文档库 最新最全的文档下载
当前位置:文档库 › 永磁电机电磁计算

永磁电机电磁计算

永磁电机电磁计算
永磁电机电磁计算

永磁电机电磁计算

传统的电机学和电机设计中,习惯地把电机的分析和计算归结为电路和磁路的计算问题。实际上,电路和磁路中的各个参数是由电机电磁场的场量得来,由于数值计算和仿真技术的不断发展,我们可以直接使用有限元对电机的电磁场进行分析和计算。

本文将应用ANSYS软件,对大型永磁电机的电磁场进行分析和计算。这里只研究平行平面场问题,即二维电磁场,因而只有一个自由度即矢量磁势Az。电机的对称周期取一对磁极范围。考虑漏磁的影响,把转轴和机座作为模型的内外边界。

定义电机材料特性

首先,定义硅钢片的材料属性与磁化曲线,如图1:

永磁体的材料特性需要说明的是,永磁体的退磁曲线是指剩磁密度Br

与矫顽力Hcb的曲线,以下简称BH曲线。退磁曲线通常在第二象限,但ANSYS 程序中需按第一象限输入。此外还需要知道永磁体的工作温度,即电机内部温度分布,Br的可逆温度系数,Hcb的可逆温度系数。

参数化建模

参数化建模具有很多优点,各个变量物理意义明确,便于查找和修改。而且可以通过对话框快速对电机尺寸参数进行调整,缩短调试程序和优化设计的时间。这里采用ANSYS内部的对话框进行交互,可以方便其他设计人员对程序的调试,提高程序的通用性,如图2:

有限元模型的建立和边界条件

定、转子应分别建模,这样两部分模型不会相互干扰。定、转子之间的气隙,可定义两层或更多层,再经过径向拼接得到整个求解区域。分网时应注意疏密结合,气隙部分网格要足够稠密,而且沿径向应均匀分网。其它部分网格可稀疏些。模型尽量使用四边形网格,并保证节点连续。

这里只研究电机转速恒定情况,用有限元法进行电机的电磁场分析,要模拟电机定、转子之间的相对运动。这里使用运动边界法,即假设定子模型静止不动,让转子部分旋转,和真实情况一样。具体如下:气隙模型中有一条定、转子网格重合的公共运动边界,分别为定、转子的运动边界上的节点编号,并且保证相邻节点径向间距相等,这样能保证转子旋转后运动边界上的节点重合,压缩重合的关键点(KP)、节点(node),保持网格的连续性。如图3

图3 运动边界示意图

后处理

考虑到硅钢片的各向异性,沿轧制方向和垂直于轧制方向的单位损耗曲线是不同的,因而分别计算径向磁密和切向磁密的损耗值。

电机在进行能量转换时,无论是从机械能变成电能,或是从电能变成机械能,能量都是以电磁能的形式通过定、转子之间的气隙进行传递的,气隙磁密是电机电磁场计算中重要的物理量。气隙磁密波形和计算区域内磁力线分布如图6和图7所示。后处理中还可以进行协波分析,电感的计算等。

结论

ANSYS有限元软件为电机的仿真和电机参数的计算提供了非常好的数值计算方法,相信随着对有限元认识的加深,我们可以更加深入、细致、精确的对电机进行分析和计算,大大加快电机设计、生产的研发周期。

Y2-160M1-2三相异步电动机电磁设计解读

目录 摘要 ..................................................................... I Abstract................................................................. II 第一章绪论........................................................ - 4 - 1.1 工程背景...................................................... - 4 - 1.2 该课题设计的主要内容.......................................... - 4 - 第二章三相异步电动机................................................ - 6 - 2.1 三相异步电动机结构............................................ - 6 - 2.1.1 异步电动机的定子结构..................................... - 7 - 2.1.2 异步电动机的转子结构..................................... - 8 - 2.1.3 三相异步电动机接线图..................................... - 8 - 2.2 三相异步电动机工作原理........................................ - 9 - 2.3 三相异步电动机的机械特性和工作特性........................... - 12 - 第三章三相异步电机电磁设计......................................... - 14 - 3.1 主要尺寸和空气隙的确定....................................... - 14 - 3.2 定子绕组与铁芯设计........................................... - 14 - 3.2.1 定子绕组型式和节距的选择................................ - 15 - 3.2.2 定子冲片的设计.......................................... - 16 - 3.3 额定数据及主要尺寸........................................... - 17 - 3.4 磁路计算..................................................... - 19 - 3.5 性能计算..................................................... - 22 - 3.5.1 工作性能计算............................................ - 22 - 3.5.2 起动性能计算............................................ - 26 - 第四章电机转动轴的工艺分析......................................... - 28 - 4.1 转动轴的加工工艺分析......................................... - 28 - 4.2 选择设备和加工工序........................................... - 30 - 4.3 成品的最后工序............................................... - 31 - 小结与致谢........................................................... - 32 - 参考文献............................................................. - 33 -

永磁同步电机计算

永磁同步电机设计 1电机仿真模型 (a )原型电机(b )新型电机 图1PM-Y2-180-4电机整体有限元仿真模型 图2新型电机转子1/4模型 2静态有限元仿真结果比较 2.1永磁磁场分布 当永磁体单独作用时,两种电机的磁力线分布如图3所示。 (a )原型电机(b )新型电机 图3两种电机永磁磁场分布 2.2永磁气隙磁密波形 当永磁体单独作用时,两种电机一个周期范围(即一对永磁体范围)的永磁气隙磁密波形如图4所示。 (a )原型电机 (b )新型电机 (c )两种电机比较 图4两种电机永磁气隙磁密分布 3空载稳态有限元仿真结果比较 3.1空载永磁磁链、空载永磁反电势波形 空载情况下,两种电机的三相绕组电流均设置为零,电机中磁场由永磁体单独产生。设置电机稳态运行转速为n =3000r/min ,可得到两种电机的空载永磁磁链、空载永磁反电势波形分别如图5、图6所示。由于三相绕组对称,在此仅给出A 相绕组仿真结果。 图5两种电机空载永磁磁链 图6两种电机空载永磁反电势 3.2空载永磁磁链、空载永磁反电势谐波分析 利用Matlab 对图5、图6的波形进行傅里叶分析,可得到两种电机磁链及反电势的各次谐波分量,如图7所示。 (a )空载永磁磁链(b )空载永磁反电势 图7磁链及反电势谐波分量分析 通过对两种电机的空载永磁磁链和空载永磁反电势进行谐波分析,得到以下结论:(1)3次谐波分量是主要谐波分量;(2)偶次谐波分量几乎为零,奇次谐波分量相对较大;(3)采用新型电机结构可在一定程度上削弱3次谐波分量,但同时会引起5、7次谐波分量增加,总体削弱谐波效果并不明显。 4负载稳态有限元仿真结果比较 4.1电枢绕组通入三相对称电压 两种电机具有相同的参数如下:电阻R =0.0410947?,电感L =5.87143?10?5H ,额定转速n =3000r/min 。给电枢绕组通入三相对称电压: A B C 310.269sin(20035.3581/180) 310.269sin(20035.3581/1802/3)310.269sin(20035.3581/1802/3) u t u t u t ππππππππ=+=+-=++(1) 并进行有限元仿真,得到两种电机的绕组电流及转矩波形,分别如图8、图9所示。 (a )原型电机 (b )新型电机 图8两种电机绕组电流波形

三相异步电动机电磁计算

三相电机 额定电压U=380V,f=50HZ,机座号Y132,输出P2=8KW,p=4极 螈 1. 2.芄型号:Y132M 3. 4.蒂输出功率:P N=8KW 5. 6.袂相数:m1=3 7. 8.薇接法: 9. 10.莃相电压:Uφ=380V 11. 13. 14.极对数:p=2 15. 16.定子槽数:Z1=36

17. 18.转子槽数:Z2=32 19. 20.定子每极每相槽数: 21. 22.肂定子外径:D1=21cm D i1=13.6cm 荿定子内径: =0.4mm 蒃气隙长度:δ 转子外径:D2=13.52cm 13.6-0.04*2=13.52cm 转子内径:D i2=4.8cm 定子槽型:半闭口圆底槽 定子槽尺寸:b o1=0.35cm b1=0.67cm h o1=0.08cm R1=0.44cm h12=1.45cm 转子槽形:梯形槽 转子槽尺寸:b o2=0.1cm b r1=0.55cm b r2=0.3cm h o2=0.05cm h r12=2.3cm

23.极距: 24.定子齿距: 25.转子齿距: 26.气隙长度: 27.转子斜槽距:b sk=t1=1.187cm 28.铁芯长度:l=16cm 29.铁芯有效长度:无径向通风道:l ef=l+2δ=16.08cm 30.净铁芯长:无径向通风道:l Fe=K Fe l=0.95*16=15.2cm K Fe=0.95(不涂漆) 31.绕组型式:单层交叉式 32.并联支路数:a1=1 33.节距:1-9,2-10,11-18 34.每槽导线数:由后面计算的数据根据公式计算为: 每极磁通φ1=0.00784wb 波幅系数:K A=1.46 绕组系数:K dp1=0.96

KW调速永磁同步电动机电磁设计程序文件

11KW 变频起动永磁同步电动机电磁设计程序 及电磁仿真 1永磁同步电动机电磁设计程序 1.1额定数据和技术要求 除特殊注明外,电磁计算程序中的单位均按目前电机行业电磁计算时习惯使用的单位,尺寸以cm(厘米)、面积以cm 2(平方厘米)、电压以V (伏)、电流以A (安)、功率和损耗以(瓦)、电阻和电抗以Ω(欧姆)、磁通以Wb(韦伯)、磁密以T(特斯拉)、磁场强度以A/cm(安培/厘米)、转矩以N (牛顿)为单位。 1额定功率kw P n 11= 2相数 31=m 3额定线电压V U N 3801= 额定相电压Y 接法V U U N N 39.2193/1== 4额定频率50f HZ = 5电动机的极对数P =2 6额定效率87.0, =N η 7额定功率因数78.0cos , =N ? 8失步转矩倍数2.2* =poN T 9起动转矩倍数2.2* =stN T 10起动电流倍数2.2* =stN I 11额定相电流62.2478.087.039.21931011cos 105 , ,15=????=?=A U m P I N N N N N ?η 12额定转速1000=N n r/min 13额定转矩m N n P T N N N .039.1051000 11 55.91055.93=?=?=

14绝缘等级:B 级 15绕组形式:双层叠绕Y 接法 1.2主要尺寸 16铁心材料DW540-50硅钢片 17转子磁路结构形式:表贴式 18气隙长度cm 07.0=δ 19定子外径cm D 261= 20定子内径cm D i 181= 21转子外径86.17)07.0218(212=?-=-=cm D D i δ 22转子内径cm D i 62= 23定,转子铁心长度cm l l 1521== 24铁心计算长度cm l l a 152== 铁心有效长度cm cm l l a ef 14.15)07.0215(2=?+=+=δ 25定子槽数136Q = 26定子每极每相槽数332/362/11??==p m Q q =2 27极距cm P D i p 728.932/1814.32/1=??==πτ 28定子槽形:梨形槽 定子槽尺寸 cm h cm r cm b cm b cm h 72.153.078.038.008.002110101===== 29定子齿距cm Q D t i 5708.136 181 1 1== = π π

永磁同步电机交直轴电感计算

参数化扫描的有问题,但是趋势应该差不多 《永磁电机》 永磁同步电机分为表面式和内置式。 由于永磁体特别是稀土永磁体的磁导率近似等于真空磁导率,对于表面式,直轴磁阻和交轴磁阻相等,因此交直轴电感相等,即Ld=Lq,表现出隐极性质。对于内置式,直轴磁阻大于交轴磁阻(交轴通过路径的磁导率大于直轴),因此Ld

11KW调速永磁同步电动机电磁设计程序2

11KW变频起动永磁同步电动机电磁设计程序 及电磁仿真 1永磁同步电动机电磁设计程序 1.1额定数据和技术要求 除特殊注明外,电磁计算程序中的单位均按目前电机行业电磁计算时习惯使用的单位,尺寸以cm(厘米)、面积以cm2(平方厘米)、电压以V (伏)、电流以A (安八功率和损耗以(瓦)、电阻和电抗以门(欧姆)、磁通以Wb(韦伯)、磁密以T(特斯拉)、磁场强度以A/cm(安培/厘米)、转矩以N (牛顿)为单位。 1额定功率P n =11kW 2相数叶=3 3额定线电压U N1 =380V 额定相电压丫接法U N =U N1 / 3 = 219.39V 4额定频率f =50HZ 5电动机的极对数P=2 6额定效率N =0.87 7额定功率因数cos N =0.78 8失步转矩倍数T;°N =22 9起动转矩倍数T;N =22 10起动电流倍数I;N =2.2 12 额定转速n N =1000r/min 13额定转矩T N二9.55P N 103二 9.55 11 二105.039N.m n N 11额定相电流I N P N X105 0U N N COS N 11 105 3 219.39 0.87 0.78 A-24.62

14绝缘等级:B级 15绕组形式:双层叠绕Y接法 1.2主要尺寸 16铁心材料DW540-50硅钢片 17转子磁路结构形式:表贴式 18气隙长度:=0.07cm 19定子外径D1 =26cm 20定子内径D i1 =18cm 21 转子外径D2二D H—2、=(18 -2 0.07)cm =17.86 22转子内径D i2 =6cm 23定,转子铁心长度h日2 =15cm 24铁心计算长度l a J =15cm 铁心有效长度l ef =la 2、=(15 2 0.07)cm = 15.14cm 25定子槽数Q1 = 36 26定子每极每相槽数q =Q1 /2gp =36/2 3 3=2 27极距巨p =蔥D i1/2P =3.14 18/2 9.728cm 28定子槽形:梨形槽定子槽尺寸 h01= 0.08cm b01= 0.38cm bi = 0.78cm r1 二 0.53cm h o2 = 1.72cm 巧“18^ 29定子齿距t1卩 1.5708cm Q136

Flux永磁电机动态退磁计算

永磁同步电机磁钢退磁计算 磁钢退磁风险及退磁性能评估是永磁电机无法回避的问题,本文针对永磁同步电机,说明采用Altair Flux 进行磁钢退磁分析的过程。 1、退磁率评估 所谓退磁率评估其实是一个电磁场后处理过程,在执行完成瞬态磁场计算后,根据指定的退磁评估点(如90%剩磁Br),由软件提取永磁体中的磁场强度H和磁密B,计算出永磁体内部的新的剩磁Br’,并计算出永磁体剩磁低于指定退磁点剩磁的面积或体积大小,即永磁体中出现退磁现象且低于指定剩磁的占比。而静态退磁评估是指在瞬态磁场计算过程中,永磁体的剩磁始终保持不变,即不考虑永磁体退磁、回复过程及引起的磁场变化和设备电气性能输出的变化(如电机电磁转矩下降)。 2、动态退磁分析 动态退磁指的是在磁场计算过程之中同时考虑永磁体由于退磁及回复过程(recoil)导致的永磁体结构中剩磁的改变,以及在新剩磁数值下的磁场分布。Altair Flux2019.1新增永磁体动态退磁分析功能,即在瞬态磁场计算过程中软件自动计算并更新永磁体退磁后的剩磁材料属性,并用于下一时间步的磁场计算。Flux 中要考虑永磁体动态退磁过程,只需在永磁体材料属性定义界面中勾选中“求解过程中考虑退磁”选项即可,其他分析设置过程与常规瞬态磁场分析设置相同,无需额外的特别设定。Flux软件计算永磁退磁过程中会自动考虑永磁体的回复线,软件内部根据定义的非线性退磁曲线结合Preisach磁滞回线模型进行。 动态退磁分析适用于2D和3D瞬态磁场分析,且在瞬态分析中初始计算设置为从静态计算开始。该退磁过程只考虑由于反向磁场引起的退磁,不考虑由于温度变化引起的热退磁。 以8极48槽三相永磁同步电机2D瞬态磁场分析为例,计算模型以及使用磁钢材料属性如下图所示:

中小型三相感应电动机(单笼转子)电磁计算程序

中小型三相感应电动机(单笼转子)电磁计算程序 一. 额定数据及主要尺寸 1. 输出功率P N 2. 外施相电压U N ф,Y 接法3 N N U U = φ,Δ接法N N U U =φ 3. 功电流 φ N N KW U m P I 1= 4. 效率 η’ 按照设计任务书的规定 5. 功率因数cos φ’ 按照设计任务书的规定 6. 极对数p 7. 定转子槽数 Z 1、Z 2 8. 定转子每极槽数 p Z Z p 21 1= 9. p Z Z p 22 2= 10. 定转子冲片尺寸(见图1) 11. 极距 p D i 21 πτ= 12. 定转子齿距 1 1 1Z D t i π= 2 2 2Z D t π= 13. 节距 y —— 以槽数计 14. 转子斜槽宽 b sk (一般取一个定子齿距t 1,也可按需要设计) 15. 每槽导体数 双层线圈 N s1 =2×每线圈匝数 单层线圈 N s1 =每线圈匝数 16. 每相串联导体数 111 11a m Z N N s = φ 17. 绕组线规(估算)1 11 11''''J a I A N c t = I ’1(定子电流初步值)= ' cos '?ηKW I 18. 槽满率 ⑴槽面积 2 )'(222 21 1121r h h b r A s s π+-+=

⑵槽绝缘占面积 双层绕组 )22(112121' b r r h A s t t +++?=π 单层绕组 )2(21'r h A s t t π+?= ⑶槽有效面积 t s ef A A A -= ⑷槽满率 %100211?=ef s t f A d N N S 19. 铁心长l t 铁心有效长 无径向通风道 δ2+=t ef l l 定转子径向通风道不交错 ' 11v v t sf b n l l -= 定转子径向通风道交错 )('22'11v v v v t sf b n b n l l +-= 'v b 由图9查出 净铁长 无径向通风道 t Fe Fe l k l = 有径向通风道 )(v v t Fe Fe b n l k l -= 20. 绕组系数 111p d dp K K K = ⑴分布系数 2sin 2sin 111 αα q q K d = ⑵短距系数 βπ2sin 1 =p K 21. 每相有效串联导体数 11dp K N φ 二. 磁路计算 22. 每极磁通 1 11 11122.24dp dp Nm K fN E fN K K E φφ≈ = 其中φεN L U E )1(' 1-= (假设'1'L E K ε-=) 23. 每极齿部截面积 定子 111p t t Fe t Z b l K A = 转子 222p t t Fe t Z b l K A = 对于非平行齿,则b t 取离最窄齿三分之一齿高处的齿

永磁同步电机交直轴电感计算

参数化扫描的有问题,但是趋势应该差不多 《永磁电机》 永磁同步电机分为表面式和内置式。 由于永磁体特别是稀土永磁体的磁导率近似等于真空磁导率,对于表面式,直轴磁阻和交轴磁阻相等,因此交直轴电感相等,即Ld=Lq ,表现出隐极性质。对于内置式,直轴磁阻大于交轴磁阻(交轴通过路径的磁导率大于直轴),因此Ld

永磁电机电磁计算

永磁电机电磁计算 传统的电机学和电机设计中,习惯地把电机的分析和计算归结为电路和磁路的计算问题。实际上,电路和磁路中的各个参数是由电机电磁场的场量得来,由于数值计算和仿真技术的不断发展,我们可以直接使用有限元对电机的电磁场进行分析和计算。 本文将应用ANSYS软件,对大型永磁电机的电磁场进行分析和计算。这里只研究平行平面场问题,即二维电磁场,因而只有一个自由度即矢量磁势Az。电机的对称周期取一对磁极范围。考虑漏磁的影响,把转轴和机座作为模型的内外边界。 定义电机材料特性 首先,定义硅钢片的材料属性与磁化曲线,如图1: 永磁体的材料特性需要说明的是,永磁体的退磁曲线是指剩磁密度Br 与矫顽力Hcb的曲线,以下简称BH曲线。退磁曲线通常在第二象限,但ANSYS 程序中需按第一象限输入。此外还需要知道永磁体的工作温度,即电机内部温度分布,Br的可逆温度系数,Hcb的可逆温度系数。 参数化建模 参数化建模具有很多优点,各个变量物理意义明确,便于查找和修改。而且可以通过对话框快速对电机尺寸参数进行调整,缩短调试程序和优化设计的时间。这里采用ANSYS内部的对话框进行交互,可以方便其他设计人员对程序的调试,提高程序的通用性,如图2:

有限元模型的建立和边界条件 定、转子应分别建模,这样两部分模型不会相互干扰。定、转子之间的气隙,可定义两层或更多层,再经过径向拼接得到整个求解区域。分网时应注意疏密结合,气隙部分网格要足够稠密,而且沿径向应均匀分网。其它部分网格可稀疏些。模型尽量使用四边形网格,并保证节点连续。 这里只研究电机转速恒定情况,用有限元法进行电机的电磁场分析,要模拟电机定、转子之间的相对运动。这里使用运动边界法,即假设定子模型静止不动,让转子部分旋转,和真实情况一样。具体如下:气隙模型中有一条定、转子网格重合的公共运动边界,分别为定、转子的运动边界上的节点编号,并且保证相邻节点径向间距相等,这样能保证转子旋转后运动边界上的节点重合,压缩重合的关键点(KP)、节点(node),保持网格的连续性。如图3 图3 运动边界示意图 后处理

无刷同步发电机电磁计算程序

无刷同步电机电磁计算程序 5.1 额定数据和主要尺寸 1.额定电压 U N V 380= 2.额定转速 n N 3000/min r = 3.额定频率 ?HZ 50= 4.额定功率因数 cos ?=0.9 5.额定电流 80N I A = 6.相数 m=3 7.确定功率: 600800.8 1.173.16P kw =???= 针对有会员 对公式7提出的质疑,经过分析和讨论,公式7更正为: P=sqrt(3)×600×80×0.8=66.5kW ,以下步骤用此数据代入,恕不一一修正。 另,其他公式目前暂未发现错误之处,欢迎大家继续批评指正 8.根据功率取对应T2X-250L 电机,额定功率75N P kw = 9.效率 91.4%η= 10.极数 2p 12012050 41500 N f n ?= == 11.计算功率: ' 1.0875 101.25cos 0.8E N K P P kw ??= == 式中 1.08E K =(对于同步发电机取值) 12.极弧系数:极弧长度(0.630.72)p b τ=~ 取' p α= 0.67p b τ = 13.气隙磁密 (0.71.07)B T δ=~ 取0.8B T δ= 14.取线负荷 280/280/ A K A m A c m == 15.电机的计算体积 3' 2'16.110il p B dp N P D lef K K A B n δα????=? ??

33 33 6.110101.25100.67 1.110.92280000.81500 27.110m -???= ?????=? 16.主要尺寸比:0.6 2.5λ=~ 17.定子铁心内径取值范围 il D = 0.23990.3860m ==~ 18.定子铁心铁外径: ()111.42 1.420.23990.3407i D D m ===~0.3860~0.5481 按标准选取1430D mm = 则定子内径:11430302.823001.42 1.42i D D cm mm ==≈≈ 19.定子铁心有效长度: 23122127.1100.30113000.3i i D lef l lef m mm D -??≈==≈≈ 20.定子铁心净长度: ()3000.92276Fet Fet k k Fet l K l n b K l mm =-=?=?= 式中Fet K =0.92(对0.5mm 厚硅钢片) 在对发电机的计算中,k k n b 不计入Fet l 中 本次设计选用的硅钢片型号为:DR530-50对应的老牌号为D22 21.磁极铁心总长度:300m ef l l mm == 22.磁极铁心净长度: 0.953028.5Fem Fem m l K l cm =?=?= 式中Fem K =0.95(对于1 1.5mm ~厚钢片) 23.极距: 1300235.524i D mm p ππτ?=== 24.圆周速度:223.55/1000 f m s τ ν=?= 25.气隙长度: 最小气隙:c K B A ???= δ τ δ)~(30.025.0

三相异步电动机的电磁设计

摘要 Y2系列电机是在Y系列电机基础上更新设计的一般用途电机,它具有结构简单、制造、使用和维护方便,运行可靠,以及重量轻,成本低等优点,在电机噪声、振动水平优于Y系列电机,外观更加满足国内外的用户需求,本文为Y2-112M-2的电磁设计。 在设计过程中,掌握了中小型三相感应电机的设计原理,熟悉相关的技术条件,基于给定的参数结合相关的技术条件,确定与电机的电磁性能有关的尺寸,选择定、转子的槽数和槽配合,确定槽型尺寸,选定有关材料,编程进行电磁计算,结合前面的数据计算出相应的工作性能和起动性能,包括效率、功率因数、最大转矩倍数、起动转矩倍数、起动电流倍数等。为了减小误差和计算量,还在MATLAB中编写了电磁计算程序。此外,本设计还用CAD绘制了定、转子冲片图以及定子绕组分布图,最终使技术指标符合任务书的要求。 通过对电机性能尺寸的确定,以及对槽型的选取,选定了有关尺寸,通过编程的反复调试,使其技术指标符合任务书的要求,最终设计出符合任务书要求的电机。 关键词:Y2-112M-2三相异步电动机;定、转子;电磁设计计算

Abstract Y2 series motors is designed on the basis of Y series motor update general purpose motor. it has a simple structure, convenient manufacture, use and maintenance, reliable operation .as well as light weight, low cost advantages, the motor noise and vibration level is better than that of Y series motor. appearance more meet the needs of users at home and abroad, this paper designed for electromagnetic Y2-112m - 2. In the process of design, master the design principles of small and medium-sized three-phase induction motor, familiar with relevant technical conditions, based on the given parameters combining with related technical conditions, determine the size of the associated with the electromagnetic performance of the motor, \"option, rotor slot number and groove, groove type size ,selected materials programming electromagnetic calculation, Finally, combined with the previous data to calculate the working performance and the corresponding starting performance, including efficiency, power factor, the maximum torque, starting torque, starting current ratio etc. In order to reduce the error and the amount of calculation, prepared electromagnetic calculation program in MATLAB. In addition, the design also drawing, the rotor and the stator , windings distribution prints with CAD. the technical indicators in line with the requirements of specification. To determine the size of the motor performance, as well as to the trough type selection, the selected size, by the repeated debug programming, make the technical indicators meet the requirements of the specification, the final design conform to the requirements of the specification of the motor. Key Words: Y2-112M-2three-phase asynchronous motor, the stator , the rotor Electromagnetic design calculation

永磁同步电机计算

永磁同步电机设计1电机仿真模型 N S N S N S N S (a)原型电机(b)新型电机 图1 PM-Y2-180-4电机整体有限元仿真模型 图2 新型电机转子1/4模型 2静态有限元仿真结果比较 2.1永磁磁场分布 当永磁体单独作用时,两种电机的磁力线分布如图3所示。 (a)原型电机(b)新型电机 图3 两种电机永磁磁场分布

2.2 永磁气隙磁密波形 当永磁体单独作用时,两种电机一个周期范围(即一对永磁体范围)的永磁气隙磁密波形如图4所示。 (a )原型电机 (b )新型电机 50100 150200250300 -1.25 -1-0.75-0.5-0.2500.250.50.7511.25Distance/mm B r /T 原型电机新型电机 (c )两种电机比较 图4 两种电机永磁气隙磁密分布 3 空载稳态有限元仿真结果比较 3.1 空载永磁磁链、空载永磁反电势波形 空载情况下,两种电机的三相绕组电流均设置为零,电机中磁场由永磁体单独产生。设置电机稳态运行转速为n =3000r/min ,可得到两种电机的空载永磁磁链、空载永磁反电势波形分别如图5、图6所示。由于三相绕组对称,在此仅给出A 相绕组仿真结果。

48 121620 -0.6-0.4-0.200.20.4 0.6 时间/ms 空载永磁磁链/W b 原型电机 新型电机 图5 两种电机空载永磁磁链 48 121620 -400 -300-200-1000100200 300400时间/ms 空载反电势/V 原型电机新型电机 图6 两种电机空载永磁反电势 3.2 空载永磁磁链、空载永磁反电势谐波分析 利用Matlab 对图5、图6的波形进行傅里叶分析,可得到两种电机磁链及反电势的各次谐波分量,如图7所示。 23456789101112131415 1 2 3 4 谐波次数 相对于基波分量百分比/% 原型电机 新型电机 23456789101112131415 24681012 谐波次数 相对于基波分量百分比/% 原型电机新型电机 (a )空载永磁磁链 (b )空载永磁反电势 图7 磁链及反电势谐波分量分析 通过对两种电机的空载永磁磁链和空载永磁反电势进行谐波分析,得到以下结论:(1)3次谐波分量是主要谐波分量;(2)偶次谐波分量几乎为零,奇次谐波分量相对较大;(3)采用新型电机结构可在一定程度上削弱3次谐波分量,但同时会引起5、7次谐波分量增加,总体削弱谐波效果并不明显。

三相异步电动机的设计计算

Equation Chapter 2 Section 1. 题目:Y160-M4型三相异步电动机设计 姓名 ___ __ _ __ 学号_ __ __ 年级 ____ _ 专业 _电气工程及其自动化

目录 目录 ......................................................................................................................................... I 摘要 ..............................................................................................................................................II 第一章异步电动机的概述 . (1) 1.1异步电动机的用途及分类 (1) 1-2.定子的结构组成及工作原理 (1) 1.3电机设计的过程 (2) 1.4异步电动机主要性能指标 (3) 第二章电机设计计算准备 (4) 2.1电机主要尺寸,绕组构成和原理 (4) 2.2主磁路 (5) 2.3电抗 (6) 2.4损耗与效率 (7) 2.5通风散热 (8) 2.6电机设计要求 (8) 第三章电机设计计算程序 (11) 3.1额定数据和主要尺寸 .............................................................................. 错误!未定义书签。 3.2磁路计算 .................................................................................................. 错误!未定义书签。 3.3参数的计算 .............................................................................................. 错误!未定义书签。 3.4启动性能的计算 ...................................................................................... 错误!未定义书签。 3.5电机设计的分析比较 .............................................................................. 错误!未定义书签。第四章总结 . (36) 参考文献 (37)

电动机双层叠绕电磁计算的VB程序

Private Sub Command1_Click() End Sub Private Sub Form_Load() Const UN = 380 Const f = 50 Const Z1 = 48 Const Z2 = 44 Const π = 3.14159 Const PN = 18500 Const m1 = 3 Const η1 = 0.90 Const Cosθ = 0.82 Const p = 2 Const b01 = 3.8 Const h01 = 0.8 Const h11 = 1.2 Const b11 = 6.75 Const h21 = 17 Const r21 = 4.47 Const δ = 0.55 Const b02 = 1 Const h02 = 0.5 Const h12 = 3 Const h22 = 28 Const r22 = 1.1 Const b12 = 2.2 Const D1 = 290 Const Di1 = 186 Const Di2 = 70 Const Ns1 = 32 Const a1 = 2 Const Ni1 = 2 Const d11 = 15 Const d111 = 1.18 Const d222 = 1.3 Const Δi = 0.3 Const lt = 200 Const KFe = 0.95 Const β1 = 0.833 Const h = 2 Const KU1 = 0.875 Const KL1 = 0.906

Const ρcu = 8.9 * 10 ^ 3 Const ρFe = 7.8 * 10 ^ 3 Const q = 4 Const ∑s = 0.0055 Const ρcuw = 0.0217 * 10 ^ -6 α = p * 2 * π / Z1 UNθ = UN Ikw = PN / (m1 * UNθ) Zp1 = Z1 / (2 * p) Zp2 = Z2 / (2 * p) D2 = Di1 - 2 * δ η = π * Di1 / (2 * p) t1 = π * Di1 / Z1 t2 = π * D2 / Z2 bsk = t1 Nθ1 = Ns1 * Z1 / (m1 * a1) N1 = Nθ1 / 2 Ac11 = 0.985 hss = h21 + h11 bt111 = π * (Di1 + 2 * h01 + 2 * h11 + 2 * h21) / Z1 - 2 * r21 bt211 = π * (Di1 + 2 * h01 + 2 * h11) / Z1 - b11 bt11 = (bt111 + bt211) / 2 Ass = (2 * r21 + b11) / 2 * (hss - h) + π * r21 ^ 2 / 2 Ai = Δi * (2 * hss + π * r21) Aef = Ass - Ai sf = Ni1 * Ns1 * d222 ^ 2 / Aef lef = lt + 2 * δ lfe = KFe * lt MMM = Sin(q * α / 2) NNN = q * Sin(α / 2) Kd1 = MMM / NNN Kp1 = Sin(π / 2 * β1) kdp1 = Kd1 * Kp1 bt12 = π * (D2 - 2 * 2 / 3 * (h22 + h12 + h02)) / Z2 - b12 kE1 = 0.954 110: E1 = kE1 * UNθ Kss = 1.195 50: Dim kh(8, 1) As Single kh(0, 0) = 1: kh(0, 1) = 1.1095 kh(1, 0) = 1.2: kh(1, 1) = 1.09 kh(2, 0) = 1.5: kh(2, 1) = 1.08 kh(3, 0) = 1.7: kh(3, 1) = 1.072 kh(4, 0) = 2: kh(4, 1) = 1.06 kh(5, 0) = 2.2: kh(5, 1) = 1.057

相关文档
相关文档 最新文档