文档库 最新最全的文档下载
当前位置:文档库 › 折射率与介电常数之间的关系

折射率与介电常数之间的关系

折射率与介电常数之间的关系
折射率与介电常数之间的关系

折射率与介电常数之间的关系

1 可见光和金属间的相互作用

可见光入射金属时,其能是可被金属表层吸收,而激发自由电子,使之具有较高的能态。当电子由高能态回到较低能态时,发射光子。金属是不透光的,故吸收现象只发生在金属的厚约 100nm 的表层内,也即金属片在 100nm 以下时,才是“ 透明” 的。只有短波长的X -射线和γ -射线等能穿过一定厚度的金属。所以,金属和可见光间的作用主要是反射,从而产生金属的光泽。

2 可见光和非金属间的作用

1) 折射

当光线以一定角度入射透光材料时,发生弯折的现象就是折射

( Refraction ),折射指数n 的定义是:

光从真空进入较致密的材料时,其速度降低。光在真空和材料中的速度之比即为材料的折射率。

如果光从材料 1 ,通过界面进入材料 2 时,与界面法向所形成的入射角、折射角与材料的折射率、有下述关系:

介质的折射率是永远大于 1 的正数。如空气的 n=1.0003 ,固体氧化物 n=1.3 ~ 2.7 ,硅酸盐玻璃 n=1.5 ~ 1.9 。不同组成、不同结构的介质,其折射率不同。

影响 n 值的因素有下列四方面:

a) 构成材料元素的离子半径

根据 Maxwell 电磁波理论,光在介质中的传播速度应为:

μ 为介质的导磁率, c 为真空中的光速,ε 为介质的介电常数,由此可得:

在无机材料这样的电介质中,μ = 1 ,故有

说明介质的折射率随其介电常数的增大而增大。而介电常数则与介质极化有关。由于电磁辐射和原子的电子体系的相互作用,光波被减速了。

当离子半径增大时,其介电常数也增大,因而 n 也随之增大。因此,可以用大离子得到高折射率的材料,如 PbS 的 n=3.912 ,用小离子得到低折射率的材料,如 SiCl 4 的 n=1.412 。

b) 材料的结构、晶型和非晶态

折射率还和离子的排列密切相关,各向同性的材料,如非晶态(无定型体)和立方晶体时,只有一个折射率 (n 0 ) 。而光进入非均质介质时,一般都要分为振动方向相互垂直、传播速度不等的两个波,它们分别有两条折射光线,构成所谓的双折射。这两条折射光线,平行于入射面的光线的折射率,称为常光折射率 (n 0 ) ,不论入射光的入射角如何变化,它始终为一常数,服从折射定律。另一条垂直于入射面的光线所构成的折射率,随入射光的方向而变化,称为非常光折射率 (n e ) ,它不遵守折射定律。当光沿晶体光轴方向入射时,只有 n 0 存在,与光轴方向垂直入射时, n e 达最大值,此值为材料的特性。

规律:沿着晶体密堆积程度较大的方向 n e 较大。

c) 材料所受的内应力

有内应力的透明材料,垂直于受拉主应力方向的 n 大,平行于受拉主应力方向的 n 小(提问:为什么?)。

规律:材料中粒子越致密,折射率越大。

d) 同质异构体

在同质异构材料中,高温时的晶型折射率较低,低温时存在的晶型折射率较高。例如,常温下,石英玻璃的 n=1.46 ,石英晶体的 n=1.55 ;高温时的鳞石英的 n=1.47 ;方石英的 n=1.49 ,至于说普通钠钙硅酸盐玻璃的 n=1.51 ,它比石英的折射率小。提高玻璃折射率的有效措施是掺入铅和钡的氧化物。例如,含 PbO90%( 体积 ) 的铅玻璃 n=2.1 。作业:下表列出了常用非金属材料的折射率,试对照上述所介绍影响折射率的因素,分析其变化规律。你还可找些数据来补充该表吗?

表部分非金属材料的折射率

材料折射率双折射材料折射率双折射

玻璃正长石 (KalSi 3 O

8 ) 组成

1.51 钠钙硅玻璃 1.51-1.52 钠长石 (NaAlSi 3

O 8 ) 组成

1.49 硼硅酸玻璃 1.47

由霞石正长出组成1.50

重燧石光学

玻璃

1.6—1.7 石英玻璃 1.458 铅玻璃

2.60

高硼硅酸盐玻璃

(SiO 2 90%)

1.458 硫化钾玻璃

2.66

体四氯化硅 1.412

金红石 TiO

2

2.71 0.287

氟化锂 1.392 碳化硅 2.68 0.043 氟化钠 1.326 氧化铅 2.61

氟化钙 1.434 硫化铅 3.912

刚玉 (Al 2 O 3 ) 1.76 0.008

方解石 CaCO

3

1.65 0.17 方镁石 (MgO) 1.74 硅 3.49

石英 1.55 0.009 碲化镉 2.74

尖晶石 MgAl 2 O 4 1.72 硫化镉 2.50

锆英石 ZrSiO 4 1.95 0.055 钛酸锶 2.49

正长石 KalSi 3 O

8

1.525 0.007 铌酸锂

2.31

钠长石 NaAlSi 3 O

8

1.529 0.008 氧化钇 1.92

钙长石 CaAl 2 Si

2 O 8

1.585 0.008 硒化锌

2.62

硅线石 Al 2 O

3 .SiO 2

1.65 0.021 钛酸钡

2.40

莫来石 3Al 2 O

3 .2SiO 2

1.64 0.010

有机材聚氯乙烯 1.54-1.55 聚氟乙烯 1.35-1.38 环氧树脂 1.55-1.60 尼龙 66 1.53

2) 色散

材料折射率随入射光频率的减小 ( 或波长增加 ) 而减小的性质,称为折射率的色散。图中表示出了几种材料的色散,色散值就可直接从图中确定。

在给定入射光波长的情况下,材料的色散为:

色散值也可用固定波长下的折射率来表达,而不是去确定完整的色散曲线。最常用的数值是倒数相对色散,即色散系数:

式中 n D 、 n F 和 n C 分别以钠的 D 谱线、氢的 F 谱线 (5893? 、4861? 和 6563?) 为光源,测得的折射率。描述光学玻璃的色散还用平均色散 (=n F -n C ) 。由于光学玻璃或多或少都具有色散现象,因而使用这种材料制成的单片透镜,在自然光透过下,成像不够清晰,在像的周围环绕了一圈色带。用不同牌号的光学玻璃,分别磨成凸透镜和凹透镜,组成复合镜头,就可以消除色差,相应的镜头叫消色差镜头。

几种晶体和玻璃的色散

3) 反射

光线入射透光材料时,只有部分光被反射,部分光透过介质并产生折射。反射系数或反射率:

显然,高折射指数的材料反射光线的能力也高。对于反射镜类器件而言,要求反射率高,而像显微镜和相机镜片这样的透镜,则既要求有较高的折射率,又要求有较低的反射率,通常采用在光学玻璃表面镀一层厚度等于光波长 1/4 的低R 值的薄膜材料,如 MgF 2 。这样,它和玻璃界面上的二次反射与薄膜表面的一次反射正好相位相反,相互抵消,从而达到消除或减少反射的目的。

图玻璃镜片镀膜减少镜片的反射

由于反射,使得透过部分的光强度减弱。设光的总能量流 W 为: W =W' +W”

W 、 W' 、W” 分别为单位时间通过单位面积的入射光、反射光和折射光的能量流,根据波动理论: W∝A 2 υS

由于反射波的传播速度及横截面积都与入射波相同,所以:

A 、 A' 分别为反射波、入射波的振幅。把光波振动分为垂直于入射面的振动和平行于入射面的振动, Fresnel 推导出:

自然光在各方向振动的机会均等,可以认为一半能量属于同入射面平行的振动,另一半属于同入射面垂直的振动,所以总的能量流之比为:

当角度很小时,即垂直入射:

因介质 2 对于介质 1 的相对折射率,故:

m 称为反射系数,根据能量守恒定律:

W = W' +W”

(1 - m) 称为透射系数。在垂直入射的情况下,光在界面上的反射的多少取决于两种介质的相对折射率 n 21 。

如果介质1为空气,可以认为 n 1 =1, 则 n 21 =n 2 。如果 .n 1 和n 2 相差很大,那么界面反射损失就严重;如果 n 1 =n 2 ,则 m=0 ,因此,在垂直入射的情况下,几乎没有反射损失。

例:设一块折射率 n=1.5 的玻璃,若光反射损失为 m=0.04 。试分析其反射率与透光率的关系。

解:显然,只考虑一次透过时,透过部分为 1-m=0.96 。

如果透射光又从另一界面射入空气,即透过两个界面,此时透过部分为(1-m) 2 =0.922 。

如果连续透过 x 块平板玻璃,则透过部分应为 (1-m) 2x 。

由于陶瓷、玻璃等材料的折射率较空气的大,所以反射损失严重。如果透镜系统由许多块玻璃组成,则反射损失更可观。为了减小这种界面损失,常常采用折射率和玻璃相近的胶将它们粘起来,这样,除了最外和最内的表面是玻璃和空气的相对折射率外,内部各界面都是玻璃和胶的较小的相对折射率,从而大大减小了界面的反射损失。

负折射率

负折射率(介电常数和磁导率同时为负)的问题是近年来国际上非常活跃的一个研究领域。当电磁波在负折射率材料中传播时,电场、磁场和波矢三者构成左手螺旋关系,因而负折射率材料又称为左手性材料(left-handed materials)。Veselago 1968 年首次在理论设想了左手性材料.Pendry 在1996 年与1999 年分别指出可以用细金属导线及有缝谐振环阵列构造介电常数和磁导率同时为负的人工媒质。2001 年,Smith 等人沿用Pendry 的方法,构造出了介电常数与磁导率同时为负的人工媒质,并首次通过实验观察到了微波波段的电磁波通过这种人工媒质与空气的交界面时发生的负折射现象。尽管初期人们对Smith 等人的实验有许多争论,但2003 年以来更为仔细的实验均证实了负折射现象。

产生负折射率现象有两类材料。一类材料是由于局域共振机制导致介电常数和磁导率同时为负,既材料具有有效的负折射率。这类材料又被称为特异材料(Metamaterials).Smith 等人的有缝谐振环阵列就属于特异材料。但是有缝谐振环阵列结构具有较大的损耗和较窄的负折射带宽,在应用中会受到许多限制。另一类材料是光子晶体,其本身并不具有有效的负折射率,但在某些特殊情况下光子能带的复杂色散关系会导致负折射现象。在光子晶体中,电磁波在周期结构中的Bragg散射机制起着主要作用。尽管局域共振机制和非局域的Bragg 散射机制都会产生负折射现象,但两种机制各有特点。对于Bragg 机制,人们已经了解的较为清楚,通过合适的光子晶体结构选取以及光子能带设计,可以得到所需的负折射通带。但Bragg 机制要求周期结构的晶格常数要与能隙的电磁波波长相比拟,对微波波段将导致结构过大从而限制器件应用。另外,由于Bragg 机制的非局域性,它对周期性结构的不完整性(如存在结构无序和缺陷)较为敏感。与Bragg 机制相反,局域共振机制不要求周期结构的晶格常数要与能隙的电磁波波长相比拟,而且对无序和缺陷不敏感。但目前人们对利用局域共振机制设计负折射率材料的一些关键问题了解不够,例如如何增大负折射通带带宽、减小损耗等。提出另一种制备特异材料的方法,该方法利用在微波传输线中周期性加载集总电感-电容共振单元来实现有效负折射率。与Smith 等人的有缝谐振环阵列结构比较,周期性集总电感-电容共振结构不仅具有较小的损耗和较宽的负折射带宽,而且容易实现外场调控。

在负折射率材料中,电磁波的相速度(波矢方向)与群速度(波印廷矢量方向)的传播方向相反,很多物理现象,诸如斯涅耳折射、多普勒频移、切仑科夫辐射、甚至光压等都要倒逆过来。突破衍射极限的平面成像是负折射率材料的一个重要应用,这方面的研究引起人们极大兴趣。由于负折射材料在基础研究及应

用方面的重要意义,它被美国《科学》杂志列为2003 年十大重大突破之一。有关负折射率材料的研究目前正在从深度和广度两个不同的层面迅速展开,许多新奇的理论与实验结果不断出现。以下仅列举与本申请书相关的3 个方面新进展。(1)有关光子在负折射率材料界面与表面的奇异传播行为。的数值模拟结果发现,光子从正折射率材料向负折射率材料传播时,在界面上反射光与折射光并不是同时出现,而是反射光先出现,折射光经过一个称之为“电容充电”过程后再出现。类似的“电容充电”在光子势垒隧穿过程中也存在,但两者之间的是否有联系目前不清楚。(2)有关含负折射率材料光子晶体的奇异输运行为发现,由正、负折射率材料组成的一维光子晶体中存在零平均折射率(0 =n )能隙。该能隙不同于通常的Bragg 能隙,即能隙的位置与晶格大小无关而且无序的影响很小。这方面的研究工作很活跃,将会拓宽人们对复杂人工结构中光子输运行为的认识。(3)利用局域共振机制设计负折射率材料。现有的负折射率材料是建立在局域共振导致介电常数和磁导率同时为负(又被成为双负性材料)的基础上,提出一种新的机制来形成负折射率材料,即利用介电常数为正而磁导率为负(或介电常数为负而磁导率为正)的单负性材料的交替周期性结构来实现有效负折射率。最近的研究表明特殊周期性集总电感-电容共振结构可以实现单负性材料,这方面的研究不仅使得负折射率材料的实现方式更为多样化,而且将加深人们对形成负折射率机制的认识。

介电常数

介电常数 求助编辑 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permittivity),又称诱电率。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。 目录 编辑本段简介 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为相对介电常数(permittivity),又称相对电容率,以εr表示。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*e-12,F/m。 一个电容板中充入介电常数为ε的物质后电容变大ε倍。 介电常数 电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 相对介电常数εr可以用静电场用如下方式测量:首先在其两块极板之间为空气的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后侧得电容Cx。然后相对介电常数可以用下式计算εr=Cx/C0

编辑本段相关解释 "介电常数" 在工具书中的解释 1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。介电常数愈小绝缘性愈好。空气和CS2的ε值分别为1.0006和 2.6左右,而水的ε值特别大,10℃时为 8 3.83,与温度t的关系是 介电常数 查看全文 2.介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。介电常数用ε表示,一些常用溶剂的介电常数见下表: "介电常数" 在学术文献中的解释

测量磁导率

一、测量磁导率 一.实验目的:测量介质中的磁导率大小 二.实验器材:DH4512型霍尔效应实验仪和测试仪一套,线圈一副(N匝)万用表一个三.实验步骤 1. 测量并计算磁场强度H ○1测量线圈周长L。 ○2线圈通电,测的线圈中的电流为I0,则总的电流为I M=N ?I0 ○3由磁介质安培环路定理的积分形式可知:∮c H ?dl=I故H ?L= N ?I0,H=(N ?I0)/L. 2.测量并计算磁感应强度B——利用霍尔效应实验 ○1实验原理: 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如下图1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X 正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按平均速度,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: f L=-e B 式中:e 为电子电量,为电子漂移平均速度,B为磁感应强度。 同时,电场作用于电子的力为:f l E

介电常数

液体与固体介电常数的测量 实验目的: 运用比较法粗测固体电介质的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。 实验原理: 介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,ε0为真空介电常数,m F /10 85.812 0-?=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1 kHz 时的电容量C 。 比较法: 比较法的电路图如下图所示。此时电路测量精度与标准电容箱的精度密切相关。实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。 图一:比较法电路图

谐振法: 1、交流谐振电路: 在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由振荡。若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。RLC 串联谐振电路如下图所示 : 图二:RLC 串联谐振电路 其中电源和电阻两端接双踪示波器。 RLC 串联电路中电压矢量如图三所示。 图三:电阻R 、电容C 和电感L 的电压矢量图 电路总阻抗:Z == L V →-R V →

回路电流:V I Z == 电流与信号源电压之间的位相差:1arctan i L C R ωω???- ?=- ? ??? 在以上三个式子中,信号源角频率 2f ωπ=,容抗1 C Z C ω= ,感抗L Z L ω=。?i <0,表示电流位相落后于信号源电压位相;?i >0,则表示电流位相超前。各参数随ω变化的趋势如右图所示。 ω很小时,电路总阻抗Z → ?i →π/2,电流的位相超前于信号源电压位相,整个电路呈容性。ω很大时,电路总阻抗Z →, ?i →- π/2 ,电流位相滞后于信号源电压位相,整个电路呈感性。当容抗等于感抗时,容抗感抗互相抵消,电路总阻抗Z=R,为最小值,而此时回路电流则成为最大值I max = V i /R ,位相差?i =0,整个电路呈阻性,这个现象即为谐振现象。发生谐振时的频率f 0称为谐振频率,此时的角频率ω0即为谐振角频率,它们之间的关系为: 0002f ωωωπ== == 找到RLC 串联电路的谐振频率,如果已知L 的值, 就可以得出C 的大小。

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用 Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1. 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用 下,构成电介质材料的内部微观粒子, 如原子, 离子和分子这些微观粒子的正负 电荷中心发生分离, 并沿着外部电场的方向在一定的范围内做短距离移动, 从而 形成偶极子的过程。 极化现象和频率密切相关, 在特定的的频率范围主要有四种 15 极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization , 1011~1012Hz)和 空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电 子位移极化和离子位移极化。 而松弛极化与质点的热运动密切相关, 极化的建立 需要消耗一定的时间, 也通常伴随有能量的消耗, 如电子松弛极化和离子松弛极 化。 相对介电常数( ε),简称为介电常数,是表征电介质材料介电性能的最重 要的基本参数,它反映了电介质材料在电场作用下的极化程度。 ε的数值等于以 该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器 的电容量之比值。表达式如下: 式中 C 为含有电介质材料的电容器的电容量; C 0 为相同情况下真空电容器的电 容量;A 为电极极板面积; d 为电极间距离; ε0 为真空介电常数, 等于 8.85 ×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗, 一般用损耗角的正切 tan δ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应 而引起的能量损耗。 材料的介电常数和介电损耗取决于材料结构和极化机理。 除 此之外,还与工作频率、环境温度、湿度有关。 在交变电场作用下,材料的介电常数常用复介电常数表达: C C 0 1 Cd 0A 1)

真空电容率与磁导率的改变

真空电容率与磁导率的改变 从麦克斯韦方程组,可以推论出光波是电磁波。根据麦克斯韦方程,我们推出 【1】。所以我们得出真空中光速不变的结论。后来我们把这个理解为光速绝对不变,即光速不变原理。磁导率与电容率一般是不变的,那么真空磁导率与电容率真的不变吗?【5】 一,电磁波的能量大小由坡印廷矢量决定,即S=E×H,其中s为坡印廷矢量,E为电场强度,H为磁场强度。E、H、S彼此垂直构成右手螺旋关系;即由S代表单位时间流过与之垂直的单位面积的电磁能,单位是W/m²。 【2】 二,1905年,年轻的爱因斯坦发展了普朗克的量子说。他认为,电磁辐射在本质上就是一份一份不连续的,无论是在原子发射和吸收它们的时候,还是在传播过程中都是这样。其能量为普朗克常量和电磁辐射频率的乘积,E=hv。【3】 一中S=E×H表示的是单位时间流过垂直面的单位面积的电磁能;二中E=hv表示的是一份电磁波的能量,或者说是一定时间的电磁波的总能量。那么二中E=hv与S=E×H有什么关系?如果S=E=hv,表示什么意思?其中E与H分别表示一段电磁波的平均电场强度与磁场强度。当S=E,得E×H= hv= 1/μE ?B。由此我们得出,如果电磁波的频率发生变化,那么电磁波的平均电场强度与平均磁感应强度发生变化。电磁波频率变大,那么电磁波的平均电场强度与平均磁感应强度变大;反之,电磁波频率变小,那么电磁波的平均电场强度与平均磁感应强度变小。 如果光源运动或观察者运动,那么对光有什么影响?运动可以使观察者的接受频率发生变化。根据上得,光源或观察者的运动可以使电磁波的平均电场强度与平均磁感应强度发生变化。即,使光的电场强度发生变化,使光的磁感应强度发生变化。 那么光源或观察者的运动使光的电场强度发生变化,根据D=εE,得出E =D/ε.光源不变,可认为D不变,所以得出这样的结论:电场强度发生变化是因为电容率发生变化。 而电容率一般是不变的,所以光源或观察者的运动相当于使介质或真空的电容率发生变化。同理,光源或观察者的运动使光的磁感应强度发生变化,根据B=μH,光源不变,可认为H不变,所以得出这样的结论:磁感应强度发生变化是因为磁导率发生变化。而磁导率一般是不变的,所以光源或观察者的运动相当于使介质或真空的磁导率发生变化。 所以得出结论,光源或观察者的运动,相当于使介质或真空的磁导率与电容率发生变化。就是说如果根据光源或观察者的运动,那么对于观察者来说,根据,得出光 速发生变化。在真空中,如果观察者与光源发生相对运动,光速就会发生变化。 通常我们得出的真空中光速不变的结论,指的是光源与观察者相静止的情况。 另,在不同的介质中光速可能不同,根据公式E=hv得,光的能量不发生变化;根据B=μ H,D=εE得,E与B发生变化,根据S=1/μ E ?B,得出能量发生变化。所以不同的介质对应不同的h值。h值与介质的电容率有关和介质的磁导率有关。在前面的文章,我

化学平衡常数及其计算

考纲要求 1.了解化学平衡常数(K)的含义。2.能利用化学平衡常数进行相关计算。 考点一化学平衡常数 1.概念 在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数,用符号K表示。 2.表达式 对于反应m A(g)+n B(g)p C(g)+q D(g), K=c p?C?·c q?D? c m?A?·c n?B? (固体和纯液体的浓度视为常数,通常不计入平衡常数表达式中)。3.意义及影响因素 (1)K值越大,反应物的转化率越大,正反应进行的程度越大。 (2)K只受温度影响,与反应物或生成物的浓度变化无关。 (3)化学平衡常数是指某一具体反应的平衡常数。 4.应用 (1)判断可逆反应进行的程度。 (2)利用化学平衡常数,判断反应是否达到平衡或向何方向进行。 对于化学反应a A(g)+b B(g)c C(g)+d D(g)的任意状态,浓度商:Q c=c c?C?·c d?D? c a?A?·c b?B? 。 Q<K,反应向正反应方向进行; Q=K,反应处于平衡状态; Q>K,反应向逆反应方向进行。 (3)利用K可判断反应的热效应:若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。 深度思考

1.正误判断,正确的打“√”,错误的打“×” (1)平衡常数表达式中,可以是物质的任一浓度() (2)催化剂能改变化学反应速率,也能改变平衡常数() (3)平衡常数发生变化,化学平衡不一定发生移动() (4)化学平衡发生移动,平衡常数不一定发生变化() (5)平衡常数和转化率都能体现可逆反应进行的程度() (6)化学平衡常数只受温度的影响,温度升高,化学平衡常数的变化取决于该反应的反应热() 2.书写下列化学平衡的平衡常数表达式。 (1)Cl2+H2O HCl+HClO (2)C(s)+H2O(g)CO(g)+H2(g) (3)CH3COOH+C2H5OH CH3COOC2H5+H2O (4)CO2-3+H2O HCO-3+OH- (5)CaCO3(s)CaO(s)+CO2(g) 3.一定温度下,分析下列三个反应的平衡常数的关系 ①N2(g)+3H2(g)2NH3(g)K1 ②1 2N2(g)+ 3 2H2(g)NH3(g)K2 ③2NH3(g)N2(g)+3H2(g)K3 (1)K1和K2,K1=K22。 (2)K1和K3,K1=1 K3。 题组一平衡常数的含义 1.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,涉及如下反应:2NO2(g)+NaCl(s)NaNO3(s)+ClNO(g)K1

11.3 材料微波介电常数和磁导率测量

实验11.3 材料微波介电常数和磁导率测量 一、引言 隐身技术是通过控制、降低目标的可探测信号特征,使其不易被微波、红外、可见光、声波等各种探测设备发现、跟踪、定位的综合技术。其中,微波隐身(或称雷达波隐身)的研究早在20世纪30年代就开始了。现在已发展成集形状隐身、材料隐身等一体的高度复杂的技术,并已应用到导弹、飞机、舰船、装甲车辆、重要军事设施等许多武器装备上。 雷达隐身技术中,最简单的一种是涂覆型隐身技术。它是将吸波材料直接以一定的厚度涂覆在外壳以降低对微波的反射,减小雷达探测截面,提高隐身能力。而材料的微波介电常数和导弹磁率与吸波性能有关,本实验用开关短路法对其进行测量。 二、实验目的 1. 了解和掌握微波开路和短路的含意和实现方法。 2. 掌握材料微波介电常数和磁导率的原理和方法。 3. 了解微波测试系统元部件的作用。 三、实验原理 对于涂覆在金属平板(假定其为理想导体,下同)表面的单层吸波材料,空气与涂层界面处的输入阻抗为 ()d Z Z γεμγ γ th 0 = 其中Ω== 3770 0εμZ 是自由空间波阻抗,γ是电磁波在涂层中的传播常数,d 是吸收波涂层厚度,μγ,εγ分别为涂层的相对磁导率和相对介电常数。 当电磁波由空气向涂层垂直入射时,在界面上的反射系数为: Z Z Z Z Γ+-= 以分贝(dB )表示的功率反射率为: R =20lg|Γ|

对多层涂覆,电磁波垂直入射到第n 层时,其输入阻抗为: ()() n n n n n n n n n n d Z d Z Z γηγηηth th 11--++= 其中,()()n n n n n εεμμη''-'''-'= j j 是第n 层的特征阻抗, ()()n n n n n c εεμμω γ''-'''-'=j j j 是第n 层的传播常数,d n 为第n 层的厚度,Z n -1为第n -1层入射面的输入阻抗。 理想导体平面的输入阻抗为0,最外层的输入阻抗可以通过迭代法得出,从而由前述公式得到反射率。 图1 一种基于测量线的波导测量装置 图2 传输线模型 由此可见,无论是单层涂覆还是多层涂覆,测出各层材料的复介电常数εr 和复磁导率μr ,及其余频率的关系是设计隐身涂层的关键。

完整word版,介电常数与好三因素间的关系

介电常数与耗散因数间的关系 介电常数又称电容率或相对电容率,是表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数。其表示电介质在电场中贮存静电能的相对能力,例如一个电容板中充入介电常数为ε的物质后可使其电容变大ε倍。介电常数愈小绝缘性愈好。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。介电常数还用来表示介质的极化程度,宏观的介电常数的大小,反应了微观的极化现象的强弱。气体电介质的极化现象比较弱,各种气体的相对介电常数都接近1,液体、固体的介电常数则各不相同,而且介电常数还与温度、电源频率有关有些物质介电常数具有复数形式,其实部即为介电常数,虚数部分常称为耗散因数。 通常将耗散因数与介电常数之比称作耗散角正切,其可表示材料与微波的耦合能力,耗散角正切值越大,材料与微波的耦合能力就越强。例如当电磁波穿过电解质时,波的速度被减小,波长也变短了。 介质损耗是指置于交流电场中的介质,以内部发热的形式表现出来的能量损耗。介质损耗角是指对介质施加交流电压时,介质内部流过的电流相量与电压向量之间的夹角的余角。介质损耗角正切是对电介质施加正弦波电压时,外施电压与相同频率的电流之间相角的余角δ的正切值--tgδ. 其物理意义是:每个周期内介质损耗的能量//每个

周期内介质存储的能量。 介电损耗角正切常用来表征介质的介电损耗。介电损耗是指电介质在交变电场中,由于消耗部分电能而使电介质本身发热的现象。原因是电介质中含有能导电的载流子,在外加电场作用下,产生导电电流,消耗掉一部分电能,转为热能。任何电介质在电场作用下都有能量损耗,包括由电导引起的损耗和由某些极化过程引起的损耗。 用tgδ作为综合反应介质损耗特性优劣的指标,其是一个仅仅取决于材料本身的损耗特征而与其他因素无关的物理量,tgδ的增大意味着介质绝缘性能变差,实践中通常通过测量tgδ来判断设备绝缘性能的好坏。 由于介电损耗的作用电解质在交变电场作用下将长生热量,这些热会使电介质升温并可能引起热击穿,因此,在绝缘技术中,特别是当绝缘材料用于高电场强度或高频的场合,应尽量采用介质损耗因数,即电介质损耗角正切tgδ较低的材料。但是,电介质损耗也可用作一种电加热手段,即利用高频电场(一般为0.3--300兆赫兹)对介电常数大的材料(如木材、纸张、陶瓷等)进行加热。这种加热由于热量产生在介质内部,比外部加热速度更快、热效率更高,而且热均匀。频率高于300兆赫时,达到微波波段,即为微波加热(家用微波炉即据此原理)。 在绝缘设计时,必须注意材料的tgδ值。若tgδ过大则会引起严重发热,使绝缘材料加速老化,甚至导致热击穿。 一下例举一些材料的ε值:

化学平衡常数真的只与温度有关么

龙源期刊网 https://www.wendangku.net/doc/7d19029463.html, 化学平衡常数真的只与温度有关么 作者:闵云泽 来源:《数理化学习·教育理论版》2013年第02期 摘要:阐述化学平衡常数随计算方法的不同而影响因素也不同,说明平衡常数不单单与温度有关系,从而解决了中学化学教师在平衡常数教学中的一大困惑. 关键词:化学平衡常数;温度;量纲 在中学化学平衡常数的教学中,很多教师遇到了这样的困扰. 例1 某温度下,在1 L密闭容器中发生可逆反应N2 (g)+ 3H2 (g)2NH3(g),开始时,充入1 mol N2和3 mol H2,此条件下,N2的转化率为30%,反应到达平衡状态. (1)求反应的平衡常数. (2)保持温度不变,若将平衡时反应混合物的体积缩小1倍或者扩大一倍,平衡将如何移动?平衡常数为多少? 解析:(1)平衡常数K=0.056 L2/mol2;(2)气体体积缩小1倍时,各组分的浓度均增大1倍,此时Qc 经过简单的思考,就会提出疑问:这里的平衡常数真的就等于0.056 L2/mol2,真的就只是与温度有关么? 既然当气体体积缩小1倍时,化学平衡向正反应方向发生了移动,由此可知,在新的条件下,N2的转化率提高了,平衡常数K值必然增大;反之则K值减小.而题目解析中说的由于体系的温度保持不变,平衡常数不发生变化.到底哪个是正确的呢. 笔者查阅众多资料方才明白. 平衡常数有标准平衡常数和非标准平衡常数之分.标准平衡常数是根据标准热力学函数算 得的平衡常数,记作K,又称之为热力学平衡常数;非标准平衡常数是用平衡时生成物对反应物的压力商或浓度商表示的平衡常数(Kp或Kc),也称作是经验平衡常数.中学教材中涉及的平衡常数是经验平衡常数.对于反应物计量系数之和等于生成物计量系数之和的反应,其经验 平衡常数是无量纲的纯数,与压力、浓度所用的单位无关,而且也等于标准平衡常数之值.笔 者认为:在中学化学教材中涉及的例子无一例外地讨论计量数相等的问题,就是基于这一点. 而对于反应物计量系数之和不等于生成物计量系数之和的反应,则其经验平衡常数是有量纲的量,其数值就与压力、浓度所用的单位有关,其计算值也随着压力、浓度等的不同而受到影响.因此例题中后来的平衡常数K若按新平衡时各物质的浓度进行计算,则肯定不为0.056 L2/mol2.

折射率与介电常数之间的关系

折射率与介电常数之间的关系 1 可见光和金属间的相互作用 可见光入射金属时,其能是可被金属表层吸收,而激发自由电子,使之具有较高的能态。当电子由高能态回到较低能态时,发射光子。金属是不透光的,故吸收现象只发生在金属的厚约 100nm 的表层内,也即金属片在 100nm 以下时,才是“ 透明” 的。只有短波长的X -射线和γ -射线等能穿过一定厚度的金属。所以,金属和可见光间的作用主要是反射,从而产生金属的光泽。 2 可见光和非金属间的作用 1) 折射 当光线以一定角度入射透光材料时,发生弯折的现象就是折射 ( Refraction ),折射指数n 的定义是: 光从真空进入较致密的材料时,其速度降低。光在真空和材料中的速度之比即为材料的折射率。 如果光从材料 1 ,通过界面进入材料 2 时,与界面法向所形成的入射角、折射角与材料的折射率、有下述关系:

介质的折射率是永远大于 1 的正数。如空气的 n= ,固体氧化物 n= ~,硅酸盐玻璃 n= ~。不同组成、不同结构的介质,其折射率不同。 影响 n 值的因素有下列四方面: a) 构成材料元素的离子半径 根据 Maxwell 电磁波理论,光在介质中的传播速度应为: μ 为介质的导磁率, c 为真空中的光速,ε 为介质的介电常数,由此可得: 在无机材料这样的电介质中,μ = 1 ,故有 说明介质的折射率随其介电常数的增大而增大。而介电常数则与介质极化有关。由于电磁辐射和原子的电子体系的相互作用,光波被减速了。

当离子半径增大时,其介电常数也增大,因而 n 也随之增大。因此,可以用大离子得到高折射率的材料,如 PbS 的 n= ,用小离子得到低折射率的材料,如 SiCl 4 的 n= 。 b) 材料的结构、晶型和非晶态 折射率还和离子的排列密切相关,各向同性的材料,如非晶态(无定型体)和立方晶体时,只有一个折射率 (n 0 ) 。而光进入非均质介质时,一般都要分为振动方向相互垂直、传播速度不等的两个波,它们分别有两条折射光线,构成所谓的双折射。这两条折射光线,平行于入射面的光线的折射率,称为常光折射率 (n 0 ) ,不论入射光的入射角如何变化,它始终为一常数,服从折射定律。另一条垂直于入射面的光线所构成的折射率,随入射光的方向而变化,称为非常光折射率 (n e ) ,它不遵守折射定律。当光沿晶体光轴方向入射时,只有 n 0 存在,与光轴方向垂直入射时, n e 达最大值,此值为材料的特性。 规律:沿着晶体密堆积程度较大的方向 n e 较大。 c) 材料所受的内应力 有内应力的透明材料,垂直于受拉主应力方向的 n 大,平行于受拉主应力方向的 n 小(提问:为什么)。 规律:材料中粒子越致密,折射率越大。 d) 同质异构体

四大平衡常数的相互关系及判定

高中化学四大平衡常数的相互关系及判定 杨小过 电解质溶液中的电离常数、水的离子积常数、水解常数及溶度积常数是在化学平衡常数基础上的延深和拓展,它是定量研究平衡移动的重要手段。在复习时就要以化学平衡原理为指导,以判断平衡移动的方向为线索,以勒夏特列原理和相关守恒定律为计算依据,以各平衡常数之间的联系为突破口,联系元素及化合物知识,串点成线,结线成网,形成完整的认识结构体系. 1.四大平衡常数的比较 HA H++A-,电离 常数K a=c(H+)·c(A-) c(HA) BOH B++OH-, 电离常数K b= c(B+)·c(OH-) c(BOH) A-+H2O OH- +HA,水解常数K h= c(OH-)·c(HA) c(A-) M A的饱和溶液:K 2.四大平衡常数间的关系 (1)CH3COONa、CH3COOH溶液中,K a、K h、K W的关系是K W=K a·K h。 (2)NH4Cl、NH3·H2O溶液中,K b、K h、K W的关系是K W=K b·K h。 (3)M(OH)n悬浊液中K sp、K W、pH间的关系是 K sp=c(M n+)·c n(OH-)=c(OH-) n·c n(OH-)= c n+1(OH-) n= 1 n? ? ? ? K W 10-pH n+1。

3.四大平衡常数的应用 (1)判断平衡移动方向 (2)如将NH 3·H 2O 溶液加水稀释,c (OH - )减小,由于电离常数为c (NH + 4)·c (OH - ) c (NH 3·H 2O ) ,此值不 变,故c (NH + 4) c (NH 3·H 2O ) 的值增大。 (3)利用K sp 计算沉淀转化时的平衡常数 如:AgCl +I - AgI +Cl - [已知:K sp (AgCl)=1.8×10 -10 、K sp (AgI)=8.5×10 -17 ]反应的平 衡常数K =c (Cl - )c (I -)=c (Ag + )·c (Cl - )c (Ag +)·c (I -)=K sp (AgCl )K sp (AgI )=1.8×10- 10 8.5×10-17≈2.12×106 。

PCB介电常数常识

1、我们常用的PCB介质是FR4材料的,相对空气的介电常数是4.2-4.7。这个介电常数是会随温度变化的,在0-70度的温度范围内,其最大变化范围可以达到20%。介电常数的变化会导致线路延时10%的变化,温度越高,延时越大。介电常数还会随信号频率变化,频率越高介电常数越小。100M以下可以用4.5计算板间电容以及延时。 2、一般的FR4材料的PCB板中内层信号的传输速度为180ps/inch(1inch=1000mil=2.54cm)。表层一般要视情况而定,一般介于140与170之间。 3、实际的电容可以简单等效为L、R、C串联,电容有一个谐振点,在高频时(超过这个谐振点)会呈现感性,电容的容值和工艺不同则这个谐振点不同,而且不同厂家生产的也会有很大差异。这个谐振点主要取决于等效串联电感。现在的比如一个100nF的贴片电容等效串联电感大概在0.5nH左右,ESR(等效串联电阻)值为0.1欧,那么在24M 左右时滤波效果最好,对交流阻抗为0.1欧。而一个1nF的贴片电容等效电感也为0.5nH(不同容值差异不太大),E SR为0.01欧,会在200M左右有最好的滤波效果。为达好较好的滤波效果,我们使用不同容值的电容搭配组合。但是,由于等效串联电感与电容的作用,会在24M与200M之间有一个谐振点,在这个谐振点上有最大阻抗,比单个电容的阻抗还要大。这是我们不希望得到的结果。(在24M到200M这一段,小电容呈容性,大电容已经呈感性。两个电容并联已经相当于LC并联。两个电容的ESR值之和为这个LC回路的串阻。LC并联的话如果串阻为0,那么在谐振点上会有一个无穷大的阻抗,在这个点上有最差的滤波效果。这个串阻反倒会抑制这种并联谐振现象,从而降低LC谐振器在谐振点的阻抗)。为减轻这个影响,可以酌情使用ESR大些的电容。ESR相当于谐振网络里的串阻,可以降低Q值,从而使频率特性平坦一些。增大ESR会使整体阻抗趋于一致。低于24M的频段和高于200M的频段上,阻抗会增加,而在24M与200M频段内,阻抗会降低。所以也要综合考虑板子开关噪声的频带。国外的一些设计有的板子在大小电容并联的时候在小电容(680pF)上串几欧的电阻,很可能是出于这种考虑。(从上面的参数看,1nF的电容Q值是100nF电容Q值的10倍。由于手头没有来自厂商的具体等效串感和ESR的值,所以上面例子的参数是根据以往看到的资料推测的。但是偏差应该不会太大。以往多处看到的资料都是1nF和100nF的瓷片电容的谐振频率分别为100M和10M,考虑贴片电容的L要小得多,而又没有找到可靠的值,为讲着方便就按0.5nH计算。如果大家有具体可靠的值的话,还希望能发上来^_^) 介电常数(Dk, ε,Er)决定了电信号在该介质中传播的速度。电信号传播的速度与介电常数平方根成反比。介电常数越低,信号传送速度越快。我们作个形象的比喻,就好想你在海滩上跑步,水深淹没了你的脚踝,水的粘度就是介电常数,水越粘,代表介电常数越高,你跑的也越慢。 介电常数并不是非常容易测量或定义,它不仅与介质的本身特性有关,还与测试方法,测试频率,测试前以及测试中的材料状态有关。介电常数也会随温度的变化而变化,有些特别的材料在开发中就考虑到温度的因素.湿度也是影响介电常数的一个重要因素,因为水的介电常数是70,很少的水分,会引起显著的变化. 以下是一些典型材料的介电常数(在1Mhz下):

介电常数

介电常数 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中)的比值即为相对介电常数(permittivity,不规范称dielectric constant),又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降,理想导体内部由于静电屏蔽场强总为零,故其介电常数为无穷。 介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*10^(-12)F/m。需要强调的是,一种材料的介电常数值与测试的频率密切相关。 一个电容板中充入介电常数为ε的物质后电容变大εr倍。电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 根据物质的介电常数可以判别高分子材料的极性大小。通常,介电常数大于3.6的物质为极性物质;介电常数在2.8~3.6范围内的物质为弱极性物质;介电常数小于2.8为非极性物质。 测量方法 相对介电常数εr可以用静电场用如下方式测量:首先在两块极板之间为真空的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后测得电容Cx。然后相对介电常数可以用下式计算 εr=Cx/C0 在标准大气压下,不含二氧化碳的干燥空气的相对电容率εr=1.00053.因此,用这种电极构形在空气中的电容Ca来代替C0来测量相对电容率εr时,也有足够的准确度。(参考GB/T 1409-2006) 对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。 "介电常数" 在工具书中的解释: 1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对于介电材料,相对介电常数愈小绝缘性愈好。空气和CS2的ε值分别为1.0006和 2.6左右,而水的ε值特别大,10℃时为8 3.83,与温度有关。 2.介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。介电常数用ε表示,一些常用溶剂的介电常数见下表: "介电常数" 在学术文献中的解释: 1.介电常数是指物质保持电荷的能力,损耗因数是指由于物质的分散程度使能量损失的大小。理想的物质的两项参数值较小 文献来源介电常数与频率变化的关系2.其介质常数具有复数形式,实数部分称为介电常数,虚数部分称为损耗因子.通常用损耗正切值(损耗因子与介电常数之比)来表示材料与微波的耦合能力,损耗正切值越大,材料与微波的耦合能力就越强

电容率与磁导率

介质光速和介质折射率、 磁导率、电容率(介电常数)的关系 https://www.wendangku.net/doc/7d19029463.html,/zhoujiajun198204@126/ 摘要:介质里的光速和该介质的折射率、磁导率、电容率是有关系的,但是这种关系却不适用到所有的介质。确切来说,介质里的光速和该介质的折射率的关系,有久恒的关系,适用于任何介质。介质光速和该介质磁导率、电容率(介电常数)的关系,不适用于所用介质,在某些介质中适用或许是一种偶然,又或许介质的折射率、磁导率、电容率还有一些我们尚未知道的关系。 关键词:真空光速;介质光速;介质绝对折射率;入射角;折射角;光速传播计算公式;磁导率;电容率;相对磁导率;相对电容率。 介质绝对折射率n,是说光从真空射入介质发生折射时,入射角i与折射角r的正弦之比,亦为真空光速c0和介质光速c x之比: n== 由麦克斯韦电磁方程组电磁波计算公式c=,可知介质里的光线传播速度只与该介质的磁导率μ、电容率ε有关。 任何一种介质的相对磁导率μr、相对电容率εr为: μr= εr= μr:相对磁导率,εr:相对电容率,μx: 介质磁导率,εr:介质电容率,μ0:真空磁导率,ε0:真空电容率。因此,就可推导出介质里光线传播计算公式,为: c x= 根据介质绝对折射率的定义,可得: n=== 由此可见,介质的绝对折射率和该介质的相对磁导率μr、相对电容率εr有关。用此关系式对介质进行检验,结果如下: 1、用空气检验

空气为顺磁性介质,其相对磁导率μr=1.0000004,相对电容率εr=1.000585,代入计算得 n空气===1.000293≈1.0003 和实际很相符。 2、用水检验 水为抗磁性介质,其相对磁导率μr=0.999991,相对电容率εr=81.5,代入计算得 n水===9.0277≠1.33 和实际相差很大。 从这两个例子可看出,光速和磁导率、电容率的关系适用于非磁性介质和顺磁性介质,对于抗磁性介质却不适用,差别很大。对于铁磁性介质来说,会是什么结果呢,因为没有这方面的参考资料,没法判定。介质的绝对折射率计算公式,是一个通式,能适用于任何介质。为何用相对磁导率、相对电容率对此进行计算时,却得不出相等的结果呢,介质里的光线传播速度和该介质的磁导率、电容率是否还有我们尚未得知的关系,介质的非导电性、导电性、非磁性、顺磁性、抗磁性、铁磁性等性质对该介质的光线传播又有怎样的影响,这就有待人们去证实了。 参考文献: 1、《折射率》百度百科 2、《电介质的介电常数》 <重庆邮电大学>网站 3、《磁场中的磁介质》 <西北工业大学>网站 4、《附录B 常用物理数据》 <郧阳师范高等专科学校>网站 磁导率 磁导率 magnetic permeability 表征磁介质磁性的物理量。常用符号μ表示,μ为介质的磁导率,或称绝对磁导率[1]。 μ等于磁介质中磁感应强度B与磁场强度H之比,即通常使用的是磁介质的相对磁导率μr ,其定义为磁导率μ与真空磁导率μ0之比,即 μ=B/H 相对磁导率μ与磁化率χ的关系是 磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。 对于顺磁质μr>1;对于抗磁质μr<1,但两者的μr都与1相差无几。在铁磁质中,B与H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。 例如,如果空气(非磁性材料)的磁导率是1,则铁氧体的磁导率为10,000,即当

电导率电容率磁导率测量和意义

电动力学 电导率、电容率、磁导率的测定及意义 指导教师:XXX 专业:XXX 学号:XXXXXXXXXXXX 姓名:XXX XXXX大学 XXXX年X月X日

电导率、电容率、磁导率的测定及意义 摘要: 本文章主要探讨电动力学几个基本物理名词——电导率,电容率,磁导率——各自意义及其测量。 关键词: 电导率,磁导率,电容率,意义,测量 引言: 这些基本名词是电动力学的必备知识,它们不仅在历史上有着重大意义,对于学习电动力学的学者也是至关重要的。由于笔者才疏学浅,仅做一些简单的介绍,供各位批评指正。 一、电导率 1.定义 物理学概念,指在介质中该量与电场强度之积等于传导电流密度。对于各向同性介质,电导率是标量;对于各向异性介质,电导率是张量。生态学中,电导率是以数字表示的溶液传导电流的能力。单位以西门子每米表示。电导率是表示物质传输电流能力强弱的一种测量值。当施加电压于导体的两端时,其电荷载子会呈现朝某方向流动的行为,因而产生电流。电导率是以欧姆定律定义为电 流密度和电场强度的比率: 。 有些物质会有异向性的电导率,必需用 3 X 3 矩阵来表达(使用数学术语,第二阶张量,通常是对称的)。 电导率是电阻率的倒数。在国际单位制中的单位是西门子/米: 。 2.电传导性 是物质可以传导电子的性质。按物质是否具有电传导性,可把物质分为导体,半导体和绝缘体。 固态半导体的掺杂程度会造成电导率很大的变化。增加掺杂程度会造成高电导率。水溶液的电导率高低相依于其内含溶质盐的浓度,或其它会分解为电解质的化学杂质。水样本的电导率是测量水的含盐成分、含离子成分、含杂质成分等等的重要指标。水越纯净,电导率越低(电阻率越高)。水的电导率时常以电导系数来纪录;电导系数是水在 25°C 温度的电导率。

微波范围金属介电常数和磁导率的获取

微波范围金属粉末有效介电常数和磁 导率的获取 摘要 在本文中,微波范围内金属与绝缘体混合物的有效电介电常数和磁导率的获取来源与电磁全3维仿真数据。其中使用的数值分析方法的边界条件是有限的集成技术。模拟混合物有周期性扩展方向并垂直与平面波方向。因此,它足以分析单元元素以提取有效的电磁特性。使用这个程序,用2.45 GHz的微波频率辐射模拟细铜粉的行为。这样,就可以研究粒子大小与混合物有效属性的关系了。通过引入薄铜氧化物或导电层,在烧结的早期阶段可以模拟金属粉末压块的有效属性。因此,本文力求通过对比散装金属材料,提高对导电材料的微波吸收机理的认识。 在过去的几十年里,科学界和工业界早就有了微波烧结陶瓷粉末的技术[1]。与传统加热方法相比,微波加热允许对材料进行整个体积的加热,从而节省时间和减少能源消耗。此外,高频加热金属碳化物是一种微波加热与传统加热相结合的方法,可加速微波吸收少的材料的加热过程,如大多数氧化物和氮化物。快速、可控加热方法和细粉的使用促成较小的晶粒尺寸和更均匀的晶粒尺寸分布,提高了烧结材料的力学性能。 最近,微波加热已成为金属粉末加工的一个强大工具。据报道1999年罗伊等人[2]报道,多孔金属粉末压块缩受到微波辐射电场或磁场会被加热,然而众所周知,微波不能穿透大部分金属以外的皮肤深度,因此不能在微波炉里深热金属。罗伊的结果表明,多孔金属粉末压块材料的有效介电和有效磁损失,对应于多空金属压块的有效介电常数和有效磁导率。 有很多实验研究微波加热金属粉末。在马等最近工作中[3]在磁场或电场单模腔中微波加热的铜粉(TE102),已经结合起来研究金属压块的电磁属性。论及用高频加热的预烧结阶段机理时,样品的电导率依赖性作为加热时间函数来衡量。 有两个重要的理论描述基于实验结果的金属粉末微波吸收机制。在罗等的工作中[4]——镍铁合金粉末的升温速率在理论上与功率吸收公式相关。Rybakov等[5]的论文描述了使用有效中介近似方法在近似薄氧化层金属粉末的微波吸收原理。 在本文中,我们研究利用有限的集成技术获得的金属粉末的电和磁特性(适合)[6]模拟。通过介绍了这些材料以及提取的混合物的有效参数的一个计算机模型,我们有机会认识金属粉末在千分尺规模微波吸收机制。计算机模拟是用先进

自由空间是指相对介电常数和相对导磁率都为1

自由空间的基本传输损耗是指位于自由空间的发射系统的等效全向辐射功率(EIRP)与接收系统各向同性接收天线所接收到的可用功率之比,通常用Lbf表示。当收发天线之间的距离d>>λ(λ为工作波长)时,Lbf可表示为:字串6 Lbf=32.5 20lg f(MHz)20lgd(km) EIRP EIRP(Effective Isotropic Radiated Power) 有效全向辐射功率 EIRP也称为等效全向辐射功率,它的定义是地球站或卫星的天线发送出的功率(P)和该天线增益(G)的乘积,即: EIRP=P*G 如果用dB计算,则为 EIRP(dBW) = P(dBW) + G(dBW) EIRP表示了发送功率和天线增益的联合效果。 抛物面为主反射面G/T (Gain/Temperature) 地面接收系统的品质因数卫星电视接收系统的天线增益与接收系统噪声之比,用分贝表示,若这一值增加,则意味着图像质量提高。利用减小低噪声放大器的噪声温度和增加接收天线的尺寸均可以提高G/T值。 1、dBm dBm是一个考征功率绝对值的值,计算公式为:10lgP(功率值/1mw)。 [例1] 如果发射功率P为1mw,折算为dBm后为0dBm。 [例2] 对于40W的功率,按dBm单位进行折算后的值应为: 10lg(40W/1mw)=10lg(40000)=10lg4+10lg10+10lg1000=46dBm。

2、dBi 和dBd dBi和dBd是考征增益的值(功率增益),两者都是一个相对值, 但参考基准不一样。dBi的参考基准为全方向性天线,dBd的参考基准为偶极子, 所以两者略有不同。一般认为,表示同一个增益,用dBi表示出来比用dBd表示出 来要大2. 15。 [例3] 对于一面增益为16dBd的天线,其增益折算成单位为dBi时,则为18.15dBi (一般忽略小数位,为18dBi)。 [例4] 0dBd=2.15dBi。 [例5] GSM900天线增益可以为13dBd(15dBi),GSM1800天线增益可以为 15dBd(17dBi)。 3、dB dB是一个表征相对值的值,当考虑甲的功率相比于乙功率大或小多少个dB时, 按下面计算公式:10lg(甲功率/乙功率) [例6] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。 也就是说,甲的功率比乙的功率大3 dB。 [例7] 7/8 英寸GSM900馈线的100米传输损耗约为3.9dB。 [例8] 如果甲的功率为46dBm,乙的功率为40dBm,则可以说,甲比乙大6 dB。 [例9] 如果甲天线为12dBd,乙天线为14dBd,可以说甲比乙小2 dB。 4、dBc 有时也会看到dBc,它也是一个表示功率相对值的单位,与dB的计算方法完全一样。 一般来说,dBc 是相对于载波(Carrier)功率而言,在许多情况下,用来度量与 载波功率的相对值,如用来度量干扰(同频干扰、互调干扰、交调干扰、带外干扰等) 以及耦合、杂散等的相对量值。 在采用dBc的地方,原则上也可以使用dB替代。 dB只是表示一个比值,并不是功率增益的单位!!! 5、dBw 与dBm一样,dBw是一个表示功率绝对值的单位(也可以认为是以1W功率为基准的一个比值),计算公式为:10log(功率值/1w)。dBw与dBm之间的换算关系为:0 dBw = 10log1 W = 10log1000 mw = 30 dBm。

相关文档
相关文档 最新文档