文档库 最新最全的文档下载
当前位置:文档库 › 汽车用高流动性共聚聚丙烯的结构与性能

汽车用高流动性共聚聚丙烯的结构与性能

汽车用高流动性共聚聚丙烯的结构与性能
汽车用高流动性共聚聚丙烯的结构与性能

聚丙烯抗冲改性的研究进展

聚丙烯抗冲改性的研究进展 [摘要] 综述了近年来有关反应器内抗冲改性聚丙烯研究的最新进展, 介绍了反应器内抗冲改性聚丙烯的生产工艺及多区循环流反应器在丙烯多段聚合中的应用; 介绍了反应器内抗冲改性聚丙烯的形态、结构与性能的关系; 介绍了 反应器内抗冲改性聚丙烯的研究方法及增韧机理。 [关键词] 聚丙烯; 抗冲改性; 共聚物; 结构与性能. 聚丙烯( PP)质轻、价廉, 具有良好的加工性能,应用范围广。PP的很多应用领域要求它具有较好的韧性。均聚PP在低温时变脆, 抗冲改性PP是通过在均聚PP中加入橡胶相制备的。以提高PP抗冲强度为目的的改性大多采用物理共混方法, 将PP和两种或两种以上的其它聚合物以机械共混方法进行混合, 可以得到一种宏观上均匀的聚合物共混物,在一定程度上提高共混物的性能。一方面, 以这种混合方式得到的PP与改性成分达不到真正均匀分布的状态, 故不能显提高共混物的冲击强度; 另一方面, 由于增加了共混工艺, 提高了生产抗冲改性PP的成本。因此, 研究人员想在聚合过程中完成共混工艺, 在反应器内直接合成抗冲改性的PP, 这样不仅可以简化工艺、降低生产成本, 而且还可以使PP和改性成分的混合程度达到亚微观状态, 从而有效地改善PP的抗冲性能。 本文对反应器内抗冲改性PP的生产工艺、形态结构、研究方法、增韧机理等方面的最新进展进行了综述。 1 应器内抗冲改性PP的生产工艺 反应器内抗冲改性PP的生产建立在第四代球形M gC l2 负载Z ieg ler- N atta 催化剂的基础上[ 1 ] 。第四代球形M gC l2 负载Z ieg ler- N a tta 催化剂具有以下特点[ 2] : ( 1)比表面积大; ( 2)孔隙率高, 孔径分布均匀; ( 3)活性中心在催化剂上分布均匀; ( 4)催化剂既具有一定的强度, 又能被聚合物增长时产生 的压力将内部结构破碎成较小颗粒, 并均匀地分布在膨胀着的聚合物内部; ( 5)单体可以自由地扩散到催化剂内部而发生聚合。由于聚合过程中的复制效应, 均聚过程中生成的丙烯均聚物复制了催化剂的某些特点, 如呈规则的球形、具有较高的孔隙率、活性中心在聚合物粒子内部分布均匀等。 反应器内抗冲改性PP 的生产一般采用两步法: 第一步先合成丙烯均聚物, 形成高立构规整度的聚合物, 为最终产品提供足够强的刚性, 这一步一般采用液相本体聚合或气相聚合工艺; 第二步合成乙丙共聚物(橡胶相), 为最终产品提供韧性, 共聚阶段一般采用气相共聚工艺; 最终产品的机械性 能实际上是刚性和韧性的平衡。气相共聚是反应器内抗冲改性PP 合成的关键步骤, 特殊的催化剂结构形态使本体聚合阶段获得的PP粒子具有较高的流动性和多孔性, 完全可以满足气相共聚的要求。合适的气相共聚工艺可以自由地调控共聚物的含量、组成及分子结构。气相共聚也保证了共聚物能均匀地分散在已形成的PP均聚物基体中, 这样既可以得到较高的橡胶相含量, 又不致使橡胶相过

聚丙烯的材料性能资料

中英名称 中文名称 (聚丙烯)[1] 英文名称 Polypropylene 性能特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。 它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。 (2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下, 由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性, 如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。 (5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。(6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 PP聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~0.91g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。PP聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。

均聚聚丙烯和共聚聚丙烯

均聚聚丙烯和共聚聚丙烯 共聚(copolymerization),与均聚同属有机单体聚合的一类反应。共聚指的是将两种或多种化合物在一定的条件下聚合成一种物质的反应。根据单体的种类多少分二元,三元共聚,根据聚合物分子结构的不同可分为无规共聚,嵌段共聚,交替共聚,接枝共聚。典型的共聚物有SBS,ABS等。 均聚(homopolymerization),与共聚同属有机单体聚合的一类反应。均聚指的是由一种有机单体进行的聚合反应。均聚物指由一种单体聚合而成的聚合物称为均聚物。典型的均聚物有PP,PE,PVC等。 聚丙烯均聚物由单一丙烯单体聚合而成,结晶度较高,力学强度和耐热性良好,聚丙烯共聚物是在聚合时掺入少量乙烯单体共聚而成,有较高的抗冲击强度,无规共聚丙烯有较高的冲击强度和透明度,嵌段共聚丙烯有较高的冲击强度,编织袋为:挤塑级,均聚物. 聚丙烯PP(PP)、共聚PP(化工PP)、均聚PP(β-PPH)无规共聚聚丙烯(PP-R):共同点,都是聚丙烯(PP)分子式:(C3H6)n;按甲基排列位置分为等规聚丙烯(isotaetic polyprolene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotatic polypropylene)三种. 力学性能聚丙烯的结晶度高,结构规整,因而具有优良的力学性能.但在室温和低温下,由于本身的分子结构规整度高,所以

冲击强度较差.聚丙烯最突出的性能就是抗弯曲疲劳性. 热性能聚丙烯具有良好的耐热性,制品能在100℃以上温度进行消毒灭菌,在不受外力的条件下,150℃也不变形.脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯. 化学稳定性聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定;但低分子量的脂肪烃、芳香烃和氯化烃等能使聚丙烯软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好. 电性能聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响.它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品.它的击穿电压也很高,适合用作电气配件等.抗电压、耐电弧性好,但静电度高,与铜接触易老化. 看料就能认出来,均聚聚丙烯是半透明状的,中间有个实心,旁边是半透明状的!用牙咬一下,它的硬度相对共聚聚丙烯偏软一些,(溶质差别最好不要太大,如果一个是1个溶质的均聚和一个溶质100的共聚聚丙烯不好比较)共聚聚丙烯颜色是乳白色的,不过有一种无规共聚聚丙烯,他是透明的,透明度比均聚还要好,料粒比均聚稍微亮一点!还有就是通过质检单来区分,质检报告上有注明,一般共聚叫嵌段共聚,均聚在质检单上的名称一般为聚丙烯,或均聚聚丙烯! PP共聚物,Polypropylene Copolymer,简称PPC,是丙烯单体与乙烯单体的共聚物

PP聚丙烯的结构与性质

PP聚丙烯的结构与性质 聚丙烯是一种热塑性树脂,是以金属有机有规立构催化剂(Ziegler-Natta型),使丙烯单体在控制的温度和压力条件下合成的。因所用催化剂和聚合工艺不同,所得聚合物的分子结构有三种不同类型的立体化学结构。 PP的改性 根据产品的要求和用途,可以用共混、填充、增强、添加助剂,以及共聚、共混、交联等方法加以改性。 聚丙烯特性 (1)物理性能 无毒、无臭、无味的乳白色高结晶的聚合物,相对分子质量约8~15万之间。 密度小:0.90~.091g/cm3,是塑料中最轻的品种之一。

疏水性强:在水中24h的吸水率仅为0.01%。 成型性好,但是收缩率大,厚壁制品易凹陷。 制品表面光泽好,易于着色。 (2)力学性能 聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高;在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。 PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。 (3)热性能 PP具有良好的耐热性,熔点在164~170℃;制品能在100℃以上温度进行消毒灭菌,在不受外力的作用下,150℃也不变形。 脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。(4)化学稳定性 聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定。 低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀。 它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。 (5)电性能

无规共聚聚丙烯

PP-R管叫三型聚丙烯管,采用无规共聚聚丙烯经挤出成为管材,注塑成为管件。是欧洲90年代初开发应用的新型塑料管道产品。PP-R是80年代末,采用气相共聚工艺使5%左右PE在PP的分子链中随机地均匀聚合(无规共聚)而成为新一代管道材料。它具有较好的抗冲击性能和长期蠕变性能。 PP-R管除了具有一般塑料管重量轻、耐腐蚀、不结垢、使用寿命长等优点外,还具有以下主要优点: 1、无毒、卫生。 PP-R的原料分子只有碳、氢元素,没有有害有毒的元素存在,卫生可靠,不仅用于冷热水管道,还可用于纯净饮用水系统。 2、保温节能。PP-R管导热系数为0.21w/mk,仅为钢管的1/200。 3、较好的耐热性。 PP-R管的维卡软化点131.5℃。最高工作温度可达95℃,可满足建筑给排水规范中热水系统的使用要求。 4、使用寿命长。PP-R管在工作温度70℃,工作压力(P.N)1.0MPa条件下,使用寿命可达50年以上(前提是管材必须是S3.2和S2.5系列以上);常温下(20℃)使用寿命可达100年以上。 5、安装方便,连接可靠。 PP-R具有良好的焊接性能,管材、管件可采用热熔和电熔连接,安装方便,接头可靠,其连接部位的强度大于管材本身的强度。 6、物料可回收利用。 PP-R废料经清洁、破碎后回收利用于管

材、管件生产。回收料用量不超过总量10%,不影响产品质量。 但其也有不可忽略的缺点: 1、PP-R管较金属管硬度低、刚性差,在搬运、施工中应加以保护,避免不适当外力造成机械损伤。在暗敷后要标出管道位置,以免二次装修破坏管道。 2、PP-R管5℃以下存在一定低温脆性,冬季施工要当心,切管时要用锋利刀具缓慢切割。对已安装的管道不能重压、敲击,必要时对易受外力部位覆盖保护物。 3、PP-R管长期受紫外线照射易老化降解,安装在户外或阳光直射处必须包扎深色防护层。 4、PP-R管除了与金属管或用水器连接使用带螺纹嵌件或法兰等机械连接方式外,其余均应采用热熔连接,使管道一体化,无渗漏点。 5、PP-R管的线膨胀系数较大(0.15mm/m℃),在明装或非直埋暗敷布管时必须采取防止管道膨胀变形的技术措施。 6、管道安装后在封管(直埋)及覆盖装饰层(非直埋暗敷)前必须试压。冷水管试压压力为系统工作压力的1.5倍,但不得小于1MPa;热水管试验压力为工作压力的2倍,但不得小于1.5MPa。试压时间与方法技术规程规定。 7、PP-R管明敷或非直埋暗敷布管时,必须按规定安装支、吊架。 PPR管材作为塑料管材的一种,属于聚丙烯管,而PPR管在我国的应用时期是在90年代后期,近年来,随着建筑业的快速发展和城市基础设施建设的投资加大,PPR管逐渐成为热点,PPR管行业也迅

高流动性共聚聚丙烯(PP)的开发与应用

高流动性共聚聚丙烯(PP)的开发与应用 聚丙烯注塑制品已经在包装、运输、家电、汽车、办公、日常消费、医疗制品的领域得到广泛应用。近年来随着近年来随着聚丙烯(PP)生产工艺的提高,特别是新型高效催化剂及聚合工艺的改进,高流动性聚丙烯(即PP)产品的开发和应用得到了很大的进展。采用高流动性性聚丙烯,可使注射制品易成型加工,减少注射缺陷和废品率。在制品加工生产过程中可降低加工温度、注射压力、合模力等,从而降低能耗,缩短制品的成型周期,提高制品产量。此外,由于树脂的流动性提高,可进行薄壁制品的生产,减少原材料的使用。本文综述了国内外高流动性共聚聚丙烯的开发及应用现状。 一、高流动性共聚聚丙烯的优点 聚丙烯产品分为均聚型和共聚型,共聚聚丙烯又分为嵌段共聚PP(PP-B)和无规共聚PP(PP-R)。由于共聚聚丙烯改善了PP的耐冲击性(尤其是低温冲击性),具有较好的柔韧性,因此拓宽了其应用领域;高流动性共聚PP具有高的流动速率和较好的物理性能,可使结构复杂的大型薄壁注射制品的设计变为可行;在生产过程中可缩锄口工周期,降低加工温度、注射压力和能耗,具有加工性能好,充模容易及产品翘曲变形少等优点。分别选用熔体流动速率为35 g/10min、65 g/10min和100g/10 m in的聚丙烯树脂注塑质量为56.7 g,壁厚为0.036 c m的薄壁食品包装容器,发现熔体流动速率为100 g/10min的树脂注射温度为210 ℃(熔体温度为220℃);65 g/10min的树脂注射温度需要228℃(熔体温度为257℃);35 g/l0min树脂的注射温度需要高达282℃(熔体温度为293℃)。可见随树脂流动性的提高,其加工温度大大降低,温度降低可为用户降低能耗。流动性的提高可使成型温度降低,冷却时间减少,明显降低制品的成型周期,以提高产品产量。这一优势是高流动性共聚PP得以广泛应用最具吸引力的一方面。通常冷却时间减少30%,整个成型周期缩短10%,熔体流动速率为65 g/10min的高流动性共聚PP成型周期比35 g/10min 成型周期减少了27%,大大提高了产品产量。 P P流动性的提高可降低模腔压力。在210-274℃加工范围内,用熔体流动速率为 100 g/10min的高流动性共聚pp替代35 g/10min的PP ,注射压力可降低20%~25%。通常情况下,通过提高加工温度来降低注射压力,进而降低制品的变形。选用高流动性共聚PP

如何提高聚丙烯抗冲共聚物低温冲击强度

如何提高聚丙烯抗冲共聚物低温冲击强度 X 贲信学 (黑龙江中盟龙新化工有限公司,黑龙江安达 141500) 摘 要:本文介绍聚丙烯抗冲共聚物的生产工艺和产品的结构性能,针对低温冲击强度对聚丙烯抗冲共聚物的重要性做了阐述,同时结合抗冲聚丙烯EPS30R 从工艺控制的角度出发,着重从生产过程中的乙烯用量、氢气用量、催化剂选型、橡胶含量、凝胶体含量几个方面进行了认真的分析,得出了提高产品低温冲击强度的有效途径。 关键词:聚丙烯抗冲共聚物;催化剂类型;橡胶含量;冲击强度 中图分类号:T Q 325.1+40.6 文献标识码:A 文章编号:1006—7981(2012)06—0032—021 概述 1.1 聚丙烯抗冲共聚物介绍 抗冲共聚聚丙烯是典型的多相体系,对于这种化学结构不同的高分子体系,链结构是紧随分子量及分布之后影响材料相形态直至最终性能的关键因素。 聚丙烯抗冲共聚物一般是由两个反应器串联制备的聚丙烯多相共聚物的混合物。通常在第一个反应器中进行丙烯均聚,得到等规聚丙烯均聚物,然后将其转入下一个反应器,同时通过乙烯、丙烯单体进行共聚,在聚丙烯均聚物的颗粒孔隙中生成以乙丙无规共聚物为主的一系列乙丙共聚物。抗冲共聚物具体组成取决于聚合物配方、聚合工艺条件、催化剂等因素。一般商品化的抗冲共聚物的总乙烯质量分数在6%~15%,乙丙无规共聚物的量控制在5%~25%,无规共聚物中乙烯含量控制在40%~65%,其在常温下为橡胶态,因此这部分实际为乙丙橡胶,有较低的玻璃化转变温度(T g 一般为-40~-50℃)。由于无规共聚物中较高的乙烯含量,导致其与聚丙烯均聚物不相容,形成一定程度的相分离。无定形橡胶相均匀的分散在等规聚丙烯的机体中,形成所谓的“海岛”结构,其中橡胶相作为增韧单元,赋予聚丙烯良好的冲击韧性,特别是低温冲击性。 1.2 低温冲击强度对聚丙烯抗冲共聚物的重要性 低温抗冲击强度是聚丙烯抗冲共聚物的重要质量指标,通常采用悬臂梁形式测定受试材料的冲击强度。试验时将规定尺寸的试样一端夹在试样夹具上,然后释放一个摆锤对试样施加冲击负荷使试样破断。记录其吸收的能量而算得结果。低温抗冲击强度反映了聚丙烯产品的韧性尤其是低温韧性。所现环空结盐。 从以上分析得出:管柱加深的气井合采ES 41-2 与ES 43-8层位,除产能较低的气井外,其余气井均出现环空结盐。2.3 外来水 结盐井如果是Na 2SO 4水型,在防盐过程中,如果注水的清水没有经过净化,清水中含的少量Ca 2+、Mg 2+与地层水中的SO 42-反应生成难溶或微溶的CaSO 4、MgSO 4,从而形成垢盐,造成气流通道堵塞。3 环空结盐的判断与处理 环空结盐气井按堵塞位置分为两类,一种是堵塞ES 43-8层位,另一种情况是堵塞ES 43-8层位以上。判断处理方法如下:3.1 堵塞ES 43-8层位 由于S 3开采时间长,渗透率高,目前的地层压力低。此时发生环空堵塞,特征为气量大幅下降, 套压升高,油管通井无异常,此时采用套管注气,若气井气量无变化且不出液,则证实为环空结盐。处理方法为注水洗盐。 3.2 堵塞ES 43-8 层位以上 由于地层压力高、产能低的ES 41-2位于堵塞段内,气井表现为套压异常升高,气量影响小,此时通井无异常,则判定是环空结盐。处理方法为注水洗盐。 4 下步措施 对于气井中已形成的垢盐,清水难以洗清,为防止垢盐沉积最终堵塞管柱,采取定期注入除垢剂浸泡的方法来清除垢盐,除垢剂主要成分为酸液和螯合剂,该方法成功的在文64井等井实施。 [参考文献] [] 刘长松,赵化廷,金文刚,杜永慧文3气田储 层结盐机理研究[]钻采工艺,,(5)32 内蒙古石油化工 2012年第6期  X 收稿日期3 E 4-81.2J .2009. :2012-01-0

PPR共聚聚丙烯塑料

PPR共聚聚丙烯塑料 来源:全球塑胶网https://www.wendangku.net/doc/7a18229257.html, PPR(pentatricopeptide repeats),又叫无规共聚聚丙烯(PPR)其产品韧性好,强度高,加工性能优异,较高温度下抗蠕变性能好,并具有无规共聚聚丙烯特有的高透明性优点,可广泛用于管材、片材、日用品、包装材料、家用电器部件以及各种薄膜的生产。 目录 PPR-基本简介 PPR-化学结构 PPR-制造方法 PPR-主要性能 PPR-材料性能 PPR-生产工艺 PPR-产品标准 PPR-使用特点 展开 PP-R优劣辨别 PPR-概述 PP-R又叫三型聚丙烯管、无规共聚聚丙烯,采用无规共聚聚丙烯经挤出成为管材,注塑成为管件。聚丙PPR烯无规共聚物也是聚丙烯的一种,它的高分子链的基本结构用加入不同种类的单体分于加以改性。乙烯是最常用的单体,它引起聚丙烯物理性质的改变。与pp均聚物相比,无规共聚物改进了光学性能(增加了透明度并减少了浊雾),提高了抗冲击性能,增加了挠性,降低了熔化温度,从而也降低了热熔接温度;同时在化学稳定性、水蒸汽隔离性能和器官感觉性能(低气味和味道)方面与均聚物基本相同。使用于吹塑、注塑、薄膜和片材挤压加工领域,作食品包装材料、医药包装材料和日常消费品。 PPR-基本简介 ppr英文名称是pentatricopeptide repeats PP-R又叫三型聚丙烯管、无规共聚聚丙烯,采用无规共聚聚丙烯经挤出成为管材,注塑成为管件。是欧洲90年代初开发应用的新型塑料管道产品。PP-R是80年代末,采用气相共聚工艺使5%左右PE在PP的分子链中随机地均匀聚合(无规共聚)而成为新一代管道材料。它强度高,具有较好的抗冲击性能和长期蠕变性能。同时管道具有优异的耐化学物品腐蚀性能,常温下不溶于任何已知溶剂,所以除了家装之外,更适合化工厂等场所输送化学流体。使用寿命可达50年之久,市场上还没有任何一种更廉价的材料可以取代它。 PPR-化学结构 PP无规共聚物一般含有1-7%(重量)的乙烯分子及99— 93%(重量)的丙烯分子。在聚合物链上,乙烯分子无规则地插在丙烯分子中间。在这种无规的或统计学共聚物中,大

聚丙烯的结构、性能和应用分析

聚丙烯的结构、性能和应用 一、聚丙烯(聚丙烯)的结构 聚丙烯是一种高分子化合物,是一种通用合成树脂(或通用合成塑料),由于它是烯烃的聚合产物,因而又是一种聚烯烃树脂。 聚丙烯的结构是指高聚物内部组织,它有两层意义:一是指聚丙烯分子内部的组织和形态,称为分子结构,二是指这些大分子聚集在一起的形态,称为聚集态结构。 1.聚丙烯的分子结构 对一般的单烯烃聚合物可用通式(2-CH2)n表示。 R 当-R为CH3-时即为聚丙烯,按CH3-在分子中的排布(位置、配向、次序等)不同,可分为三种立构异构体,即等规聚丙烯、间规聚丙烯和无规聚丙烯,等规聚丙烯所有的甲基都排在平面的同一侧。 间规聚丙烯的甲基有规则的交互分布在平面的两侧。 无规聚丙烯的甲基无秩序地分布在平面的两侧。 在三种立体异构体中,等规和间规聚丙烯都属于有规聚丙烯,有规聚丙烯的结晶度高,根据X射线对结晶性聚丙烯的研究,测得其分子链的等同周期为6.5

×10-10m,C-C键角为109°28′,C-C原子间键距为1.54×10-10m,据此设想出等规聚丙烯的三重螺旋结构。 以上所述均指聚丙烯的均聚物,聚丙烯聚合物中还有共聚物,如以丙烯为主要单体,以少量乙烯为第二单体(或称共聚单体)进行共聚而成的聚合物,共聚物按其立体结构的规整性又可分为无规共聚物和嵌段共聚物,制取共聚物的目的是为了改善均聚物的某些性能(如耐寒、耐温、抗冲性能等)以满足特殊用途的需要。 2.聚丙烯的聚集态结构 高分子的链结构是决定高聚物基本性质的主要因素,而高分子聚集态结构是决定高聚物本体性质的主要因素,也就是说,其使用性能直接取决于加工成型过程中高分子所形成的聚集态结构。 聚丙烯和其它高分子一样,是由很多大分子聚集在一起的,分子间存在着相互作用,通常之间的作用力包括范德华力和氢键,使聚丙烯的大分子聚集在一起,并赋予它特定的性能,大分子聚集态通常有下述两种情况: (1)无定形态 当很多分子在一起时,如果分子间杂乱无章,没有一定次序地相互堆在一起,这种结构称为无定型形态,这种结构比较疏松,密度低,分子容易运动,强度也低。 (2)结晶态 很多分子有相互排列得很多整齐或一部分排列的很整齐,形成三维有序的结构,称为结晶态。 丙烯聚合过程中,由于采用立体定向聚合催化剂,能使丙烯进行配位定向聚合,得到立体构型很规整的等规立构聚丙烯(等规聚丙烯含量达到95%以上),因此能够很好地结晶,其结晶形态有α、β、γ、δ和拟六方晶形五种。最普通的α晶态,属单斜晶系,晶格参数为: α=6.50×10-10m b=20.96×10-10m c=6.50×10-10m β=99°20′

高流动抗冲聚丙烯的开发综述

高流动抗冲聚丙烯的开发综述 摘要:本文论述了高流动抗冲聚丙烯的优点和生产方法,并介绍了国内外高流动抗冲聚丙烯的的开发与应用现状。 关键词:共聚聚丙烯高流动性抗冲 在聚烯烃树脂领域,聚丙烯凭借其在硬度、抗冲击性、透明性等方面的优异性能以及可回收性,快速地成为全球市场的最大需求产品之一[1,2]。近年来随着聚丙烯(PP)工艺的提高,特别是新型催化剂的不断推出和聚合工艺的改进,聚丙烯深加工产品日益增多,这大大扩大了聚丙烯的应用空间。从消费结构上来看,目前我国编织制品消费量最大,达到50.8%[3]。随着注塑制品和包装薄膜产业的发展,编织制品在我国聚丙烯消费结构中所占比例将逐渐下降,而聚丙烯消费市场中注塑聚丙烯国产产品缺口大,其一半以上需要进口,进口产地主要来自日本、韩国、新加坡、中东以及欧美。 高流动抗冲聚丙烯一般是指熔体流动速率(MFR)≥20g/10min的抗冲聚丙烯,是近年来开发的新型专用树脂,简称为高流动IPC。该树脂除具有高的熔体流动性,还具有高的冲击强度及较好的刚性和韧性,主要应用于大型薄壁制品的注塑成型,如家电制品、汽车零部件、工业零部件、办公用品、家具、玩具及食品与医用包装等,极大地推动着汽车、家用制品、包装等大型薄壁制造业的发展[4]。由于高流动抗冲聚丙烯生产难度大,综合性能不易平衡控制,因此目前国内缺口很大,每年从国外进口大量树脂。 一、高流动抗冲聚丙烯的优点 流动性的提高可使成型温度降低,冷却时间减少,明显降低制品的成型周期,以提高产品产量。这一优势是高流动性抗冲PP得以广泛应用最具吸引力的一方面。通常冷却时间减少30%,整个成型周期缩短10%,熔体流动速率为65g/10min 的高流动性抗冲PP成型周期比35g/10min成型周期减少了27%,大大提高了产品产量。 流动性的提高可降低模腔压力。通常情况下,通过提高加工温度来降低注射压力,进而降低制品的变形。选用高流动性抗冲聚丙烯后,加工温度和注射压力都可以降低,在一定程度上可以抑制制品变形,提高产品质量,这是传统的聚丙烯材料所难以做到的。 流动性的提高可以改善制品的设计应用,可用于结构复杂的大型薄壁注塑制品的设计,使长厚比(L/T)较大制品的设计成为可行。材料流动性的提高,其螺旋流动长度加大,可以成型较大长厚比的制品,高流动抗冲聚丙烯的开发,适应了这一需要。长厚比的增加,使薄壁制品加工更为容易,并且向更薄更大的方面发展,节省材料;同时流动性的提高,可在较低的注射压力下得到长厚比更大的产品。这意味着制品生产商可以利用注塑压力受限的现有设备生产更具竞争力

高流动抗冲共聚聚丙烯相结构的流变学

加工设备与应用 CHINA SYNTHETIC RESIN AND PLASTICS 合 成 树 脂 及 塑 料 , 2017,34(3): 80 高流动抗冲共聚聚丙烯是指熔体流动速率为25~35g/10min的产品,多用于生产饮水机、小家电、洗衣机及汽车零部件等,对制品的颜色、光泽性、平滑性、刚韧性等都有较高要求[1]。随着抗冲共聚聚丙烯生产技术的进展,自20世纪90年代,陆续推出了一系列高流动抗冲共聚聚丙烯(如日本住友化学株式会社的AZ564,AW564;日本三井化学株式会社的J740;日本三菱油化公司的BC03B;新加坡TPC公司的AW564,AY564;韩国SK公司的B380G;韩国现代公司的M1600等),满足了部分市场的需求。中国石油化工股份有限公司(简称中国石化)北京燕山分公司、中国石化上海石油化工股份有限公司、中国石化茂名分公司等企业着力开发并推广的高流动抗冲共聚聚丙烯牌号包括:K7726H,K7735,K9920,K9935,1947,M2600R,HHP6,HHP10等。中国石油天然气股份有限公司(简称中国石油)独山子石化分公司推出了采用降解法生产的高流动抗冲共聚聚丙烯K9928,然后进一步开发了采用氢调法生产的新 高流动抗冲共聚聚丙烯相结构的流变学 娄立娟1,王艳芳1,张丽洋1,杜 斌1,陈商涛1,姜 凯1,俞 炜2,黄 强1 (1.中国石油天然气股份有限公司石油化工研究院,北京市 102206;2.上海交通大学,上海市 200240) 摘要:将核磁序列分析法、傅里叶变换红外光谱法与聚合物流变学方法相结合,研究了典型的高流动抗冲共聚聚丙烯的相结构。结果表明:高流动抗冲共聚聚丙烯K9928和K7726H的乙烯-丙烯无规共聚物的结构非常接 近;乙烯总含量不同导致乙烯-丙烯无规共聚物含量的差异,以及乙烯-丙烯嵌段共聚物含量和结构的差异;K9928 和K7726H属于具有低共熔温度的共聚物,利用时温叠加原理流变学黏弹性评价方法可知,K9928的相分离温度较 K7726H低,相同温度下,K9928较K7726H的相分离现象显著。 关键词:高流动抗冲共聚聚丙烯 相结构 流变学 相分离 中图分类号:TQ 325.1+ 4文献标识码:B 文章编号:1002-1396(2017)03-0080-05 Rheological study about phase structure of high ?ow impact PP Lou Lijuan1, Wang Yanfang1, Zhang Liyang1, Du Bin1, Chen Shangtao1, Jiang Kai1, Yu Wei2, Huang Qiang1 (1. Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China; 2. Shanghai Jiao Tong University, Shanghai, 200240, China) Abstract: The phase structures of high flow impact polypropylene(PP),K9928 and K7726H,were investigated by polymer rheology coupled with nuclear magnetic resonance(NMR)analysis and Frontier transform infrared spectrum(FTIR). The results indicate that the random ethylene-propylene copolymer(EPR)in K9928 and K7726H have similar structure. Different total ethylene contents lead to the different contents of EPR and various content and structure of ethylene/propylene block copolymer in two samples. Both K9928 and K7726H feature low eutetic temperature,however,rheology viscoelastic properties evaluation based on time-temperature superposition has shown that the phase separation temperature of K9928 is lower than that of K7726H,which induces more phase separation in K9928 than that in K7726H at same temperature. Keywords: high flow impact polypropylene; phase structure; rheology; phase separation 收稿日期:2016-11-28;修回日期:2017-02-27。 作者简介:娄立娟,女,1985年生,硕士,工程师,2010年毕 业于上海交通大学,现从事合成树脂方面的研究。联系 电话:(010)80165418;E-mail:loulijuan@https://www.wendangku.net/doc/7a18229257.html,。万方数据

聚丙烯的结构和性能

课题:聚丙烯的结构和性能 参考文献:1.纤维化学与物理(蔡再生主编, 中国纺织出版社) 2.中国纺机网

聚丙烯纤维 一.聚丙烯纤维的及纺丝 聚丙烯的生产过程包括四个主要工序,及丙烯的制备、催化剂的制备、丙烯聚合、聚丙烯的提纯和精处理。 二.聚丙烯纤维形态结构和聚集态结构 分子式: 聚丙烯纤维由熔体纺丝发制得,一般情况下,纤维截面呈圆形,纵向光滑无条纹。 聚丙烯的机构是由配位聚合得到的头-尾相接的线形结构,其分子中含有甲基,按甲基排列位置分为等规聚丙烯、无规聚丙烯和间规聚丙烯,甲基排列在分子主链的同一侧称等规聚丙烯,即是制备聚丙烯纤维的原料。从等规聚丙烯的分子结构来看,其具有较高的立体规整性,因此比较容易结晶。等规聚丙烯的结晶是

一种有规则的螺旋状链,这种三维的结晶,不仅是单个链的规则结构,而且在链轴的直角方向也具有规则的链堆砌。 等规聚丙烯的结晶形态为球晶结构,最佳结晶温度为125-135℃,温度过高,不易形成晶核,结晶缓慢:温度过低,分子链扩散困难,结晶难以进行。聚丙烯初生纤维的结晶度约为33%-40%,经拉伸后,结晶度上升到37%-48%,再经过热处理,结晶度可达65%-75%。等规聚丙烯结晶变体较多,但纺丝拉伸后的晶体主要是α变体。等规聚丙烯纤维的聚集态结构属于折叠链和伸直链晶体共存的体 三.聚丙烯纤维的物理化学性能 1..密度:聚丙烯纤维的密度为0.90-0.92g/cm3,在所有化学纤维中是最轻的,它比聚酰胺纤维轻20%比聚酯纤维轻30%,比粘胶纤维轻40%。因此,聚丙烯纤维质轻,覆盖性好。 2.吸湿性:聚丙烯纤维是大分子上不含极性基因,纤维的微结构紧密,造成其吸湿性是合成纤维中最差的,其吸湿率低于

共聚和均聚PP

按国际标准分类,聚丙烯(PP)分为均聚聚丙烯(PP-H)、嵌段共聚聚丙烯(PP-B)和无规共聚聚丙烯(PP-R) 简介 共聚pp:PP共聚物,Polypropylene Copolymer,简称PPC,是丙烯单体与乙烯单体的共聚物 按照乙烯单体在分子链上的分布方式,共聚PP可以分为无规共聚物(PPR)和嵌段共聚物(PPB)两种。PPH的刚性好,但耐冲击性不好,尤其耐低温冲击性更不好,耐蠕变性差。PPB的耐冲击性好,但耐蠕变性和PPH一样差。PPR的耐冲击性和耐蠕变性则都好。 均聚pp:聚丙烯PP的均聚物简称PPH,是单一丙烯单体的聚合物。聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 共同点 PP共聚物和均聚物都有很低的水蒸汽渗透率(0.5克/毫升/100平方英寸/24小时)。 均聚物型和共聚物型的PP材料都具有优良的抗吸湿性、抗酸碱腐蚀性、抗溶解性。然而,它对芳香烃(如苯)溶剂、氯化烃(四氯化碳)溶剂等没有抵抗力。PP也不象PE 那样在高温下仍具有抗氧化性。 不同点 由于均聚物型的PP温度高于0℃以上时非常脆,因此许多商业的PP材料是加入1-4%乙烯的无规则共聚物或更高比率乙烯含量的钳段式共聚物。 共聚物型的PP材料有较低的热扭曲温度(100℃)、低透明度、低光泽度、低刚性,但是有有更强的抗冲击强度。PP的强度随着乙烯含量的增加而增大。PP的维卡软化温度为150℃。由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。PP不存在环境应力开裂问题。 共丙是共聚改PP,它有合成橡胶成份,火一烧拉开丝是扁形,拉得不长。而均聚改PP 烧了以后丝拉得长,丝是圆形。

最新聚丙烯基础知识

第一章 聚丙烯的结构和性质 第一节 聚丙烯的结构 一、分子结构 由丙烯聚合的高分子化合物,聚合反应中链增长的方式,即下一个单体连接到分子链上的形式决定了分子链的形状和甲基的空间排列,决定其立构规整度,进而决定其结晶结构、结晶度、密度及相关的物理机械性能。 1.等规聚丙烯(iPP )、间规聚丙烯(sPP )和无规聚丙烯(aPP ) 聚丙烯立构中心的空间构型有D 型和L 型两种: 如果此立构中心D 型或L 型单独相连,就构成iPP : 如果立构中心D 型和L 型交替连接,就构成sPP : 或

如果立构中心D型和L型无规则地连接,甲基无规则地分布在主链平面两侧,就构成了aPP: 等规聚丙烯是高结晶的高立体定向性的热塑性树脂,结晶度60%~70%,等规度>90%,吸水率0.01%~0.03%,有高强度、高刚度、高耐磨性、高介电性,其缺点是不耐低温冲击,不耐气候,静电高。 间规聚丙烯结晶点较低(与等规聚丙烯相比),为20%~30%,密度低(0.7~0.8g/cm3),熔点低(125~148℃),分子量分布较窄(M w/M v=1.7~2.6),弯曲模量低,冲击强度高,最为优异的是透明性、热密封性和耐辐射性,但加工性较差(以茂金属催化剂聚合可得间规度大于80%的间规聚丙烯)。 无规聚丙烯分子量小,一般为3000至几万,结构不规整,缺乏内聚力,在室温下是非结晶、微带粒性的蜡状固体。 2.无规共聚物、抗冲共聚物和多元共聚物 丙烯-乙烯无规共聚物:使丙烯和乙烯的混合物聚合,所得聚合物的主链上无规则地分布着丙烯和乙烯链段,乙烯含量一般为1%~4%(质量分数),乙烯抑制丙烯结晶,使无规共聚物结晶度下降,熔点、玻璃化温度、脆化点降低,结晶速度变慢,材料变软,透明度提高,韧性、耐寒性、冲击强度均较均聚物提高,主要用于高抗冲击性和韧性制品。 丙烯-乙烯嵌段共聚物:在单一的丙烯聚合后除去未反应的丙烯,再与乙烯聚合所得产物,通常嵌段共聚体中乙烯含量为5%~20%(质量分数)。丙烯-乙

聚丙烯 共聚PP 塑料材料

芜湖晨盛塑胶 科技有限公司标准

聚丙烯(共聚PP)塑料材料 1范围 本标准规定了普通聚丙烯(亦称共聚PP)塑料材料的技术要求、材料牌(型)号、检验规则、试验方法、标志、包装、运输和贮存等。 本标准适用于家用空调事业部空调器类产品的户内用主要注塑成型塑料结构零件所使用的普通聚丙烯(以下称:共聚PP)塑料材料。如电机盖、出水接头、百叶、过滤网等,其性能要求可参照本标准执行。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 250 -1995纺织品色牢度试验评定变色用灰色样卡 GB/T 塑料非泡沫塑料密度的测定第1部分:浸渍法、液体比重瓶法和滴定法(ISO 1183-1:2004,IDT) GB/T 塑料拉伸性能的测定第1部分:总则 GB/T 塑料拉伸性能的测定第2部分:模塑和挤塑塑料的试验条件 GB/T 塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件 GB/T 塑料拉伸性能的测定第4部分: 各向同性和正交各向异性纤维增强复合材料的试验条件 GB/T 1633-2000热塑性塑料维卡软化温度(VST)的测定 GB/T 塑料负荷变形温度的测定第1部分:通用试验方法 GB/T 1843-1996塑料悬臂梁冲击强度的测定(ISO 180:2000,IDT) GB/T 2918-1998塑料试样状态调节和试验的标准环境(ISO 291:1997) GB/T 3682-2000 热塑性塑料熔体质量流动速率和熔体体积流动速率的测定 GB/T 9341-2008 塑料弯曲性能的测定(ISO 178:2001,IDT) GB/T 9342-1998塑料洛氏硬度试验方法 GB/T 塑料硬度测定第2部分:洛氏硬度(?ISO 2039-2:1987,IDT) GB/T 12670-1990 聚丙烯树脂 ASTM D955-2008 塑料收缩率试验方法Standard Test Method of Measuring Shrinkage from Mold Dimensions of Thermoplastics GB/T 热塑性塑料材料注塑试样的制备第1部分:一般原理及多用途试样和长条试样的制备逐批检查计数抽样程序及抽样表进货检验

聚丙烯简介

聚丙烯无规共聚物 聚丙烯无规共聚物也是聚丙烯的一种,它的高分子链的基本结构用加入不同种类的单体分于加以改性。乙烯是最常用的单体,它引起聚丙烯物理性质的改变。与PP均聚物相比,无规共聚物改进了光学性能(增加了透明度并减少了浊雾),提高了抗冲击性能,增加了挠性,降低了熔化温度,从而也降低了热熔接温度;同时在化学稳定性、水蒸汽隔离性能和器官感觉性能(低气味和味道)方面与均聚物基本相同。 开发了将改进了的透明度和冲击强度结合起来的PP无规共聚物,应用于吹塑、注塑、薄膜和片材挤压加工领域,作食品包装材料、医药包装材料和日常消费品。 化学 PP无规共聚物一般含有 1- 7%(重量)的乙烯分子及 99— 93%(重量)的丙烯分子。在聚合物链上,乙烯分子无规则地插在丙烯分子中间。在这种无规的或统计学共聚物中,大多数(通常 75%)的乙烯是以单分子插入的方式结合进去的,叫做X3基团(三个连续的乙烯[CH2]依次排列在主链上),这还可看成是一个乙烯分子插在两个丙烯分子中间。 另有 25%的乙烯是以多分子插入的方式结合进主链的,又叫X5基团,因为有5个连续的亚甲基团(两个乙烯分子一起插在两个丙烯分子中间)。很难把X5和更高的基团如X7、X9等加以区分。鉴于此,把XS和更高基团的乙烯含量一起统计为>X3%。 无规度比值X3/X5可以测定。当X3以上基团的百分比很大时,将显著降低共聚物的结晶度,这对无规共聚物的最终性能影响很大。共聚物中极高含量的乙烯对聚合物结晶度的影响,类似于高无规聚丙烯含量时的作用。 无规PP共聚物不同于均聚物,因为无规地插入聚合物主链中的乙烯分子阻碍了聚合物分子的结晶型排列。共聚物结晶度的降低引起物理性质的改变:无规共聚物与PP均聚物相比刚度降低,抗冲击性能提高,透明度更好。乙烯共聚物还有较低的熔化温度,这成了它们在某些方面应用时的优点。 无规共聚物含有较多的可革取物和无规PP,以及乙烯含量高得多的聚合物链。这种较高的可革取物含量,视不同的聚合过程,不同程度地存在于所有的商品共聚物材料中,并在满足联邦食品管理局(FDA)关于食品接触的规定上造成困难。 制造方法 乙烯/丙烯无规共聚物是由乙烯分子和丙烯分子同时进行聚合反应而制得的,所用反应器与生产PP均聚物的一样。乙烯分子比丙烯分子小,反应快于(反应活性约十倍)丙烯。这使催化剂的立体定向性减弱而活性增大,从而导致无规聚丙烯生成量增多。为了减少这种无规物的生成,需要降低反应温度,从而降低催化剂的活性,并减少最终产物中无规异构体的含量,得到一种具有较均衡性能的产品。 乙烯含量高(>3%)的无规共聚物在生产过程中处理起来比较困难,也很难在己烷稀释剂中进行聚合反应,因为反应的二级副产品(无规聚丙烯和含乙烯量很高的共聚物)能溶于己烷。这在液体丙烯的本体聚合反应也是一样,尽管溶解度较低。己烷稀释工艺生产出的大量副产品,必须在己烷再循环阶段分离出来,这会增加总生产成本,然而却能得到合少量可溶组分的较清洁的聚合物。在本体聚合工艺中,这些杂质会留在聚合物中,并在处理薄片状材料时带来麻烦。而且,最终共聚产品中含有较多的可溶性杂质。使用有机溶剂进行二次清洗,可除去大部分杂质,但又会提高共聚物的总生产成本。一般地,副产物含量高时,薄片状无规共聚物会变得较粘,当乙烯含量高于3.5%(重量)时,这个问题更突出。 处理问题增多,以及较低的反应器温度导致无规共聚物较低的生产速度。而且无规共聚物的生产周期通常很短。这些因素使无规共聚物的总生产成本高于均聚物,对乙烯含量高的无规共聚物更是如此。 共聚物熔点降低和乙烯含量直接相关。据报导,乙烯含量为7%时,共聚物的熔点低达152°F。X3含量对共聚物熔点的影响比儿及更高基因含量的影响更大。它还取决于催化剂本身,及

相关文档
相关文档 最新文档