文档库 最新最全的文档下载
当前位置:文档库 › 线性代数检测(4)

线性代数检测(4)

线性代数检测(4)

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

线性代数第六章练习题

第六章练习题 一、 填空题 1. 设110100100000110,011,010,020003013000003A B C D ????????????????====???????????????????????? , 在,,B C D 中, 与A 等价的有 ; 与A 相似的有 ;与A 合同的有 . 2. 二次型123113(,,)361139T f x x x X X ?? ?= ? ??? ,它的矩阵是 ,它是 定二次型. 3. 设112 3 32000000,000000a a A a B a a a ????????==???????????? , 则当C = 时, .T C AC B = 4. 参数a 的取值范围是 时,二次型 222123123121323(,,)23224f x x x x ax x x x x x x x =++-+-是正定的二次型. 二、计算与证明题 1. 设二次型123121323(,,),f x x x x x x x x x =+- 1) 写出二次型123121323(,,)f x x x x x x x x x =+-的矩阵; 2) 二次型123(,,)f x x x 是不是正定二次型? 3) 用非退化线性替换X CY =化二次型123(,,)f x x x 为标准形, 并写出所用的线性替换. 2. 已知二次型2212313121323(,,)33484f x x x x x x x x x x x =++++, (1) 写出二次型的矩阵A ; (2)用正交线性替换X QY =, 化二次型123(,,)f x x x 为标准形; (3) 求实对称矩阵B , 使得3 .A B = 3. 实二次型222123123121323(,,)55266f x x x x x ax x x x x x x =++-+-的秩是2, 1)写出二次型123(,,)f x x x 的矩阵表示; 2)求参数a 及二次型123(,,)f x x x 的矩阵特征值;

线性代数练习册习题及答案本

第四章 线性方程组 §4-1 克拉默法则 一、选择题 1.下列说法正确的是( C ) A.n 元齐次线性方程组必有n 组解; B.n 元齐次线性方程组必有1n -组解; C.n 元齐次线性方程组至少有一组解,即零解; D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B ) A.当0D ≠时,非齐次线性方程组只有唯一解; B.当0D ≠时,非齐次线性方程组有无穷多解; C.若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题 1.已知齐次线性方程组1231231 230020 x x x x x x x x x λμμ++=?? ++=??++=?有非零解, 则λ= 1 ,μ= 0 . 2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠, 则方程组有唯一解i x = i D D . 三、用克拉默法则求解下列方程组 1.832623x y x y +=??+=? 解: 8320 62 D = =-≠ 1235 32 D = =-, 28212 63 D = =- 所以,125,62D D x y D D = ===-

2.123123123 222310x x x x x x x x x -+=-?? +-=??-+-=? 解: 2131 12112122 130 3550111 01 r r D r r ---=--=-≠+--- 11222 10051 1321135 011011D r r ---=-+-=---, 2121215 052 1322 1310 10 1 101 D r r --=-+-=-----, 3121225 002 1122 115 1 1 110 D r r --=+=--- 所以, 3121231,2,1D D D x x x D D D = ===== 3.21 241832x z x y z x y z -=?? +-=??-++=? 解: 13201 0012 412041200 183 583 D c c --=-+-=≠- 13110110014114020 283285D c c -=-+=, 2322 11 2 102 112100 123 125 D c c -=-+=--, 313201 01 2 4120 4120 182 582 D c c =-=-- 所以, 3121,0,1D D D x y z D D D = =====

线性代数1-2章精选练习题

第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C) k n 2 ! (D)k n n 2)1( 3. n 阶行列式的展开式中含1122a a 的项共有( )项. (A) 0 (B)2 n (C) )!2( n (D) )!1( n 4. 001001001001 000( ). (A) 0 (B)1 (C) 1 (D) 2 5. 0 001100000100100( ). (A) 0 (B)1 (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f 中3x 项的系数是( ). (A) 0 (B)1 (C) 1 (D) 2 7. 若2 1 33 32 31 232221 131211 a a a a a a a a a D ,则 32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2 8.若 a a a a a 22 2112 11,则 21 11 2212ka a ka a ( ).

(A)ka (B)ka (C)a k 2 (D)a k 2 9. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为 x ,1,5,2 , 则 x ( ). (A) 0 (B)3 (C) 3 (D) 2 10. 若5 7 3 4 111113263478 D ,则D 中第一行元的代数余子式的和为( ). (A)1 (B)2 (C)3 (D)0 11. 若2 23 5 1 011110403 D ,则D 中第四行元的余子式的和为( ). (A)1 (B)2 (C)3 (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1 (B)2 (C)3 (D)0 二、填空题 1. n 2阶排列)12(13)2(24 n n 的逆序数是. 2.在六阶行列式中项261365415432a a a a a a 所带的符号是. 3.四阶行列式中包含4322a a 且带正号的项是 . 4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于 .

线性代数第一章测试题

一、判断题 (1)标准秩序是指n 个不同元素,各元素间按从小到大的顺序排列( √) (2)在由 n 个元素构成的任一排列中,当某两个元素的先后秩序与标准秩序不同时,就说它们构成了一个逆序( √ ) (3)一个排列中所有逆序的总和称作逆序数( √ ) (4)逆序数为偶数的排列叫做偶排列,逆序数为奇数的排列叫做奇排列( √ ) (5)一个排列中的任意两个元素对换,排列不改变奇偶性( × ) (6)将行列式 nn n n n n a a a a a a a a a D 222211212111 = 的行与列互换,得到行列式 nn n n n n T a a a a a a a a a D 222212111211 = T D 叫作行列式D 的转置行列式( √ ) (7)已知行列式D ,则T D D =( √ ) (8)交换行列式的两行(或列),行列式不改变符号( × ) (9)如果行列式有两行或两列完全相同,该行列式可以不等于0( √ ) (10)行列式中某一行(或列)的各元素有公因子,则可提到行列式符号外面( √ ) (11)行列式所有行(或列)的元素都乘以同一个数k ,等于用数k 乘以该行列式( × ) (12)行列式某行(或列)的元素都乘以同一个数k ,等于用数k 乘以该行列式( √ ) (13)行列式的某一行元素全为零,行列式的值恒为零( √ ) (14)若行列式中有两行(列)的元素对应成比列,行列式的值可能为零,也可能不为零 ( × ) (15)若行列式的某一行(列)的元素都是两数之和,则该行列式可以表示成两行列式之和 ( × ) (16)把行列式的某一行(或列)各元素都乘以同一数k 后,加到另一行(或列)对应元素上去,行列式的值改变( × ) (17)在n 阶行列式中,划去元素ij a 所在的行和列,余下的n-1阶行列式,称为元素ij a 的余子式,记为ij M ,而其代数余子式表示为ij j i M +-)1(( √ ) (18)行列式D 等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 ),2,1( 2211n i A a A a A a D in in i i i i =+++=

《线性代数》第一章行列式测试卷

《线性代数》第一章行列式测试卷 班级 学号 姓名 一、单项选择题(本大题共10 题,每小题2分,共20分) 1、下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2、如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3、 n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4、=0 0010 010********( ). (A) 0 (B)1- (C) 1 (D) 2 5、=0 0011 00000100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6、在函数10003232 111 12)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2 7、若21 3332 31232221 13 1211 ==a a a a a a a a a D ,则=---=32 3133 31 22212321 12 111311 122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8、若 a a a a a =22211211,则=21 1122 12ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9、已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10、若573411111 3263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 二、填空题(本大题共4 题,每小题3分,共12分) 1、n 2阶排列)12(13)2(24-n n 的逆序数是 2、若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于 . 3、如果M a a a a a a a a a D ==3332 31232221 13 1211 ,则=---=32 32 3331 2222232112121311 133333 3a a a a a a a a a a a a D 4、已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的 新行列式的值为 三、计算题(本大题共9题,1-7题每小题6 分,8-9题 每小题8 分,共58 分) 1、解方程00 110 11101110=x x x x

同济大学线性代数教案第五章线性空间与线性变换

线性代数教学教案 第五章线性空间与线性变换 授课序号01 是一个非空集合,为实数域 中任一数 ): ββ +=+

就称为实数域是实数域 上线性空间,上线性空间}++∈ 1010,,,n a x a a a a , 对于通常的多项式加法、数乘多项式的乘法构成线性空间. ()[]} ,b x a 为上的连续函数[,a (212 1n ij m m mn a i a a a ??? ≤??? )是非空的, ()m n M ?对通常的矩阵加法和数乘构成线性空间(1112 2122212 1,n ij n m nn a a a a M a i a a a ?? ? ? ≤???

0a 对于通常的多项式加法和乘数运算不构成线性空间. x ,在其中定义加法及乘数运算为) ,验证对上述加法与乘数运算构成线性空间7 在实数域 上线性空间(212 1,n ij n m nn a i a a a ??? ≤??? nn a a ? ???? )的非空子集,且)关于)M 的加法和数乘是封闭的,所以)是()n M 的一个子空

授课序号02 个元素,,,ααα满足,,,ααα总可由,,,ααα那么,12,, ,n ααα就称为线性空间,, ,ααα是线性空间,,,x x x 12,, ,n x x x 12,, ,n ααα下的坐标,并记作,, ,ααα与,,,βββ

,,,ααα2,,,n βββ的基变换公式,矩阵P ,, ,ααα,,,βββ,,,βββ在基12,, ,n ααα下的坐标为,在基,,,βββ,且由基12,,,n ααα到基,,,n βββ的过渡矩阵为矩阵n n x y =? ?? ????P 或 =n n y x ? ? ? ????? P . )()21221,2ij A a i j a a ? ==≤≤∈?? ??? ??? ? 中,由于对任一向量 ()有 1112a a ?= ) 的一个

线性代数第一章行列式试题及答案

线性代数第一章行列式 试题及答案 https://www.wendangku.net/doc/7617774675.html,work Information Technology Company.2020YEAR

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a 11 a 12 … a 1n a 21 a 22 … a 2n ……… . a n1 a n2 … a nn 如果行列式的列向量组为α1, α2, … ,αn,则此行列式可表示为|α1, α2, … ,αn|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 1

线性代数 向量空间

第五节 向量空间 分布图示 ★ 向量空间 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 子空间 ★ 例6 ★ 例7 ★ 向量空间的基与维数 ★ 例8 ★ 例9 ★ 向量在基下的坐标 ★ 例10 ★ 关于集合的坐标系的注记 ★ 例11 ★ 内容小结 ★ 课堂练习 ★ 习题3-5 内容要点 一、向量空间与子空间 定义1 设V 为n 维向量的集合,若集合V 非空,且集合V 对于n 维向量的加法及数乘两种运算封闭, 即 (1) 若,,V V ∈∈βα则V ∈+βα; (2) 若,,R V ∈∈λα则V ∈λα. 则称集合V 为R 上的向量空间. 记所有n 维向量的集合为n R , 由n 维向量的线性运算规律,容易验证集合n R 对于加法及数乘两种运算封闭. 因而集合n R 构成一向量空间, 称n R 为n 维向量空间. 注:3=n 时, 三维向量空间3R 表示实体空间; 2=n 时, 维向量空间2R 二表示平面; 1=n 时, 一维向量空间1R 表示数轴. 3>n 时, n R 没有直观的几何形象. 定义2 设有向量空间1V 和2V , 若向量空间21V V ?, 则称1V 是2V 的子空间. 二、向量空间的基与维数 定义3 设V 是向量空间, 若有r 个向量V r ∈ααα,,,21 , 且满足 (1) r αα,,1 线性无关; (2) V 中任一向量都可由r αα,,1 线性表示. 则称向量组r αα,,1 为向量空间V 的一个基, 数r 称为向量空间V 的维数,记为r V =dim 并称V 为r 维向量空间. 注: (1) 只含零向量的向量空间称为0维向量空间, 它没有基; (2) 若把向量空间V 看作向量组,则V 的基就是向量组的极大无关组, V 的维数就是向量组的秩; (3) 若向量组r αα,,1 是向量空间V 的一个基,则V 可表示为 }.,,,,|{2111R x x V r r r ∈++==λλλαλαλ 此时, V 又称为由基r αα,,1 所生成的向量空间. 故数组r λλ,,1 称为向量x 在基r αα,,1 中的坐标. 注: 如果在向量空间V 中取定一个基r a a a ,,,21 , 那么V 中任一向量x 可惟一地表示为 ,2211r r a a a x λλλ+++= 数组r λλλ,,,21 称为向量x 在基r a a a ,,,21 中的坐标.

3,4章线性代数练习题

一. 1.设行列式a a a a 111221 22=m ,a a a a 131123 21=n ,则行列式a a a a a a 11121321 2223 ++等于( ) A. m+n B. -(m+n) C. n -m D. m -n 2.设矩阵A =100020003?? ?? ? ??,则A -1等于( ) A. 13000 12000 1?? ?? ?????? B. 1000 12000 13?? ?? ?? ???? C. 130********?? ? ?????? D. 1 2000 130001?? ?? ? ???? ? 3.设矩阵A =312101214---?? ?? ? ??,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是( ) A. –6 B. 6 C. 2 D. –2 4.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B ≠C 时A =0 C. A ≠0时B =C D. |A |≠0时B =C 5.设n 维向量组,1α,2α,3α…s α(n s ≤≤3)线性无关的充分必要条件是___________。 (A) 存在一组不全为0的常数k 1,k 2,…k s 使得k 11α+ k 22α+…k s s α0≠; (B) 该组中的任意两个向量都线性无关; (C) 该组中存在一个向量,他不能由其它向量线性表出; (D) 该组中任意一个向量都不能由其它向量线性表出 6. 设 A 为三阶矩阵,A 的三个特征值为-1,3,4,则A 的逆矩阵A -1的特征值为___________。 (A) -1,3,4 (B) -1,4 1 , 31 (C) 1,9,16 (D) -1,1,1 7. 若1α,2α是齐次方程组AX=0的两个线性无关的解,A 为5阶方阵,k 1,k 2为任意常数,若k 11α+ k 22α为AX=0的通解,则R (A )=___________。 (A) 1 (B) 2 (C) 3 (D) 4 8、设12λ=是可逆阵A 的一个特征值,则矩阵1 213A -?? ??? 有一个特征值等于( )。 ()()()()43113424 A B C D 9、设矩阵A 的秩为r ,则A 中( ) (A).所有r -1阶子式都不为0 (B).所有r -1阶子式全为0 (C)至少有一个r 阶子式不等于0 (D).所有r 阶子式都不为0 10、已知矩阵34A ?的行向量组线性无关,则矩阵34T A ?的秩等于( ) ()()()()1234A B C D

线性代数第一章习题集

一. 判断题(正确打√,错误打×) 1. n 阶行列式ij a 的展开式中含有11a 的项数为1-n .( × ) 正确答案:)!1(-n 解答:方法1因为含有11a 的项的一般形式是n nj j a a a 2211 , 其中n j j j 32是1-n 级全排列的全体,所以共有)!1(-n 项. 方法2 由行列式展开定理 =nn n n n n a a a a a a a a a 2 1 2222111211 n n A a A a A a 1121211111+++ , 而n n A a A a 112121++ 中不再含有11a ,而11A 共有)!1(-n 项,所以含有11 a 的 项数是)!1(-n . 注意:含有任何元素ij a 的项数都是)!1(-n . 2. 若n 阶行列式ij a 中每行元素之和均为零,则ij a 等于零.( √ ) 解答:将 nn n n n n a a a a a a a a a 2 1 2222111211 中的n 、、、 32列都加到第一列,则行 列式中有一列元素全为零,所以ij a 等于零.

3. 3 3 2244 114 4 332211 000000a b b a a b b a a b a b b a b a =.( √ ) 解答:方法1按第一列展开 3 3 2244 114 4 1141413 3 224 13 3 224 14 4 332211) (0 000000a b b a a b b a a b b a b b a a a b b a b b a b b a a a a b a b b a b a =-=-=. 方法2 交换2,4列,再交换2,4行 2 2 3344114 4 3322114 4 332211 00000000 0000000 000000a b b a a b b a a b b a a b b a a b a b b a b a =- == 3 3 2244 11a b b a a b b a . 方法 3 Laplace 展开定理:设在n 行列式 D 中任意取定了 )11(-≤≤n k k 个行,由这k 行元素所组成的一切k 阶子式与它们的 代数余子式的乘积之和等于行列式D 。 所以按2,3行展开 3 2324 4 332211 ) 1(0 000000+++-=a b a b b a b a 3 3 2244 11a b b a a b b a = 3 3 2244 11a b b a a b b a . 4. 若n 阶行列式ij a 满足ij ij A a =,n j i ,, ,2,1=,则0 ≥ij a .(√)

线性代数习题集(带答案)

. . 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数第一章行列式练习题

。 班级__________ 姓名__________ 学号_______ 第一章第一次练习题 一)填空题 1)计算(1465372)τ=________;[135(21)246(2)]n n τ-L L =________; 2)写出四阶行列式中含有因子1123a a 的项及符号__________; 3)在四阶行列式中,21143243a a a a 的符号为__________; 4)设12134453k l a a a a a 在五阶行列式中带有负号,则k =________;l =________. 二)解答题 5)计算三阶行列式 2 221 11a b c a b c .

6)用定义证明 1 (1) 2 12 1 00 000 (1) 00 00 n n n n n λ λλλλ λ - - =- L L L L L .

7)设n阶行列式中有多于2n n 个元素为零,证明这个行列式为零.

班级__________ 姓名__________ 学号_______ 第一章第二次练习题 一)填空题 1)把行列式1 11222 a b c a b c ++定出两个行列式之和______________________; 2)把行列式13 24 1 2 34 0000a a a a x y b b z w b b 写成两个行列式之积_________________________________; 3)提取行列式第二行公因子后11 12132122 2331 3233333a a a a a a a a a =__________________________; 4)行列式22 3456 7 89a b c d a ab ac ad =_________________________________. 二)解答题

线性代数的思想本质

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了! 多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合?* 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的?* 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗? * 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思?

线性代数1-2章精选练习题

线性代数1-2章精选练习题

第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C) k n 2 ! (D)k n n 2)1( 3. n 阶行列式的展开式中含1122a a 的项共有( )项. (A) 0 (B)2 n (C) )!2( n (D) )!1( n 4. 001001001001 000( ). (A) 0 (B)1 (C) 1 (D) 2 5. 0 001100000100100( ). (A) 0 (B)1 (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f 中3x 项的系数是( ). (A) 0 (B)1 (C) 1 (D) 2 7. 若2 1 33 32 31 232221 131211 a a a a a a a a a D ,则 32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2 8.若 a a a a a 22 2112 11,则 21 11 2212ka a ka a ( ). (A)ka (B)ka (C)a k 2 (D)a k 2 9. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为

x ,1,5,2 , 则 x ( ). (A) 0 (B)3 (C) 3 (D) 2 10. 若5 734111113263478 D ,则D 中第一行元的代数余子式的和为( ). (A)1 (B)2 (C)3 (D)0 11. 若2 23 5 001 011110403 D ,则D 中第四行元的余子式的和为( ). (A)1 (B)2 (C)3 (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1 (B)2 (C)3 (D)0 二、填空题 1. n 2阶排列)12(13)2(24 n n 的逆序数是. 2.在六阶行列式中项261365415432a a a a a a 所带的符号是. 3.四阶行列式中包含4322a a 且带正号的项是 . 4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于 . 5. 行列式 100111010100 111. 6.行列式 10000200 0010 n n .

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j 即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a ……… a n1 a n2…a nn 这里 n j j j 2 1 表示对所有n元排列求和.称此式为n阶行列式的完全展开式. 用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算. 3、对角行列式计算

线性代数的理解-学完再看觉得自己弱爆了

线性代数的理解学完再看觉得自己弱爆了 对了解矩阵、线性变换的本质有太大帮助如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。”* 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得

这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合? * 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的? * 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗?* 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思? * 特征值和特征向量的本质是什么?它们定义就让人很惊讶,因为Ax =λx,一个诺大的矩阵的效应,竟然不过相当于一个小小的数λ,确实有点奇妙。但何至于用“特征”甚至“本征”来界定?它们刻划的究竟是什么?今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较

相关文档
相关文档 最新文档