文档库 最新最全的文档下载
当前位置:文档库 › 竞赛讲座 20容斥原理

竞赛讲座 20容斥原理

竞赛讲座 20容斥原理
竞赛讲座 20容斥原理

竞赛讲座20

-容斥原理

在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A|表示有限集合A的元素个数(新教材中用CardA表示有限集合A的元素个数)。

原理一:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进行:第一步:先求出∣A∣+∣B∣(或者说把A,B的一切元素都“包含”进来,加在一起);第二步:减去∣A∩B∣(即“排除”加了两次的元素)

总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣。

原理二:给定三个集合A,B,C。要计算A∪B∪C中元素的个数,可以分三步进行:

第一步求|A|+|B|+|C|;

第二步减去|A∩B|,|A∩C|,|B∩C|;

第三步加上|A∩B∩C|。

例1求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。

例2 某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90以上的有38人。问两科都在90分以上的有多少人?

例3 某校组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行。参加围棋比赛的共有42人,参加中国象棋比赛的共有51人,参加国际象棋比赛的共有30人。同时参加了围棋和中国象棋比赛的共有13人,同时参加了围棋和国际象棋比赛的7人,同时参加了中国象棋和国际象棋比赛的11人,其中三种棋赛都参加的3人。问参加棋类比赛的共有多少人?

例4边长分别为6,5,2的三个正方形,如图8—5所示放在桌面上。问它们盖住的面积是多大?

例5求1到200的自然数中不能被2、3、5中任何一个数整除的数有多少?

练习题

1. 某班共有48名学生,都参加了语文兴趣小组或数学兴趣小组,其中参加语文兴

趣小组的有30人,参加数学兴趣小组的有28人,问同时参加语文、数学兴趣小组的人数是多少.

2.纸片面积为7,一张边长为2的正方形纸片,把这两张纸片放在桌面上覆盖的面

积为8,问两张纸片重合部分的面积是多少?

3. 不超过110且与110互质的自然数有几个?

4.求在1至1000的自然数中,不能被5或7整除的数有多少个。

5. 某个班的全体学生进行短跑、游泳、篮球三个项目的测试,有4名学生在这三

个项目上都没有达到优秀,其余每人至少有一个项目达到了优秀。这部分学生达到优秀的项目、人数如下表:

求这个班的学生人数。

6.求在不超过100的自然数中,不是5的倍数,也不是7的倍数有多少个?

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

第二十讲 容斥原理讲解学习

第二十讲容斥原理

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题]

[例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈: 其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但: 30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?

高中数学竞赛讲座抽屉原理

抽屉原理 抽屉原理又叫重叠原则或鸽原则,抽屉原则有如下几种情形。 抽屉原则I 把1+n 件东西任意放入n 只抽屉里,那么至少有一个抽屉里有两件东西。 抽屉原则II 把m 件东西放入n 个抽屉里,那么至少有一个抽屉里至少有?? ????n m 件东西。 抽屉原则III 如果有无穷件东西,把它们放在有限多个抽屉里,那么至少有一个抽屉里含无穷件东西。 利用抽屉原则解题时,其关键是如何利用题中已知条件构造出与题设密切相关的“抽屉”,下面通过例子说明抽屉原则的应用。 例1.在边长为1的正方形内任意放置5个点,试证:其中必有两个点,它们之间的距离不大于2 2。 证明:将边长为1的正方形划分成如图所示的四个边长为 21的小 正方形,则每个小正方形中任意两点间的距离不大于2 2,据抽屉原理:5个点放入四个正方形中,其中至少有一个正方形中至少有2个点,则这两个点间的距离不大于2 2。 例2.证明:边长为1的的正三角形内任意放置5个点,其中必有两点,其距离不超过21。 证明:将边长为1的正三角形的各边中点连结起来,得到四个小正三角形,则每个小正三角形中任意两点间的距离不大于 2 1,据抽屉原理:5个点放入4个小正三角形中,其中至少有一个小正三角形中至少有2个点,则这两个点间的距离不超过21。 例3.在边长为1的正方形中有任意九个点。试证:在以这些为顶点的各个三角形中,至少有一个三角形,其面积不大于8 1。 证明:将边长为1的正方形划分为如图所示的4个44 1?的小长方形,9个点放入4个小长方形中,则必有一个长方形中放入了至少3个点,设为C B A ,,,则三角形ABC 的面积不大于过 81,证明如下:A 作边的平行线交BC 于A ',则: C A A B A A ABC S S S '?'??+=8 141121=??≤。 例4.求证:任给五个整数,必能从中选出三个,使得它们的和能被3整除。 证明:因为任意一个整数被3除的余数只能是0,1,2,若任给的5个整数被3除的余数

化工原理概念分析题问答流体流动

第1章 流体流动 1.在工程上,为什么将流体定义为由质点所组成的 答:工程上仅关注流体分子微观运动所产生的宏观结果。流体质点是由大量分子所组成的 微团,质点的运动状态反映并代表着流体的运动状态。 2.流体的连续性假定有何意义 答:假定组成流体的质点之间无间隙,则流体在连续运动过程中无间断,从而可以应用连 续的数学函数描述流体的连续运动过程。 3. 4.5.6.7.答:烟囱拔烟效果好是指(Pout-Pin) 差值大。烟囱出口的水平面上压强相等。当烟囱内的高 温气体温度一定(即密度一定),烟囱外大气温度一定(即密度一定)时, ()out in air fluegas air fluegas P P H g H g H g ρρρρ-=-=-,故烟囱愈高,其拔烟效果愈好。 8.柏努利方程式的应用条件有哪些 答:(1)粘度等于零的理想流体;(2)稳定流动;(3)无机械能的加入或引出;(4)不可 压缩的流体。

9.层流与湍流的本质区别是什么 答:流体层流时,其每一个质点均仅在主流方向上有速度。流体湍流时,其质点除了在主 流方向上有速度以外,同时在其他方向上存在着随即的脉动速度,即流体湍流时,其质点 之间发生相互摩擦与碰撞的概率很大。 10.雷诺数的物理意义是什么 Re 惯性力答:粘性力du u u G u u u d d ρ ρμμμ??====,可见Re 反映流体流动过程中的惯性力与粘性力的相 11.12.13.14.在满流的条件下,水在垂直直管中往下流动,对同一瞬时沿管长不同位置的速度而言, 是否会因重力加速度而使下部的速度大于上部的速度 答:不会。因为,若出现下部的速度大于上部的速度,说明出现了不稳定流动,供给的流 量减小了,或不是满流的条件了。若始终是稳定流动且满流的条件,根据流体流动的连续 性方程,流动过程中,对于不可压缩的水来说。体积流量不变,流速不变。 15.如图所示管路,A 阀、B 阀均处于半开状态。现在分别改变下列条件,试问:(1)将A 阀逐渐关小,h1、h2、(h1-h2)分别如何变化(2)将B 阀逐渐关小,h1、h2、(h1-h2)分别如

第31讲___容斥原理

第31讲容斥原理 例题与方法 例1 在1~100的自然数中,不能被3也不能被5整除的数有多少个? 例2 某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这三项都会的至少有几人? 例3 100名学生中,每人至少懂一种外语,其中75人懂法语,83人懂英语,65人懂日语,懂三种语言的有50人,懂两种外语的有多少人? 例4 在1~143这143个自然数中,与143互质的自然数共有多少个? 例5 某班学生参加语文、数学、英语三科考试,语文、数学、英语都得满分的分别有21人、19人、20人。语文、数学都得满分的有9人;数学、英语都得满分的有7人;语文、英语都得满分的有8人;另有5人三科都未得满分。这个班最多能有多少人? 思考与练习 1.某班有学生46名,其中爱好音乐的有17人,爱好美术的有14人,既爱好音乐又爱好美术的有5人。问:两样都不爱好的有多少人? 2.分母是105的最简真分数共有多少个? 3.一个家电维修站有80%工人精通修彩电,有70%的人精通修空调,10%的人两项不熟悉。问:两项都精通的人占白分之几? 4.在1~100的自然数中,既不能被5整除也不能被9整除的数的和是多少? 5.在1~200的自然数中,能被2整除,或能被3整除,或能被5整除的数共有多少个? 6.在100名学生中,爱好音乐的有56人,爱好体育的有75人,那么既爱好音乐又爱好体育的最少有多少人,最多有多少人? 7.64人订A、B、C三种杂志,订A杂志的有28人,订B杂志的有41人,订C杂志的有20人,订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人。三种杂志都订的有多少人? 8.有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中既懂英语懂俄语的有多少人?

高中数学竞赛讲义-抽屉原理

§23抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

高中数学竞赛定理

重 心 定义:重心是三角形三边中线的交点, 可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 已知:△ABC 中,D 为BC 中点,E 为AC 中点,AD 与BE 交于O ,CO 延长线交AB 于F 。求证:F 为AB 中点。 证明:根据燕尾定理, S △AOB=S △AOC , 又S △AOB=S △BOC , ∴S △AOC=S △BOC , 再应用燕尾定理即得AF=BF ,命题得证。 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、三角形到三边距离之积最大的点。 5、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((321x x x ++)/3,(321y y y ++)/3);空间直角坐标系——横坐标:(321x x x ++)/3 纵坐标:(321y y y ++)/3 竖坐标:(321z z z ++)/3 外 心 定义:外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。 外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。 外心性质:三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。 设1d ,2d ,3d 分别是三角形三个顶点连向另外两个顶点向量的数量积 1c =2d 3d ,2c =1d 3d ,3c =1d 2d ;c=1c +2c +3c 重心坐标:( (32c c +)/2c ,(31c c +)/2c ,(21c c +)/2c ) 垂 心 定义:三角形的三条高的交点叫做三角形的垂心。 性质: 锐角三角形垂心在三角形部 直角三角形垂心在三角形直角顶点 钝角三角形垂心在三角形外部

第十讲 容斥原理小学五年级奥数

點算的奧秘:容斥原理基本公式 「容斥原理」(Principle of Inclusion and Exclusion)(亦作「排容原理」)是「點算組合學」中的一條重要原理。但凡略為複雜、包含多種限制條件的點算問題,都要用到這條原理。現在首先從一個點算問題說起。 例題1:設某班每名學生都要選修至少一種外語,其中選修英語的學生人數為25,選修法語的學生人數為18,選修德語的學生人數為20,同時選修英語和法語的學生人數為8,同時選修英語和德語的學生人數為13 ,同時選修法語和德語的學生人數為6,而同時選修上述三種外語的學生人數則為3,問該班共有多少名學生? 答1:我們可以把上述問題表達為下圖: 其中紅色、綠色和藍色圓圈分別代表選修英語、法語和德語的學生。根據三個圓圈之間的交叉關係,可把上圖分為七個區域,分別標以A至G七個字母。如果我們用這七個字母分別代表各字母所在區域的學生人數,那麼根據題意,我們有以下七條等式:(1) A+D+E+G = 25;(2) B+D+F+G = 18;(3) C+E+F+G = 20;(4) D+G = 8; (5) E+G = 13;(6) F+G = 6;(7) G = 3。現在我們要求的是A+B+C+D+E+F+G。如何利用以上資料求得答案? 把頭三條等式加起來,我們得到A+B+C+2D+2E+2F+3G = 63。可是這結果包含了多餘的D、E、F和G,必須設法把多餘的部分減去。由於等式(4)-(6)各有一個D、E和F,若從上述結果減去這三條等式,便可以把多餘的D、E和 F減去,得A+B+C+D+E+F = 36。可是這麼一來,本來重覆重現的G卻變被完全減去了,所以最後還得把等式(7)加上去,得最終結果為A+B+C+D+E+F+G = 39,即該班共有39名學生。□ 在以上例題中,給定的資料是三個集合的元素個數以及這些集合之間的交集的元素個數。在該題的解答中,我們交替加上及減去這些給定的資料。如果我們用 S 1、S 2 和S 3 分別代表選修英語、法語和德語學生的集合,那麼我們要求的答案就 是|S 1∪ S 2 ∪ S 3 |,而該題的解答則可以重新表達為

小学奥数竞赛专题训练之抽屉原理

小学奥数竞赛专题训练之抽屉原理 竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题 [专题介绍] 把4只苹果放到3个抽屉里去,共有4种放法(请小朋友们自己列举),不论如何放,必有一个抽屉里至少放进两个苹果。 同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。 …… 更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。 利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。 [经典例题] 【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。 【例2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么? 【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。 想一想,例2中4改为7,3改为6,结论成立吗? 【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)? 【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。 按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。 思考:1.能用抽屉原理2,直接得到结果吗? 2.把题中的要求改为3双不同色袜子,至少应取出多少只? 3.把题中的要求改为3双同色袜子,又如何? 【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少

个人精心整理高中数学联赛竞赛平面几何四大定理及考纲

1、数学竞赛考纲 二试 1、平面几何 基本要求:掌握高中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。 几个重要定理:梅涅劳斯定理、、、。 几个重要的极值:到三角形三顶点距离之和最小的点--。到三角形三顶点距离的平方和最小的点--。三角形内到三边距离之积最大的点--重心。 几何不等式。 简单的。了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。 几何中的运动:反射、平移、旋转。 方法、方法。 平面、及应用。 2、代数 在一试大纲的基础上另外要求的内容: 周期函数与周期,带的函数的图像。 ,三角形的一些简单的恒等式,三角不等式。 。 ,一阶、二阶递归,法。 函数,求n次迭代,简单的函数方程。 n个变元的平均不等式,,及应用。 复数的指数形式,欧拉公式,,单位根,单位根的应用。 圆排列,有重复的排列与组合,简单的组合恒等式。 一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。 简单的初等数论问题,除初中大纲中所包括的内容外,还应包括,,欧几里得除法,非负最小完全剩余类,,,,,格点及其性质。 3、立体几何 多面角,多面角的性质。三面角、直三面角的基本性质。 正多面体,欧拉定理。 体积证法。 截面,会作截面、表面展开图。 4、平面解析几何 直线的式,直线的,直线束及其应用。 二元一次不等式表示的区域。 三角形的。 圆锥曲线的切线和法线。 圆的幂和根轴。 5、其它。。。集合的划分。覆盖。西姆松线的存在性及性质()。及其逆定理。

化工原理竞赛 (2)

一、概述 本设计是以年产8万吨丁苯橡胶为目标的设计、各种设备参数的计算及选型,此次设计内容复杂,本小组是以汽提塔分离苯乙烯和胶乳为主、工艺流程为辅的设计。 汽提塔简介: 它是利用蒸汽蒸馏去除废水中的挥发物(如酚)的工艺叫汽提。汽提塔主要设备为汽提塔,液体由塔顶连续进入,水平流过一塔板后,由溢流管流入下一塔板。蒸汽由塔底上升,顶开塔板上的浮阀,水平方向吹入液体层后,继续上升进入上一塔板。 汽提塔的工作原理: 汽提是通过惰性气体来降低溶质的气相分压。从而达到溶剂的再生目的。汽提用气体用的是惰性气体,一般有水蒸气、氮气。汽提塔的原理跟分馏塔原理一样,通过塔盘上气液两相的接触实现传质与传热,使不同挥发度的组分分离。 二、塔设计及校核 一.)汽提塔全塔物料衡算 本次设计塔选择的是汽提塔,已知数据:年产8万吨丁苯橡胶

混合进料 胶乳量 kg/h 苯乙烯 kg/h 塔顶温度 40~60℃(50℃) 塔底温度50~70℃(60℃) X w ≤; 操作压力为13~26 kpa 加热方式为直接蒸汽加热; 计算求得 X 1=——————————————— =% X 2=% y 2=0 又因为M F =%104+%)×3×105= 则 L=== Kmol/h 苯乙烯Cp= KT/(kg ·k) Q=ΕCpm △t=×+Cp ’××= KJ 2=Cpm △t=×m ×(100-95)=×5×m=Q 1 L X 1 y 1 %/104 %/104+%/3×105 x 2 y 2 V

所以 m== kg v== Kmol/h v(y1-y2)=L(x1-x2) y1== y= M LFm= kg/ kmol M LFwm=×104+× 3×105= kg/kmol M Lm=+/2 = kg/kmol Mv Fm= y1×104+(1- y1) x18=(18+86y1)= Mv Fwm = y2×104+1×18=18 kg/kmol Mvm =(18+86y1+18)/2=(18+43 y1) kg/kmol = 二.)平均密度计算 1)气相平均密度计算

第二十讲容斥基本知识

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A 类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题] [例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈:

其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但:30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人? 2、六年级共有96人,两种刊物每人至少订其中一种,有2 3的人订《少年报》,有1 2 的 人订《数学报》,两种刊物都订的有多少人? 3、森林中住着很多动物,据说狮子大王派仙鹤去统计鸟的种数,蝙蝠跑去说:“我有翅膀,我算鸟类。”仙鹤把蝙蝠统计进去了,结果得出森林中共有80种鸟类,狮子大王又派大象去统计兽类的种数,蝙蝠又跑去说:“我没有羽毛,我应该算兽类。”大家又把蝙蝠算为兽类,统计出森林中共有70种兽类。最后狮子大王问:森林中共有鸟类和兽类多少种?狐狸军师听了仙鹤和大象的统计结果,向狮子大王报告:“森林中鸟类与兽类共计150种。”

高中数学竞赛专题精讲23抽屉原理(含答案)

23抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

高中奥林匹克数学竞赛-几个重要定理

竞赛专题讲座-几个重要定理 《定理1》正弦定理 △ABC中,设外接圆半径为R,则 证明概要如图1-1,图1-2 过B作直径BA',则∠A'=∠A,∠BCA'=90°,故 即;同理可 得 当∠A为钝角时,可考虑其补角,π-A. 当∠A为直角时,∵sinA=1,故无论哪种情况正弦定理成立。 《定理2》余弦定理△ABC中,有关系 a2=b2+c2-2bccosA;(*) b2=c2+a2-2cacosB; c2=a2+b2-2abcosC; 有时也用它的等价形式 a=ccosB+bcosC; b=acosC+ccosA;(**) c=acosB+bcosA. 证明简介 余弦定理的证法很多,下面介绍一种复数证法 如图建立复平面,则有 =(bcosA-c2)+(bsinθ)2即 a2=b2+c2-2bccosA,同理可证(*)中另外两式;至于**式,由图3显见。 《定理3》梅涅(Menelaus)劳斯定理(梅氏线)直线截△ABC的边BC,CA,AB或其延长线 于D、E、F. 则本题可以添加平行线来证明,也可不添辅助线,仅用正弦定理来证明。在△FBD、△CDE、△AEF中,由正弦定理,分别有

《定理4》塞瓦定理(Ceva) (塞瓦点) 设O 是△ABC 内任意一点,AB 、BO 、CO 分别交对边于D 、E 、F ,则 证法简介 (Ⅰ)本题可利用梅内劳斯定理证明: (Ⅱ)也可以利用面积关系证明 同理 ④ ⑤ ③×④×⑤得 《定理5》塞瓦定理逆定理 在△ABC 三边所在直线BC 、CA 、AB 上各取一点D 、E 、F ,若则AD 、BE 、CE 平行或共点。 证法简介 (Ⅰ)若AD∥BE(如图画5-1) 则 EA CE BD BC = 代入已知式:1=??FB AF BD BC DC BD 于是 CB DC FB AF = , 故 AD∥CF,从而AD∥BE∥CF (Ⅱ)若AD 、BE 交于O (图5-2),则连CO 交AB 于F’.据塞瓦定理,可得 1='??B F AF EA CE DC BD 而已知1=??FB AF EA CE DC BD 可见FB AF B F F A ='' 则 FB AF AF B F F A F A +='+'' AB FB AF B F F A =+='+'ΘAF F A ='Θ 即F '即F ,可见命题成立 《定理6》斯特瓦尔特定理

2008化工原理竞赛题解

北京化工大学“BASF ”杯 第一届化工原理学科竞赛试题 一、简答题 1.(5分)医院输液容器即为一马里奥特恒速装置:如图所示,为了使高位槽底部排出的液体量不随槽中液面的下降而减少,通常可将高位槽上端密封,并于底部设置与大气相通的细管。试说明其恒速原理。 解答:由于液体从下管排出而使槽内上方空间形成真空,在大气压力的作用下,A 管中的液面开始下降,降至A 处时,空气进入槽内补充,从而使槽中A 截面处的压力始终为大气压力。 在1-2截面列柏努利方程, 2 22 11 21u p g z p += +ρ ρ 又 a p p p ==21 所以 g h g z u 21222= = 由此可见,只要液面下降不低于A 处,则h 2一定,流速一定。一旦A 处暴露,则h 2 下降,出口流速相应减少。 2.(3分)日常生活中存在大量正确利用传热学原理强化或削弱传热过程的实例,试针对导热、对流传热和热辐射三种传热方式各举一例 答:(1)导热——房屋窗户采用双层玻璃,中间抽成真空 (2)对流——电风扇 p p

(3)热辐射——暖壶胆表面涂以银白色,并且光洁度很高 3.(5分)生产中有一股热流体需要被降低至一定温度,选用液氨作为冷剂,利用其蒸发达到致冷的目的。 (1) 试构想出一种合适的换热器,图示其主要结构,并在图中标出其所有相关物流的 名称、流向。 (2) 生产中如果要改变冷却效果,例如,使热流体出口温度更低,试给出一种合理、 可行的方法。 答:(1) 液氨 (2)答:在汽氨管线上设置阀门,通过改变阀门的开度调整换热器壳程的压力,从而改变壳程液氨的温度,实现对传热过程的调整。要使热流体出口温度降低,只需开大阀门,降低壳程压力(温度) 4.(8分)一逆流吸收塔,气量、液量和塔高不变,气膜控制过程,在气体和吸收剂进口组成不变的情况下,使得吸收温度降低,吸收属于低浓度吸收,且温度对ky 的影响可忽略,试通过具体分析过程指出吸收效果如何变化?示意性画出平衡线和操作线如何变化?定性分析吸收推动力如何变化? t ↓,m ↓, 气膜控制过程,Ky=ky 所以,H OG =V/ Kya 不变,塔高不变,N OG 不变,↓ = V L m S / 由吸收因数关联图得↑ --2 221mx y mx y , 2 221>=--c mx y mx y ,)1(221c mx cy y -=- y 2↓

小学奥数—抽屉原理讲解

小学奥数-抽屉原理(一) 抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。 例1五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 【分析与解答】关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。44÷21= 2……2,根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 例2夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同? 【分析与解答】本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。2000÷6=333……2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。 例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人? 【分析与解答】这道题一下子不容易理解,我们将它变变形式。因为是把书分给学生,所以学生是抽屉,书是物品。本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。这个问题的

化工原理理论知识竞赛试题

茂名学院第四届化工原理 理论知识竞赛 命题:吴景雄 一、填空题(每小题3分,共36分) 1、某转子流量计(出厂时是用20C、常压的空气标定),用于测量40C常压空气 的流量,则转子流量计读数的校正系数为 _____________ 。 2、由三条支管组成的并联管路,各支管的长度及摩擦系数都相等,管径的比为 d i:d2:d3=1: 2:3,则这三支管的流量比为________ 。 3、含尘气体在降尘室内按斯托克斯定律进行沉降。理论上能完全除去30 ym的 粒子,当气体处理量增大1倍,则该降尘室理论上能完全除去的最小粒径 为 __________ 。 4、用一台离心泵输送某液体,当液体温度升高,其它条件不变,则离心泵所需 的扬程 _______ ,允许安装高度_______ 。 5、用离心泵把水从水池送至高位槽,水池和高位槽都是敞口的,两液面高度差 恒为13m,管路系统的压头损失为H f = 3X 105Q2;在指定的转速下,泵的特性方程为H=28-2.5X 105Q2;(Q的单位为m3/s, H、H f的单位为m)。则泵的流量为 __________ m3/h。 &续上题,如果用两台相同的离心泵并联操作,贝U水的总流量为__________ m3/h0 7、用图解法求理论板数时,在、X F、X D、血、q、R、F各参数中,与理论板数无 关。 8、在板式塔中,板上液面落差过大会导致___________________ ;造成液面落差 的主要原因有塔板结构、塔径和 _______________ 。 9、某精馏塔的精馏段操作线方程为y=0.72x+0.275,贝U该塔的操作回流比R 为 ________ ,馏出液的摩尔分率为_________ 。 10、对于精馏操作,若在F、X F、q、D不变的条件下,加大回流比R,假设全 塔效率不变,则X D将________ ,XW将 ________ 。(增加、减小、基本不变、不能确定) 11、在逆流填料吸收塔的操作中,如果进塔液相摩尔比X2增大,其他操作条件 不变,则气相总传质单元数将 ________ ,气相出口摩尔比丫2将________ 。 (增大、减小、基本不变、不能确定) 12、在常压逆流操作的填料吸收塔中,用纯溶剂吸收混合气中的溶质A。已知进

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

容斥原理讲解

容斥原理 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重 复,这种计数的方法称为容斥原理。 例、一次期末考试,某班有15人数学得满分,有12人 语文得满分,并且有4人语、数都是满分,那么这个班 至少有一门得满分的同学有多少人? 结论:(公式一) 如果被计数的事物有A、B两类,那么: (A类和B类)事物个数= A个数+ B个数—既是A类又是B类的事物个数。 A∪B=A+B-A∩B 例题1、某班学生每人家里至少有空调和 电脑两种电器中的一种,已知家中有空调 的有41人,有电脑的有34人,二者都有 的有27人,这个班有学生多少人? 例题2、一个班有45名学生,订阅《小学生数学报》 的有15人,订阅《今日少年报》的有10人, 两种报纸都订阅的有6人。 (1)订阅报纸的总人数是多少? (2)两种报纸都没订阅的有多少人? 例题3、在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 例、某校5(1)班,每人在暑假里都参加体育训练队, 其中参加足球队的有25人,参加排球队的有22人, 参加游泳队的有34人,足球、排球都参加的有12人, 足球、游泳都参加的有18人,排球、游泳都参加 的有14人,三项都参加的有8人,这个班有多少人?

那么根据题意,我们有以下七条等式: (1)A+D+E+G =25; (2) B+D+F+G =34; (3) C+E+F+G = 22; (4) D+G =18; (5) E+G =12; (6) F+G =14; (7) G = 8。 现在我们要求的是A+B+C+D+E+F+G=? 把头三条等式加起来,我们得到: A+B+C+2D+2E+2F+3G = 81 结果包含了多余的D、E、F和G,必须设法把多余的部分减去。 由于等式(4) (5) (6)各有一个D、E和F, 减去这三条等式,便可以把多余的D、E和 F减去, 得A+B+C+D+E+F = 37。可是这么一来, 本来重复重现的G却变被完全减去了,所以最后还得把等式(7)加上去, 得最终结果为A+B+C+D+E+F+G = 45,即该班共有45名学生。 结论(公式二) 如果被计数的事物有A、B、C三类,那么,A类和B类和C类事物个数= A类事物个数+ B类事物个数+C类事物个数—既是A类又是B类的事物个数—既是A类又是C类的事物个数—既是B类又是C类的事物个数+既是A类又是B类而且是C类的事物个数。 A∪B∪C=A+B+C-A∩B-A∩C-B∩C+ A∩ B∩C 例题4、设某班每名学生都要选修至少一种外语,其中选修英语的学生人数为25,选修法语的学生人数为18,选修德语的学生人数为20,同时选修英语和法语的学生人数为8,同时选修英语和德语的学生人数为13 ,同时选修法语和德语的学生人数为6,而同时选修上述三种外语的学生人数则为3,问该班共有多少名学生? 例题5、在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水, 4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。问:共有几个小朋友去了冷饮店?

相关文档
相关文档 最新文档