸水解发光 ①DNA文库制备——喷雾打断加接头 ②乳液PCR——注水入油独立PCR ③焦磷酸测序——磁珠入孔,焦磷酸信号转化为光学信号 3、IonTorrent原理 油包水PCR+4种dNTP车轮大战+微电极PH检测 ①DNA文库制备——喷雾打断加接头 ②乳液PCR——注水入油独立PCR ③微电极pH检测——磁珠入池记录pH

新一代高通量测序技术SOLiD简介

新一代高通量测序技术SOLiD简介 目前市场上有四种高通量测序仪,分别是Solexa,454 (GS-FLX),SOLiD和Polonator。根据测序原理,它们可以被分为两大类:使用合成法测序(Sequencing by Synthesis)的Solexa和454,及使用连接法测序(Sequencing by Ligation)的Polonator和SOLiD。这些高通量测序仪的共同点是不需要大肠杆菌系统进行DNA模板扩增,且测序所得序列较短:其中的454序列最长,为200~300个碱基,其余三种序列都只有几十个碱基。测序原理及序列长度的差异决定了各种高通量测序仪具有不同的应用领域。这就要求我们在熟悉各种高通量测序仪内在技术特点的基础上进行选择。 基因组所引进的SOLiD (Sequencing by Oligonucleotide Ligation and Detection)是ABI(Applied Biosystems)公司生产的高通量测序仪。目前这台SOLiD运行稳定,SOLiD实验及数据分析小组也可以为大家提供专业的技术服务。所以接下来的关键是如何把SOLiD测序仪应用到符合其技术特点的科研项目中。本短文将简单介绍SOLiD测序流程,双碱基编码原理及数据分析原理,以帮助大家了解SOLiD测序仪的技术特点和应用范围。 1.SOLiD关键技术及其原理 SOLiD使用连接法测序获得基于“双碱基编码原理”的SOLiD颜色编码序列,随后的数据分析比较原始颜色序列与转换成颜色编码的reference序列,把SOLiD颜色序列定位到reference上,同时校正测序错误,并可结合原始颜色序列的质量信息发现潜在SNP位点。 1.1. SOLiD文库构建 使用SOLiD测序时,可根据实际需要,制备片段文库(fragment library)或末端配对文库(mate-paired library)。简单地说,制备片段文库就是在短DNA片段(60~110 bp)两端加上SOLiD 接头(P1、P2 adapter)。而制备末端配对文库,先通过DNA环化、Ecop15I酶切等步骤截取长DNA片段(600bp到10kb)两末端各25 bp进行连接,然后在该连接产物两端加上SOLiD接头。两种文库的最终产物都是两端分别带有P1、P2 adapter的DNA双链,插入片段及测序接头总长为120~180 bp。 1.2:油包水PCR 我们知道,文库制备得到大量末端带P1、P2 adapter但内部插入序列不同的DNA双链模板。和普通PCR一样,油包水PCR也是在水溶液进行反应,该水相含PCR所需试剂,DNA模板及可分别与P1、P2 adapter结合的P1、P2 PCR引物。但与普通PCR不同的是,P1引物固定在P1磁珠球形表面(SOLiD将这种表面固定着大量P1引物的磁珠称为P1磁珠)。PCR反应过程中磁珠表面的P1引物可以和变性模板的P1 adapter负链结合,引导模板合成,这样一来,P1引物引导合成的DNA链也就被固定到P1磁珠表面了。 油包水PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”,基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR 反应空间。理想状态下,每个小水滴只含一个DNA模板和一个P1磁珠,由于水相中的P2引物和磁珠表面的P1引物所介导的PCR反应,这个DNA模板的拷贝数量呈指数级增加,PCR反应结束后,P1磁珠表面就固定有拷贝数目巨大的同来源DNA模板扩增产物。A BI公司提供的SOLiD 实验手册已经把小水滴体积及水相中DNA模板和磁珠的个数比等重要参数进行了技术优化和流程固定,尽可能提高“优质小水滴”(水滴中只含一个DNA模板一个P1磁珠)的数量,为后续SOLiD 测序提供只含有一种DNA模板扩增产物的高质量P1磁珠。

三代基因组测序技术原理(简介)

三代基因组测序技术原理简介 【写在前面的话】:首先,这一篇博文中的内容并非原创,而是对多篇文献中内容的直接摘录,有些图片和资料还来自身边的同事(在此深表谢意!),再夹杂自己的零星想法,写在这里分享与大家,同时也是为了方便自己日后若有需要能够方便获得,文章比较长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1: 测序技 术的发 展历程 生命体 遗传信 息的快 速获得 对于生 命科学 的研究 有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。

下一代测序工作流程自动化

下一代测序(NGS)彻底改变了基因组学研究领域,使全基因组测序比以往任何时候都更有效率。然而,典型的NGS工作流程是鲜有革新的,因为它面临许多手动操作步骤和来自成本、通量以及结果变异性的诸多挑战。传统的样品制备和数据分析方法非常耗时,并更易出错。 针对这些挑战,自动化技术为此提供了相应的解决方案,并通过减少样品间变异提高了最终数据的精准度。然而,为您的NGS工作流程选择适合的自动化设备是一个复杂的过程。为了给您的实验室配备最佳的自动化整合系统,首先要对以下的四个因素进行评估,然后再作出决定: ? 自动化将如何影响您的实验流程? ? 您可选的自动化方案有哪些? ? 需要多少培训? ? 您的自动化解决方案是否需要扩展,以满足未来的需求?

Ilumina文库构建杂交选择和靶向捕获簇扩增和测序Ilumina文库构建杂交选择和靶向捕获簇扩增和测序

图3,高通量PCR纯化自动化工作流程 您是否在纯化时使用真空泵和离心过滤?图3描述了一个中高通 进一步加速:靶标富集技术 量的自动化工作流程图。 基于磁珠技术的靶标富集方法,比如SureSelect靶标富集 试剂盒和SureSelect人全外显子试剂盒,能使您仅对感兴 趣的基因片段测序,提高了几个数量级的实验效率。这些操 作很容易实现和高度扩展,凸显出Bravo自动化液体处理 平台的速度和精度的优势。

如果您的实验室需要更高的通量,您可考虑增加一个更全面的自动化系统。安捷伦BenchCel 微孔板工作站是一个灵活的、可扩展的、通量可媲美大型系统的紧凑桌面式平台。由市面上最灵活和调度高效的安捷伦VWorks 软件控制,BenchCel 工作站可用于复杂的和简单的应用流程,比起传统的手动操作方法能提供更长的无人值守时间和更大的通量。 对于超高通量、高生产率的实验室,您可能需要放弃桌面型系统。安捷伦独立的BioCel 自动化系统基于一个易于定位的直驱机械臂(DDR)。这种高度灵活的系统能与安捷伦其它自动化模块,或第三方设备组合形成定制系统,以满足您实验室的需要。 自动化方案的选择 想一想您实验室的整个工作流程。有各种不同的自动化解决方案——从垂直移液工作站到BenchCel 工作站再到BioCel 系统,可以满足不同的通量需求。自动化将提高实验数据的准确性和一致性——您是否需要一个完全无人值守的自动化解决方案?安捷伦拥有一系列的自动化设备可供选择,以适应不同实验室的需要。安捷伦的Bravo 自动液体处理平台具有宽量程的高精度移液性能、兼容不同类型微孔板的灵活性以及独特的开放式设计,易于整合到其他的自动化工作流程中。结合Bravo 自动化液体处理平台可以大大减少样品制备和检查下一代测序文库质量所花费的时间,并通过减少样本间变异提高了数据质量。 图4. 桌面型选择: A .Bravo 自动化液体处理平台 B .BenchCel 微孔板操作工作站独立的高通量系统:C. BioCel 系统 A B C

一代至四代测序技术详细讲解

一、我们将如何应对海量的基因信息 新一代测序技术带给人们大量遗传信息的同时,却成为限制其广泛应用的一个障碍。 1980年,英国生物化学家Frederick Sanger与美国生物化学家Walter Gilbert建立了DNA测序技术并获得诺贝尔化学奖,至今已有近三十年了。在这三十年,DNA测序技术取得了令人瞩目的进展。目前已进入市场的循环阵列测序平台采用的是与Sanger生物化学测序方法完全不同的原理。在过去几年,应用极为广泛的毛细管电泳测序法采用的则是多线并行阵列格式,它运用尖端的荧光成像技术进行碱基识别。上述各类新技术为生物学研究领域开辟了新的视角,也使实验研究达到一个新的水平。学界对开发这类新技术的兴趣持续高涨,与此同时,人们却发现这些技术存在一定的不足——大量信息数据的产生限制了技术更加广泛的应用,并降低了其市场价值。 过去,研究人员使用Applied Biosystems(ABI)公司的3730XL毛细管电泳测序仪进行基因分析,每年至多能完成六千万碱基的测序量。随着测序技术日新月异的发展,这种情况已经成为历史。在2005年刚刚开始进行新一代测序技术开发时,Roche公司和454公司联合开发的焦磷酸测序仪的分析速度就已经达到了上述提及的ABI仪器速度的50倍之上。也就是从那时起,因基因数据过多而产生的问题凸显了出来,而且这个问题随着其他制造商开发出更多更快的测序仪而愈加严重。举个例子,ABI的新一代测序平台SOLiD(supported oligonucleotide ligation and detection)单次运行,便可以分析6Gb的碱基序列;而Roche/454测序仪单次运行可以将上述结果转换成12-15个千兆字节(gigabytes)的数据信息;Illumina Genome Analyzer(GAII)测序系统仅在两个小时的运行时间里,就得到10兆兆字节(terabytes)的信息。尽管对于像Applied Biosystems这样的制造商而言,可以为用户提供高达11.25TB的存储量,但对于多数实验室所具有的信息管理系统来说,规模如此庞大的数据信息,就好像是迎面而来的洪水,让人感到难以控制。 过量信息所带来的一个副作用在于,用户无法将初始图像数据进行分类存档,而必须交给相关公司,利用软件对数据进行读取,然后才能对数据进行保存。对于大多数研究人员来说,像这样在每次实验后对原始数据进行处理的方式既繁琐又不经济。与花费上万美元对每一段序列进行备份分析相比,对每一次测序结果进行重新测定显然是一个更简单、更便宜的选择。测序仪制造商称,对原始数据再次进行分析并不能得到更多新的信息。但是,对于454测序仪而言,用户至少可以通过更新的软件从原始数据得到质量更高的序列,从而提高碱基识别分辨率,减少误差。 除数据处理问题之外,研究人员还需要拥有一个足够强大的计算机平台,以便将来自多个测序技术的短小基因片段进行组合,形成基因组外显子。目前问题在于,测序仪生产商仅仅提供用于某些特定基因信息分析的软件,如靶标重测序、基因表达分析、染色质免疫沉淀反应或基因组从头测序等,而并未提供任何其它类型的下游生物学信息分析软件。研究界越来越熟悉这些测序平台对循证生物学的巨大潜力,这也就产生了新的研究问题以及全新类型的试验方法,而这单凭依赖目前的生物学信息是无法满足的。 从这个角度看,SOLiD软件研发公司(https://www.wendangku.net/doc/7f16998996.html,/gf/)于今年七月刚刚兼并了两个新的软件公司,这一举动无疑朝正确的方向迈进了一步。该公司在开放源码许可证下开发软件分析工具,目的就是为了给生物信息学领域提供支持,并为其开发新的算法。 对用户而言,如果能够将数据格式与不同测序平台获得的结果进行比较所得的统计数字进行标准化,无疑具有重大的意义。特别是由于目前以测序平台为核心的市场竞争激烈,因此每个生产商都努力提供最好的数据结果。

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

相关文档
相关文档 最新文档