文档库 最新最全的文档下载
当前位置:文档库 › 3数

3数

3数
3数

小学数学三年级上册期中试卷2014.11

(答卷时间:60分钟)

班级姓名成绩

一、填空(20分)(2×8﹢1×4)

1.12×4﹦()+8 26×3﹦60+()

2.笔算48×7时,先算()×()的积,再算()×()的积,最后把两次所得的积相加。

3.皮球有4个,足球的个数是皮球的6倍。求足球的个数?可以这样想:

()个()是多少,所以用()法计算。

4.今年小明5岁,爸爸35岁。明年爸爸的年龄是小明的()倍。

5.根据24×3×2﹦24×6,105×2×4﹦105×8,那么34×24﹦()。6.2015年有52个星期零1天,这一年有()天。

7.在()里填上﹥、﹤或﹦。

600g()2kg 10千克()10公斤

8.在()里填上合适的计量单位。

一个篮球重580()一只狗重10()

9.一个正方形的周长是8厘米,它的边长是()厘米。

10.根据左下图,拍球的人数是打乒乓的()倍。

11.右上图中的涂色部分表示246,整个图形表示()。

12.小丽想了一个数,这个数与3相乘后得数在380和400之间。这个数可能是()。

二、在正确的答案的括号里打“√”(12分)

13.比1克轻的物品是:

()()()

14.滨江小学准备为6个班分别购买一台同样的饮水机,计划不超过800元钱。可以选择哪款呢?

乐哈哈80元/台()美滋滋125元/台()喜洋洋168元/台()15.积的末尾有两个零的算式是:

205×2()140×6()225×8()

16.选1种可以拼成下面正方形的是:

()()()

17.多少袋这样的奶糖重1斤?

1袋() 5 袋()10袋()

18.在长方形大花坛里。

花坛②的周长比花坛①长。()

花坛①的周长比花坛②长。()

两个花坛的周长一样长。()

三、计算(24分)(8+16)

19.口算

20×4﹦6×50﹦900×3﹦ 4×500﹦

12×4﹦24×3﹦23×4﹦16×5﹦

20.用竖式计算

75×6 8×234 204×5 7×240

四、操作题(10分)(3+2+2+3)

21.在方格纸上画出周长是20厘米的长方形。(每个小方格的边长表示1厘米)

22.画出△的个数是□的3倍。

23.称一称,填一填。

()()24.根据给出的工具,写出测量一片树叶周长的过程。

五、解决实际问题(34分)(6×5+4)

25.湖里有48只灰天鹅。

白天鹅有多少只?灰天鹅

比白天鹅少多少只?

26.王华家到学校的路程是650米,他中午回家吃饭。他每天上学和回家要走多少米?

27.“十一”期间,小滨和爸爸、妈

妈一起到公园游玩。

28.一块长方形菜地,长3米,宽2米。这块菜地的周长有多少米?29.

①提出用加法计算的问题并解答:

②提出用除法计算的问题并解答:

③提出用减法计算的问题并解答:

30.从大正方形中剪出一个长方形(如右图)。剩下的图

形的周长是多少?

数学分析试题库--证明题

数学分析题库(1-22章) 五.证明题 1.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <; (2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 2.设A ,B 是非空数集,记B A S ?=,证明: (1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 3. 按N -ε定义证明 3 52325lim 22=--+∞→n n n n 4.如何用ε-N 方法给出a a n n ≠∞ →lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列. 5.用δε-方法验证: 3) 23(2lim 221-=+--+→x x x x x x . 6. 用M -ε方法验证: 2 11lim 2- =-+-∞ →x x x x . 7 . 设a x x x =→)(lim 0 ?,在0x 某邻域);(10δx U ?内a x ≠)(?,又.)(lim A t f a t =→证明 A x f x x =→))((lim 0 ?. 8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x , (1))(0x U x n ?∈,0x x n →, (2)0010x x x x n n -<-<+,都有A x f n n =∞ →)(lim , 则A x f x x =→)(lim 0 . 9. 证明函数 ? ? ?=为无理数为有理数x , x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.

无穷级数求和问题的几种方法

目录 摘要 (2) 1无穷级数求和问题的几种方法 (2) 1.1利用级数和的定义求和 (2) 1.2利用函数的幂级数展开式求和 (3) 1.3利用逐项求积和逐项求导定理求和 (4) 1.4逐项求极限 (5) 1.5利用Flourier级数求和 (7) 1.6构建微分方程 (9) 1.7拆项法 (9) 1.8将一般项写成某数列相邻项之差 (10) 2总结 (12) 3参考文献 (12)

无穷级数求和问题的几种方法 摘要:无穷级数是数学分析中的一个重要内容,同时无穷级数求和问题,也是学生学习级数过程中较难掌握的部分.然而,无穷级数求和没有一个固定的方法可循.本文结合具体例子,根据无穷级数的不同特点,介绍几种常用的求无穷级数的和的方法和技巧. 关键词:数项级数;幂级数;级数求和 无穷级数是数学分析中的一个重要内容,它是以极限理论为基础,用以表示函数,研究函数的性质以及进行数值计算的一种重要工具.然而数学分析中注重函数的敛散问题,却对无穷级数求和问题的方法介绍的比较少,所以求和问题是学生学习级数过程中较难掌握的部分.无穷级数求和没有一个固定的方法可循.本文结合具体例子,根据不同的无穷级数的不同特点,介绍几种常用的求无穷级数的和的方法和技巧. 1利用级数和的定义求和 定义[1] 若级数1 n n u ∞ =∑的部分和数列{}n S 收敛于有限值S ,即1 l i m l i m n n n n n S u S ∞ →∞ →∞ == =∑, 则称级数1 n n u ∞ =∑收敛,记为1 n n u S ∞ ==∑,此时S 称为级数的和数;若部分和数数列 {}n S 发散,则称级数1 n n u ∞ =∑发散. 例1 求级数()∑∞ =--1 112n n q n ,1≤q 的和 . 解: 2311357(21)n n S q q q n q -=+++++- (1) 2341357(23)(21)n n n qS q q q q n q n q -=+++++-+- (2) (1)-(2)得: 1 1(1)12(21)1n n n q q S q n q q ---=+--- 12 112(21)1(1)1n n n q q S q n q q q --=+----- 2 12lim 1(1)n n q S q q →∞ = +-- 即级数和 2 121(1) q S q q = +--.

华东师范大学2004数学分析试题

华东师范大学2004数学分析试题

华东师范大学2004数学分析 一、(30分)计算题。 1、求 2 1 20)2 (cos lim x x x x -→ 2、若)), sin(arctan 2ln x x e y x +=-求' y . 3、求 ?--dx x xe x 2)1(. 4、求幂级数∑∞ =1 n n nx 的和函数)(x f . 5、 L 为过 ) 0,0(O 和 )0,2 (π A 的曲线 ) 0(sin >=a x a y ,求 ?+++L dy y dx y x . )2()(3 xdx a x da dy x a y cos sin ,sin === 6、求曲面积分??++S zdxdy dydz z x )2(,其中) 10(,22 ≤≤+=z y x z , 取上侧. . 二、(30分)判断题(正确的证明,错误的举出反例) 1、若},,2,1,{ =n x n 是互不相等的非无穷大数列,则} {n x 至少存在一个聚点). ,(0 +∞-∞∈x 2、若)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连 续. 3、若 ) (x f , ) (x g 在] 1,0[上可积,则 ∑?=∞→=-n i n dx x g x f n i g n i f n 1 10)()()1()(1lim .

4、若∑∞=1n n a 收敛,则∑∞ =1 2n n a 收敛. 5、若在 2 R 上定义的函数 ) ,(y x f 存在偏导数 ),(y x f x ,) ,(y x f y 且),(y x f x , ) ,(y x f y 在(0,0)上连续,则),(y x f 在 (0,0)上可微. 6、),(y x f 在2 R 上连续,} ) ()(|),{(),(22 2 r y y x x y x y x D r ≤-+-= 若??=>??r D dxdy y x f r y x ,0),(,0),,(0 0 则.),(,0),(2 R y x y x f ∈= 三、(15分)函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞ → 求证:)(x f 在).,(+∞-∞上有最大值或最小值。 四、(15分)求证不等式:]. 1,0[,122∈+≥x x x 五、设) (x f n , ,2,1=n 在],[b a 上连续,且) (x f n 在],[b a 上一致 收敛于 ) (x f .若 ] ,[b a x ∈?, )(>x f .求证: , 0,>?δN 使 ],[b a x ∈?, N n >,. )(δ>x f n 六、(15分)设}{n a 满足(1); ,2,1,1000 ++=≤≤k k n a a n k (2)级数∑∞ =1 n n a 收敛. 求证:0 lim =∞ →n n na . 七、(15分)若函数)(x f 在),1[+∞上一致连续,求证: x x f )(在),1[+∞上有界. 八、(15分)设),,(),,,(),,,(z y x R z y x Q z y x P 在3 R 有连续偏导数,而且对以任意点) ,(00, 0z y x 为中心,以任意正数r 为半径的上半球面, ,)()()(:02202020z z r z z y y x x S r ≥=-+-+-

数学分析试题集锦

June21,2006 2002 1.(10) lim x→0( sin x1?cos x . 2.(10)a≥0x1=√2+x n n=1,2,... lim n→∞ x n 3.(10)f(x)[a,a+α]x∈[a,a+α]f(x+α)?f(x)= 1 1?x2+arcsin x f′(x). 5.(10)u(x,y)u ?2u ?x?y + ?2u x2+y2dx dy dz,?z=

x2+y2+z2=az(a>0) 8.(10) ∞ n=1ln cos1 ln(1+x2) 2 √ (2).{n . ?x (4). L(e y+x)dx+(xe y?2y)dy.L O(0,0),A(0,1),B(1,2) O B OAB. √ 2.(15)f(x)=3

4. 15 f (x )[0,1] sup 01 | n ?1 i =0 f (i n ? 1 f (x )dx |≤ M a n 6.(15 ) θ θ(x )= +∞ n =?∞ e n 2 x x >0 7.(15 ) F (α)= +∞ 1 arctan αx x 2?1 dx ?∞<α>+∞ 8.(21 ) R r r 2004 1.( 6 30 ) (1).lim n →?∞ ( 1 n +2 +...+ 1 f (x ) ) 1 3 sin(y 1+n

(5).e x=1+x+x2 n1 4≤e x+y?2. 5.(12)F(x)= Γf(xyz)dxdydy,f V={(x,y,z)|0≤x≤t,0≤y≤t,0≤z≤t}(t>0), F′(t)=3 a+n √ 2 n(a>0,b>0) (2).lim n→∞ 10x n√ 2 0dx 3 . (5).F(t)= x2+y2+z2=t2f(x,y,z)dS, f(x,y,z)= x2+y2,z≥ x2+y2

级数求和的常用方法

四川师范大学本科毕业论文级数求和的常用方法 学生姓名刘学江 院系名称数学与软件科学学院 专业名称数学与应用数学 班级2008级01班 学号2008060122 指导教师李红梅 完成时间2012年4月30日

级数求和的常用方法 学生姓名:刘学江指导老师:李红梅内容摘要:级数在数值计算中有广泛的运用,级数首先要考虑其收敛性, 在收敛级数中寻求可求和的方法.但在国内很多教材或其它数学书籍中没有专门的板块涉及级数求和的内容,即使是国内权威数学分析教材也只是作了级数逼近的工作.力求寻求级数求和的常用方法加以总结提炼,揭开级数和的神秘面纱.本文整体布局可分为部分:一、数项级数求和的常用方法二、函数项级数求和的常用方法.由于级数的敛散性是分析级数求和的先导,但是本文重在于讨论级数求和,所以级数敛散性内容讨论从简,且本文涉及的级数均收敛.在借鉴国内外优秀数学书籍的基础上,选取一些典型题目加以分析,使每一种方法尽可能以事实形式呈现出一种“方法技巧的实战运用”景象,在实例中说明方法,用实例体会方法. 关键词:级数求和数项级数求和函数项级数求和 Common Methods of Summing of Series Abstract: Series widely used in the numerical calculation, the series must first consider its convergence, covergent series for the sum mability method.In many textbooks or other mathematical books for the summation of our national content, even if the domestic authority of mathematical analysis textbooks just made a series approximation .Under the guidance of the teachers Honmei Li, and strike to seek the summation of the commonly used method to sum up refining, opened the mystery of series The overall of this article can be divided into two parts: several summation of commonly used methods,common methods summation for funtional sreies, series summation’s theory,The convergence and divergence of the series is the summation anlysis of the pilot,but important point is to discuss the summation, so the convergence of the series discussion is simple in this text. Based on excellent books from home and abroad ,every method for series summation show the fact that “method of skill in actual use” scene as far as possible. Keywords:sum of series sum of numerial series sum of function series

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

数学分析 数项级数

第十二章数项级数 教学目的:1.明确认识级数是研究函数的一个重要工具;2.明确认识无穷级数的收敛问题是如何化归为部分和数列收敛问题的;3.理解并掌握收敛的几种判别法,记住一些特殊而常用的级数收敛判别法及敛散性。 教学重点难点:本章的重点是级数敛散性的概念和正项级数敛散性的判别;难点是一般级数敛散性的判别法。 教学时数:18学时 § 1 级数的收敛性 一.概念: 1.级数:级数,无穷级数 ; 通项 ( 一般项 , 第项 ), 前项部分和等概念 ( 与中学的有关概念联系 ). 级数常简记为 . 2.级数的敛散性与和 : 介绍从有限和入手, 引出无限和的极限思 想 . 以在中学学过的无穷等比级数为蓝本 , 定义敛散性、级数的 和、余和以及求和等概念 . 例1讨论几何级数的敛散性.(这是一个重要例题!)解时, . 级数收敛 ; 时, 级数发散 ;

时, , , 级数发散 ; 时, , , 级数发散 . ( 注意从 综上, 几何级数当且仅当时收敛, 且和为 0开始 ). 例2讨论级数的敛散性. 解(利用拆项求和的方法) 例3讨论级数的敛散性. 解设, , = , . , . 例4 讨论级数的敛散性.

解, . 级数发散. 3.级数与数列的关系 : }, 收敛 {}收敛; 对应部分和数列{ }, 对应级数, 对该级数, 有=. 对每个数列{ }收敛级数收敛. 于是,数列{ 可见 , 级数与数列是同一问题的两种不同形式 . 4. 级数与无穷积分的关系 : , 其中. 无穷积分可化为级数 ; 对每个级数, 定义函数 , 易见有 =.即级数可化为无穷积分. 综上所述 , 级数和无穷积分可以互化 , 它们有平行的理论和结果 . 可以用其中的一个研究另一个 . 级数收敛的充要条件——Cauchy准则:把部分和数列{} 二. 收敛的Cauchy准则翻译成级数的语言,就得到级数收敛的Cauchy准则 . 和N, Th ( Cauchy准则 ) 收敛

距离控制原理

艾默生EV3100距离控制原理 可编程序控制器(PLC)与变频(VVVF)调速技术相结合的电梯控制系统,以其运行可靠、使用维修方便、抗干扰性强、调速性能优等特点被中小型电梯厂家广泛采用。此类系统对电梯运行曲线的控制大多采用速度端子组合的多段速控制方式输出固定的电梯运行曲线,电梯平层之前均有慢速爬行的过程。 国际电梯业巨头多采用自行研发的电梯专用控制器,采用距离控制的直接停靠方式。而PLC 因其自身编程指令及程序扫描时间的限制,很难编制距离控制的程序。艾默生CT推出的EV3100电梯专用变频器,不仅具备通用变频器的调速功能及普通的电梯专用功能。独有的层高数据寄存器,通过参数设置即可实现距离控制。 2距离控制的基本原理 传统的给定减速距离的控制方式的运行曲线如图1所示[1],x轴为电梯运行过程的时间、y 轴为运行速度。当电梯接收到系统的启动信号后,系统加速到额定速度以后,匀速运行,当系统收到减速信号后开始减速,到达门区后开始爬行,至平层后停止。整个运行曲线表现为S型。 图1 给定减速距离的运行曲线 上述运行曲线是由控制系统预先设定好的,一般额定速度为1m/s的时候运行单条曲线,速度为1.5m/s的时候运行两条曲线。而由控制系统根据停车距离自动生成电梯运行曲线的控制方式一般称之为“距离控制”,其运行曲线如图2所示。

图2 距离控制运行曲线 3控制系统硬件设计 3.1控制系统组成 图3 系统组成 由图3可知,该系统主要由以下几部分组成:PLC、变频器、曳引机、门机等。PLC是控制系统的核心。[2]PLC根据输入的呼梯信号和目前电梯所处的位置自动确定电梯的运行方向及速度,变频器根据PLC的速度指令控制曳引电动机的转速,到达目的层后,自动平层、停车、开关门,在运行过程中输出电梯的楼层位置和运行方向,同时完成对呼梯信号的登记、保存和消除等工作。对电梯运行中的一些特殊情况(如急停、超载、冲顶、蹲底等)自动进行处理和报警。 3.2硬件选型 以一栋15层大楼为例,其电梯控制系统实际需要输入60点,输出62点。选用三菱公司的FX2N-128MR型PLC。这种机型有编程指令100多条,内置8K步RAM寄存器,并配有相应的编程软件GX Developer,不仅可以通过手持编程器对PLC编程,也可在个人PC机上进行编程[3]。在电梯运行过程中,可通过程序内部辅助继电器的状态监控电梯运行状态,现场调试十分方便。

数分试卷

浙江工业大学数学分析(二)期末试卷(A)09-06 班级 学号 姓名 成绩 一、填空题(21%) 1、封闭曲线θ3cos =r ??? ??≤≤-66 πθπ所围的面积是 。 2、反常积分? ∞++02312cos dx x x 是条件收敛还是绝对收敛?答: 。 3、级数ln 1 12n n ∞=∑是收敛还是发散?答: 。 4、幂级数1 (1)2n n x n ∞=-∑的收敛域为 。 5、设)(x f 是以π2为周期的周期函数,在[)ππ,-上22)(x x f -=π,则其Fourier 级数的和函数)(x S 在π27处的值72S π??= ??? 。 6、设()22y x f z -=,其中f 可导,则=??+??y z x x z y 。 7、函数 xyz z xy u -+=32在点)1,1,1(处的梯度为________________;在点)1,1,1(处沿 方向}2,1,0{=l 的方向导数为________________。 二、选择题(16%) 1、若),(y x f z =于点()00,y x 处可微,则下列结论错误的是 ( ) (A )),(y x f 于点()00,y x 处连续; (B) ),(),,(y x f y x f y x 于点()00,y x 处连续; (C ) ),(),,(y x f y x f y x 于点()00,y x 处存在; (D) 曲面),(y x f z =在()),(,,0000y x f y x 处有切平面。 2、二重极限与累次极限之间的关系正确的是 ( ) (A)若二重极限存在,则两个累次极限均存在且相等; (B)若二重极限存在,且其中一个累次极限存在,则另一累次极限存在; (C)若累次极限均存在但不相等,则重极限必不存在;

论级数求和的解题策略开题报告

论级数求和的解题策略开题报告 开题报告 论级数求和的解题策略 一、选题的背景、意义 级数理论是数学研究的重要对象,它不但在日常的生产、生活中都有广泛的应用,而且还是研究函数性质进行数值计算的有力工具。其中级数求和是级数理论的基本问题之一,也是较难解决的问题,因为除等比级数、等差级数等一些常见的特殊级数外,一般级数都难以求出它的部分和,所以级数求和的方法比较灵活,技巧性也比较强,因此懂得一些解题策略和掌握一些解题方法也就显得尤为重要。 无穷级数出现的很早,往往都是出现在对个别问题的研究中。到了中世纪,无穷级数引起了当时哲学家与数学家的兴趣。17世纪微积分诞生之后,无穷级数作为一种工具在数学的前进中起到了巨大的推动作用。为了把早期的微积分方法应用于超越函数,常常需要把这些函数表示为可以逐项微分或积分的无穷级数,泰勒定理为此做出了贡献。将函数展成无穷级数之后,人们又在考虑这个问题的逆问题,即级数的求和问题[1]。 现今数学理论的学习与研究中,无穷级数也是一个有效工具,无穷级数求和更是一块重要内容,它促使数学家在数学发展上进行大胆的尝试,虽然产生许多悖论,但使数学产生了很多分支,丰富了数学理论的发展。经过历史的研究与发展,结合历史上大量数学家的研究理论与所得结论。当今学者还对级数问题与级

数求和问题都做出了深入的考察与进一步的探究,创造性地提出了许多级数求和的策略与方法。此外,发散级数在天文、物理上的广泛应用,推动了人类发展的进步。 二、研究的基本内容与拟解决的主要问题 本课题尝试对级数求和问题策略方法及理论逻辑进行归纳梳理,并通过深入理解、构造、举例……从多方面、各角度对各类级数求和的思维转化策略及问题转化的技巧作出大胆的研究和探索。 (一)、利用收敛定义求数项级数的和: 由级数收敛定义,若数项级数的部分数列收敛于(即),则称数项级数收敛,称为数项级数的和(即)[2] 其要点即求部分和,而求的方法有: 1、形如的数项级数可用待定系数法(即交差相消法)来求[3]; 2、当求较困难时,可用先求和(为适当系数)的分项相减法(即错位相减法)来求[3]; 3、利用熟悉的等差、等比数列及三角公式等来求[4]。 (二)、利用幂级数求数项级数的和: 找一个适当的幂级数,使收敛域内某一点对应的数项级数恰好为所要求的数项级数,因此可以借助幂级数的和函数求数项级数的和, 即求出幂级数的和函数,则有[5]。 (三)、利用傅里叶级数求数项级数的和: 1、将函数展开成傅里叶级数; 2、将函数经奇(偶)延拓后展开成正弦(余弦)级数,

数分试卷

诚信应考,考试作弊将带来严重后果! 华南理工大学期末考试 《数学分析》(三)期末考试试卷 注意事项:1. 考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上; 3.考试形式:闭卷; 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 2. 设(),()y y x z z x =??=? 是由方程组(), (,,)0z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-===(假设出现的导数皆连续). 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 5. 设3 2 2()y x y y F y e dx -=?,计算()F y '. 6. 求曲线2 22222x y xy a b c ??+= ???所围的面积,其中常数,,0a b c >. 7. 计算曲线积分352L zdx xdy ydz +-?,其中L 是圆柱面221x y +=与平面 3z y =+的交线(为一椭圆),从z 轴的正向看去,是逆时针方向. 8. 计算积分S yzdzdx ??,S 为椭球面222 2221x y z a b c ++=的上半部分的下侧. 二. 证明题(共3题,共28分)。 9.(9分) 讨论函数3 2224 22,0(,)0,0 xy x y x y f x y x y ?+≠?+=??+=? 在原点(0,0)处的连续性、

数项级数和函数项级数及其收敛性的判定

学号 数项级数和函数项级数及其收敛性的判定 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 姓名: 指导教师: 2012年5月

数项级数和函数项级数及其收敛性的判定 摘要 本文主要对数项级数中的正项级数与函数项级数收敛性判定进行研究,总结了正项级数和函数项级数一致收敛的部分判别法,并且介绍两种特别判别法:导数判别法和对数判别法。 关键词:数项级数;正项级数;函数项级数;一致收敛性;导数判别法;对数判别法. Several series and Function of series and the judgment of their convergence Abstract In this paper, the author mainly discusses two series: Several series of positive series and Function of series. Summarizing the positive series and function of the part of the uniform convergence series discriminant method .And it presents two special discriminant method: derivative discriminant method and logarithmic discriminant method. Keywords Several series; Positive series; Function of series; uniform convergence; derivative discriminant method; logarithmic discriminant method 前 言 在数学分析中,数项级数和函数级数是全部级数理论的基础,而且数项级数中的正项级数和函数级数是基本的,同时也是十分重要的两类级数。判别正项级数和函数级数的敛散性是研究级数的主要问题,并且在实际中的应用也比较广泛,如正项级数的求和问题等。所以探讨正项级数和函数级数敛散性的判别法对于研究级数以及对于整个数学分析的学习与理解都有重要的作用。 1 正项级数及其收敛性 一系列无穷多个数123,,,,, n u u u u 写成和式 123n u u u u +++ + 就称为无穷级数,记为1 n n u ∞ =∑。如果()0,1,2,3, n u n ≥=,那么无穷级数1 n n u ∞ =∑,就称为正项 级数。

数学分析试题及答案解析

2014 —--2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ) . 2.若()()x g x f ,为连续函数,则()()()[]()[] ????= dx x g dx x f dx x g x f ( ). 3. 若()? +∞a dx x f 绝对收敛,()? +∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( )。 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I上内闭一致收敛( )。 6。 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发 散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C .可微 D 。不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不

相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C 。 ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D 。 ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D . 不确定 4。设∑n u 为任一项级数,则下列说法正确的是( ) A .若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B 。 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C . 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D 。 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A 。 ∑n n x a 在收敛区间上各点是绝对收敛的; B . ∑n n x a 在收敛域上各点是绝对收敛的; C . ∑n n x a 的和函数在收敛域上各点存在各阶导数;

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数项级数经典例题大全 (1)

第十二章 数项级数 1 讨论几何级数 ∑∞ =0n n q 的敛散性. 解 当1||q 时, , =n S 级数发散 ; 当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(12 1 -+= , ) (∞→n , 级数发散 . 综上, 几何级数 ∑∞ =0 n n q 当且仅当 1||

4、 讨论级数∑ ∞ =-1352n n n 的敛散性. 解 5 2 , 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散. 5、 证明2-p 级数 ∑∞ =121 n n 收敛 . 证 显然满足收敛的必要条件.令 21 n u n = , 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p k p k p n n n n p n n k n k n k n u u u 112 2 1 ,1 11) )(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 | ∑=+p k k n u 1 |不失真地放大成只含n 而不含p 的式子, 令其小于ε,确定N . 6、 判断级数∑∞ =1 1 s i n n n n 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要 条件) 7、 证明调和级数∑ ∞ =11n n 发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n n n ln 1 1 211 )1ln(+<+++ <+ . 即得+∞→n S ,) (∞→n . ) 注: 此例为0→n u 但级数发散的例子. 8、 考查级数 ∑∞ =+-1 2 11 n n n 的敛散性 . 解 有 , 2 11 012222n n n n n <+-?>+- 9、 判断级数 ()() +-+??-+??++????+??+)1(41951)1(32852951852515212n n

数据分析测试题

2017-2018学年度莘县翰林学校 数学试卷 满分120分;考试时间:100分钟 一、单选题36分 1.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩x及其方差S2如下表所示: 如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是() A. 甲 B. 乙 C. 丙 D. 丁 2.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和众数分别是() A. 94分,96分 B. 96分,96分 C. 96分,98分 D. 96分,94分3.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( ) A. 最高分 B. 平均数 C. 中位数 D. 方差 4.下列说法正确的是( ) A. 中位数就是一组数据中最中间的一个数 B. 8,9,9,10,10,11这组数据的众数是10 C. 如果x1,x2,x3的方差是1,那么2x1,2x2,2x3的方差是4 D. 为了了解生产的一批节能灯的使用寿命,应选择全面调查 5.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是() A. 3,2 B. 3,4 C. 5,2 D. 5,4 6.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表: 关于这15名同学所捐款的数额,下列说法正确的是() A. 众数是100 B. 平均数是30 C. 极差是20 D. 中位数是20 7.九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是()

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

相关文档
相关文档 最新文档