文档库 最新最全的文档下载
当前位置:文档库 › 无机材料物理性能资料

无机材料物理性能资料

无机材料物理性能资料
无机材料物理性能资料

a.弹性模量:使物体产生伸长一倍变形量所需的应力。

b.上限弹性模量:两相通过并联组合得到混合系统的E值称之~~。

c.下限弹性模量:两相通过串联组合得到混合系统的E值称之~~。

d.粘弹性:某些非晶体或多晶体在应力较小时间时表现粘性弹性。

e.滞弹性:无机固体和金属的弹性模量依赖于时间的现象。

f.蠕变:当对粘弹性体施加恒定应力σ0时,其应变随时间而增加的现象。

g.弛豫:当施加恒定应变ε

在粘弹性体上,应力随时间而减小的现象。

h.影响蠕变的因素:1.温度2.应力3.显微结构的影响4.组成5.晶体结构

i.塑性形变:指在一中外力移去后不能恢复的形变。

j.塑性形变的两种基本方式:滑移和孪晶。

k.声频支:相邻原子具有相同的振动方向。

l.光频支:相邻原子振动方向相反,形成了一个范围很小,频率很高的振动。

m.热膨胀:物体的体积或长度随温度的升高而增大的现象。

n.热传导:当固体材料一端的温度比另一端高时,热量会从热端自动的传向冷端,这个现象就称~~。o.声子热导的机理:声子与声子的碰撞产生能量转移(声子:声频波的量子)

0.介质损耗:电场作用下,单位时间内电介质因发热而损耗的电能

q.抗热震断裂性:材料发生瞬时断裂,抵抗这种破坏的性能。

r.抗热震损伤性:在热冲击循环作用下,材料表面开裂、剥落并不断发展,最终碎裂或变质,抵抗这类破坏的性能。

s.热应力因子:由于材料热膨胀或收缩引起的内应力

t.双碱效应(中和效应):当玻璃中碱金属离子总浓度较大时,碱离子总浓度相同的情况下,含两种碱金属离子比含一种碱金属离子的玻璃电导率要小。当两种碱金属浓度比适当时,电导率可以降到很低。

u..压碱效应:含碱玻璃中加入二价金属氧化物,尤其是重金属氧化物,可使玻璃电导率降低。

v.热稳定性:材料在温度急剧变化而不被破坏的能力,也被称为抗热震性。

w.铁电体:能够自己极化的非线性介电材料,其电滞回路和铁磁体的磁滞回路形状相近似。

x.稳定传热:物体内温度分布不随时间改变。

y.载流子的迁移率:载流子在单位电场中的迁移速率。

z.移峰效应:在铁电体中引入某种添加物生成固溶体,改变原来的晶胞参数和离子间的相互关系,使居里点向低温或高温方向移动。

a.展宽效应(压峰效应):铁电体中引入某种添加物形成固溶体,减少居里点处介电常数,使介电常数在较大范围内变化平缓的效应。

b.陶瓷颜料呈色机理:由于着色剂对光的选择性吸收而引起的选择性反射或者选择性透射,而显现颜色

c.改善无机材料绝缘电阻的措施:提高温度晶体、结构的改变、晶格缺陷、杂质的影响

填空题:

1、在结晶的陶瓷中,滞弹性弛豫最主要的根源是残余的玻璃相。

2、滑移的条件(1)几何条件(2)静电作用

3、高温蠕变理论:高温蠕变的位错运动理论、扩散蠕变理论、晶界蠕变理论。

4、两个有关晶体热容的定律:元素的热容定律(杜隆---珀替定律)化合物的热同定律(柯普定律)

5、量子理论的两个模型:爱因斯坦模型、德拜的比热模型

6、热冲击损坏有两钟类型:抗热冲击断裂性、抗热冲击损坏性。

e-(a+s)x

7、吸收可分为:选择吸收、均匀吸收。吸收定律和散射定律公式: I = I

8、发生形变的类型:弹性形变和塑性形变,发生脆性断裂的条件:外加应力的速率大于应力再分配的速率

9、热击穿的本质是介质在电场中极化,介质损耗发热,当热量在材料内积累,材料温度升高,当出现永久性损坏。

10、导电材料中载流子是离子、电子和空位。

11、裂纹扩展方式:掰开型、错开型、及撕开型。裂纹扩展的条件:物体内储存的弹性应变能的降低大于等于由于开裂形成的两个新表面所需的表面能。

12、提高陶瓷材料的强度和韧性途径:微晶、高密度与高纯度、提高抗裂能力和预加应力、化学强化、

相变增韧、弥散增韧

13、热膨胀系数有:线膨胀系数和体积膨胀系数,对于各向同性的晶体α

v =3α

i

对于异向同性的晶体:

αv =αa+αb+α c

14、色光的三原色:红、绿、蓝:原料的三间色:红、黄、蓝

15、电导的方向有:离子电导和电子电导(玻璃态电导、无机材料的电导),霍尔效应是电子电导的特

征;电解效应是离子电导的特征

16、晶界效应包括:压敏效应和PTC效应

17、利用双碱效应和压碱效应,可以减少玻璃的电导率

18、极化类型:弹性位移极化、高介晶体极化、松弛极化、自发极化、偶极子转向极化、谐振式极化、

夹层式极化与高压式极化前两个特点无损耗,后四个特点有损耗

19、介质击穿的类型有:热击穿、电击穿、化学击穿

简答题

1、不同材料在外力作用时的变形特征?

脆性材料:在弹性变形后没有塑性形变或塑性形变很小,接着就断裂,总弹性应变能非常小。

延性材料:开始表现为弹性形变,接着有一段弹塑性形变,然后才断裂,总变形能很大。

弹性材料:具极大的弹性形变。

2、显微结构对陶瓷材料的脆性断裂有何影响?

气孔率、气孔或裂纹尖端的曲率半径及大小、晶粒的大小、晶界、内部应力、玻璃相、复合相

3、为什么陶瓷材料具有脆性而金属材料具有塑性?P20

金属易于滑移児产生塑性形变,就是因为金属滑移系统很多而无机材料的滑移系统却非常少。原因是金属键没有方向性,而无机材料的离子键或共价键具有明显的方向性。

4、宏观塑性形变条件:有足够多的位错、位错有一定的运动速度、要有较小的伯氏矢量,易形成位错。

4、高位蠕变分为哪几个阶段?各阶段有何特点?

(1)起始段oa在外力作用下发生塑性弹性形变,且为瞬时发生,与时间无关

(2)第一阶段蠕变ab(蠕变减速阶段)应变速度随时间减速

(3)第二阶段蠕变bc(稳态蠕变阶段)蠕变速率保持不遍

(4)第三阶段蠕变cd(蠕变加速阶段)应变速率随时间递增,即曲线变陡,最后到d点断裂。

5、何为理论强度?

使材料沿横截面所有原子间,将所有原子间的结合键同时拉断成为两部分需要的应力。

6、何为尺寸效应?

尺寸较大的材料的实际强度比理论值低得多,而且实际材料的强度总在一定范围内波动,即是用相同材料在相同条件下制成的时间,强度值也有波动。一般试件尺寸大,强度偏低。

4、用Griffith理论解释相变增韧的原理

Griffith概念:Griffith认为实际材料中总是存在许多细小的裂纹或缺陷,在外力作用下,这些裂纹和缺陷附近产生应力集中现象,当应力达到一定程度时,裂纹扩展而导致断裂,所以断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。

5、显微结构对材料脆性断裂的影响:(1)晶粒尺寸:晶粒愈小愈细,强度愈高。(2)气孔的影响:无机材料的弹性模量和强度都随气孔率的增加而降低。

6、判断裂纹的稳定性?

当(dw

e /2dc)<(dw

s

/2dc)时,为稳定状态,裂纹不会扩展;反之,当(dw

e

/2dc)>(dw

s

/2dc) 时,裂纹失稳,

迅速扩展;当(dw

e /2dc)=(dw

s

/2dc)时,为临界状态。

7、K

I

是反应裂纹尖端应力场强度的强度因子,应力场强度因子小于等于材料的平面应变断裂韧性,设计的构件是安全的。

8、强化复合材料的注意的几个原则:

(1)使纤维尽可能多地承担外加负荷。(2)二者的结合强度适当,否则基体中所承受的应力无法传递到纤维上。(3)应力作用的方向应与纤维平行,才能发挥纤维的作用,因此注意纤维在基体中的排列。(4)纤维与基体的热膨胀系数匹配,最好是纤维的热膨胀系数略大于基体的。(5)考虑纤维和基体二者在高温下的化学相容性

9、对热稳定性影响的主要因素是什么?其特点是什么?并解释该名词?

主要因素是热应力,特点(1)与外力不同,(2)存在材料内部

热应力:电子材料热膨胀后收缩引起的内应力

10、透明陶瓷的特点?

(1)高纯、高密、无气孔(2)晶粒尺寸小于入射光波长(3)无第二相或第二相的折射率与基质的折射率相差小(4)晶粒大小均匀

11、热膨胀的机理:固体材料的热膨胀本质,归结为点阵结构中的质点间碰均距离岁高度升高而增大。

两侧受力u对称情况越显著,平衡位置向右移动越多,相邻质点间平均距离就增加的越多,以质点在r

致晶胞参数增大,晶体膨胀。

12、热膨胀与结构的关系:由于玻璃的结构较疏松,内部的空隙较多,所以当温度升高,原子振幅加大,原子间距增大时,部分地被结构内部的空隙所容纳,而整个物体宏观的膨胀量就少些。

13、釉的膨胀系数比坯小,烧成后的制品在冷却过程中表面釉层的收缩比坯体小,使釉层中存在压应力,均与分布的预压应力能明显的提高脆性材料的力学强度。

14、固体材料热传导的微观机理:(1)把声子当作质点(2)格波的传播当作声子的运动(3)格波与物质的作用理解为声子与物质的碰撞(4)格波遇到的散射理解为声子与质点的碰撞,(5)理想晶体的热阻来源于声子与声子的碰撞

15、提高抗热冲击断裂性能的措施:提高材料强度,减小弹性模量、提高材料的热导率、减小材料的热膨胀系数、减小表面热传递系数、减小产品的有效厚度。

16、影响透光性的因素有哪些?

吸收系数、反射系数、散射系数(材料的宏观及显微缺陷、晶粒排列方向的影响、气孔引起的散射损失)17、提高无机材料透光性的措施:

(1)提高原材料的纯度(2)参加外加剂,降低气孔率(3)原料适当预烧(4)控制烧成温度,防止二次重结晶(5)热压烧结(6)表面抛光

18、选择乳浊剂原则有哪些?

(1)颗粒及基体材料的折射率数值应当有较大的差别(2)颗粒尺寸应当和入射波长约略相等(3)颗粒的体积分数要高

19、影响半透明性的因素有哪些?

1、防止裂纹扩展措施(4分):

A、使用应力不超过临界应力σc。

B、在材料中设置吸收能量的机构,阻止裂纹扩展。

C、人为地在材料中造成大量极微细的小于临界尺寸的裂纹,也可吸收能量,阻止裂纹的扩展。

20、(1)热膨胀与结合能和熔点的关系:结合能、熔点越高,则热膨胀系数较小;(2)热膨胀与温度、热容的关系:温度越高、热容越大,热膨胀系数越大;(3)热膨胀和结构的关系:通常结构紧密的晶体膨胀系数较大,而类似于无定形的玻璃,则往往有较小的膨胀系数。

21.结合双碱效应、压碱效应说明如何让降低玻璃的电导率:

双碱效应:玻璃中碱金属离子浓度较大时,碱金属总离子浓度相同的前提下。含两种碱金属比含一种的玻璃电导率要小,当两种碱金属离子比例适当,电导率可降低到很低。

压碱效应:含碱玻璃中加入二价金属氧化物,尤其是重金属氧化物,可使玻璃电导率降低。

所以加入碱金属离子或二价金属氧化物,重金属氧化物可降低玻璃的电导率。

无机材料物理性能习题解答

这有答案,大家尽量出有答案的题材料物理性能 习题与解答 吴其胜 盐城工学院材料工程学院 2007,3

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) (0114.010 5.310101401000940000cm E A l F l E l l =?????=??= ?=?=?-σ ε0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100=-=?=A A l l ε名义应变) (99510 524.44500 6 MPa A F T =?= = -σ真应力

1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(210 5.3) 1(28 8 MPa Pa E G ≈?=+?= += μ剪切模量) (390)(109.3) 7.01(310 5.3) 21(38 8 MPa Pa E B ≈?=-?= -=μ体积模量. ,. ,112 1 2 1 2 1 2 1 2 1 2 1 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝=== = ∝= = = =??? ? ? ?亦即做功或者:亦即面积εε εε εε εσεσεσ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(11 2211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-= e e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为

材料物理性能考试复习资料

1. 影响弹性模量的因素包括:原子结构、温度、相变。 2. 随有温度升高弹性模量不一定会下降。如低碳钢温度一直升到铁素体转变为 奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。 3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。 4. 弹性系数Ks 的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合 力。对于一定的材料它是个常数。 弹性系数Ks 和弹性模量E 之间的关系:它们都代表原子之间的结合力。因为建立的模型不同,没有定量关系。(☆) 5. 材料的断裂强度:a E th /γσ= 材料断裂强度的粗略估计:10/E th =σ 6. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近 绝对零度时,热容按T 的三次方趋近与零的试验结果。 7. 德拜温度意义: ① 原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温 度θD 来划分这两个温度区域: 在低θD 的温度区间,电阻率与温度的5次方成正比。 在高于θD 的温度区间,电阻率与温度成正比。 ② 德拜温度------晶体具有的固定特征值。 ③ 德拜理论表明:当把热容视为(T/θD )的两数时,对所有的物质都具有 相同的关系曲线。德拜温度表征了热容对温度的依赖性。本质上, 徳拜温度反应物质内部原子间结合力的物理量。 8. 固体材料热膨胀机理: (1) 固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升 高而增大。 (2) 晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。随着温度升 高,热缺陷浓度呈指数增加,这方面影响较重要。 9. 导热系数与导温系数的含义: 材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。 即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度”(☆) 10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震 性。 热稳定性破坏(即抗热振性)的类型有两种:抗热冲击断裂性和抗热冲击损伤性。 11. 提高材料抗热冲击断裂性能的措施 ①提高材料强度σ,减小弹性模量E ,σ/E 增大,即提高了材料柔韧性,这样可吸收较多的应变能而不致于开裂。晶粒较细,晶界缺陷小,气孔少且分散者,强度较高,抗热冲击断裂性较好。

无机材料物理性能试题

无机材料物理性能试题及答案

无机材料物理性能试题及答案 一、填空题(每题2分,共36分) 1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。 2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的 热容-温度曲线基本一致。 3、离子晶体中的电导主要为离子电导。可以分为两类:固有离子电导(本征 电导)和杂质电导。在高温下本征电导特别显著,在低温下杂质电导最为显著。 4、固体材料质点间结合力越强,热膨胀系数越小。 5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。电子电导为主的陶瓷材料,因 电子迁移率很高,所以不存在空间电荷和吸收电流现象。 6、导电材料中载流子是离子、电子和空位。 7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料 中载流子的类型。 8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的 小。在高温下,二者的导热率比较接近。 9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增 大。 10. 电导率的一般表达式为 ∑ = ∑ = i i i i i q nμ σ σ 。其各参数n i、q i和μi的含义分别 是载流子的浓度、载流子的电荷量、载流子的迁移率。 11. 晶体结构愈复杂,晶格振动的非线性程度愈大。格波受到的 散射大,因此声子的平均自由程小,热导率低。 12、波矢和频率之间的关系为色散关系。 13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。 14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。 15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。 16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。 用高反射率,厚釉层和高的散射系数,可以得到良好的乳浊效果。 17、材料的折射随着入射光的频率的减少(或波长的增加)而减少的性质,称为折射率的色散。

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

材料物理性能复习总结

1、 ?拉伸曲线: ?拉伸力F-绝对伸长△L的关系曲线。 ?在拉伸力的作用下,退火低碳钢的变形过程四个阶段: ?1)弹性变形:O~e ?2)不均匀屈服塑性变形:A~C ?3)均匀塑性变形:C~B ?4)不均匀集中塑性变形:B~k ?5)最后发生断裂。k~ 2、弹性变形定义: ?当外力去除后,能恢复到原形状或尺寸的变形-弹性变形。 ?弹性变形的可逆性特点: ?金属、陶瓷或结晶态的高分子聚合物:在弹性变形内,应力-应变间具有单值线性 关系,且弹性变形量都较小。 ?橡胶态高分子聚合物:在弹性变形内,应力-应变间不呈线性关系,且变形量较大。 ?无论变形量大小和应力-应变是否呈线性关系,凡弹性形变都是可逆变形。 3、弹性比功:(弹性比能、应变比能),用a e 表示, ?表示材料在弹性变形过程中吸收弹性变形功的能力。 ?一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。 ?物理意义:吸收弹性变形功的能力。 ?几何意义:应力σ-应变ε曲线上弹性阶段下的面积。 4、理想弹性材料:在外载荷作用下,应力-应变服从虎克定律,即σ=Eε,并同时满足3个条件,即: ?①应变对于应力的响应是线性的; ?②应力和应变同相位; ?③应变是应力的单值函数。

?材料的非理想弹性行为: ?可分为滞弹性、伪弹性及包申格效应等几种类型 5、滞弹性(弹性后效) ?滞弹性:是指材料在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹 性应变的现象。 6、实际金属材料具有滞弹性。 ?1)单向加载弹性滞后环 ?在弹性区内单向快速加载、卸载时,加载线与卸载线会不重合(应力和应变不同步), 形成一封闭回线,称为弹性滞后环。 ?2)交变加载弹性滞后环 ?交变载荷时,若最大应力<宏观弹性极限,加载速率比较大,则也得到弹性滞后环(图 b)。 ?3)交变加载塑性滞后环 ?交变载荷时,若最大应力>宏观弹性极限,则得到塑性滞后环(图c)。 7、材料存在弹性滞后环的现象说明:材料加载时吸收的变形功> 卸载时释放的变形功,有一部分加载变形功被材料所吸收。 ?这部分在变形过程中被吸收的功,称为材料的内耗。 ?内耗的大小:可用滞后环面积度量。 8、金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的“内耗”。 ?严格说,循环韧性与内耗是有区别的,但有时常混用。 ?循环韧性: ?指材料在塑性区内加载时吸收不可逆变形功的能力。 ?内耗: ?指材料在弹性区内加载时吸收不可逆变形功的能力 9、循环韧性:也是金属材料的力学性能,因它表示在交变载荷(振动)下吸收不可逆变形功的能力,故又称为消振性。 ?材料循环韧性越高,则自身的消振能力就越好。 ?高的循环韧性可减振:如汽轮机叶片(1Cr13),机床材料、发动机缸体、底座等选 用灰铸铁制造。 ?低循环韧性可提高其灵敏度:如仪表和精密机械、重要的传感元件。 ?乐器所用材料的循环韧性越低,则音质越好。 10、伪弹性有些合金如(Au金-Cd镉,In铟-Tl铊等)在受一定应力时会诱发形成马氏体,相应地产生应变,应力去除后马氏体立即逆变为母相,应变回复 11、当材料所受应力超过弹性极限后,开始发生不可逆的永久变形,又称塑性变形。 12、单晶体受力后,外力在任何晶面上都可分解为正应力和切应力。 ?正应力:只能引起弹性变形及解理断裂。 ?只有在切应力的作用下,金属晶体才能产生塑性变形。 13、金属材料常见的塑性变形方式:滑移和孪生两种。 14、滑移现象: ?表面经抛光的金属单晶体在拉伸时,当应力超过屈服强度时,在表面会出现一些与 应力轴成一定角度的平行细线。 ?在显微镜下,此平行细线是一些较大的台阶(滑移带)。 ?滑移带:又是由许多小台阶组成,此小台阶称为滑移线

无机材料物理性能题库(2)综述

名词解释 1.应变:用来描述物体内部各质点之间的相对位移。 2.弹性模量:表征材料抵抗变形的能力。 3.剪切应变:物体内部一体积元上的二个面元之间的夹角变化。 4.滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动,就叫滑移. 5.屈服应力:当外力超过物理弹性极限,达到某一点后,在外力几乎不增加的情况下,变形骤然加快,此点为屈服点,达到屈服点的应力叫屈服应力。 6.塑性:使固体产生变形的力,在超过该固体的屈服应力后,出现能使该固体长期保持其变形后的形状或尺寸,即非可逆性。 7.塑性形变:在超过材料的屈服应力作用下,产生变形,外力移去后不能恢复的形变。 8.粘弹性:一些非晶体和多晶体在比较小的应力时,可以同时变现出弹性和粘性,称为粘弹性. 9.滞弹性:弹性行为与时间有关,表征材料的形变在应力移去后能够恢复但不能立即恢复的能力。 10.弛豫:施加恒定应变,则应力将随时间而减小,弹性模量也随时间而降低。 11.蠕变——当对粘弹性体施加恒定应力,其应变随时间而增加,弹性模量也随时间而减小。 12.应力场强度因子:反映裂纹尖端弹性应力场强弱的物理量称为应力强度因子。它和裂纹尺寸、构件几何特征以及载荷有关。 13.断裂韧性:反映材料抗断性能的参数。 14.冲击韧性:指材料在冲击载荷下吸收塑性变形功和断裂功的能力。 15.亚临界裂纹扩展:在低于材料断裂韧性的外加应力场强度作用下所发生的裂纹缓慢扩展称为亚临界裂纹扩展。 16.裂纹偏转增韧:在扩展裂纹剪短应力场中的增强体会导致裂纹发生偏转,从而干扰应力场,导致机体的应力强度降低,起到阻碍裂纹扩展的作用。 17.弥散增韧:在基体中渗入具有一定颗粒尺寸的微细粉料达到增韧的效果,称为弥散增韧。 18.相变增韧:利用多晶多相陶瓷中某些相成份在不同温度的相变,从而达到增韧的效果,称为相变增韧。 19.热容:分子热运动的能量随着温度而变化的一个物理量,定义为物体温度升高1K所需要的能量。 20.比热容:将1g质量的物体温度升高1K所需要增加的热量,简称比热。 21.热膨胀:物体的体积或长度随温度升高而增大的现象。 热传导:当固体材料一端的温度笔另一端高时,热量会从热端自动地传向冷端。22.热导率:在物体内部垂直于导热方向取两个相距1米,面积为1平方米的平行平面,若两个平面的温度相差1K,则在1秒内从一个平面传导至另一个平面的热量就规定为该物质的热导率。 23.热稳定性:指材料承受温度的急剧变化而不致破坏的能力,又称为抗热震性。 24.抗热冲击断裂性:材料抵抗温度急剧变化时瞬时断裂的性能。 25.抗热冲击损伤性:材料抵抗热冲击循环作用下缓慢破坏的性能。 26.热应力:材料热膨胀或收缩引起的内应力。 27.声频支振动:振动的质点中包含频率甚低的格波时,质点彼此间的位相差不

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

材料物理性能复习总结

第一章电学性能 1.1 材料的导电性 ,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。ρ的倒数σ称为电导率。 一、金属导电理论 1、经典自由电子理论 在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。 2、量子自由电子理论 金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。 0K时电子所具有最高能态称为费密能E F。 不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻。 马基申定则:′,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻′。 3、能带理论 能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。 图1-1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。 图1-1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体。

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

材料物理性能思考题

材料物理性能思考题 第一章:材料电学性能 1如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 2 经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 3 自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 4 根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、 简并度、能态密度、k空间、等幅平面波和能级密度函数。 5 自由电子近似下的等能面为什么是球面?倒易空间的倒易节点数与不含自旋 的能态数是何关系?为什么自由电子的波矢量是一个倒易矢量? 6 自由电子在允许能级的分布遵循何种分布规律?何为费米面和费米能级?何 为有效电子?价电子与有效电子有何关系?如何根据价电子浓度确定原子的费米半径? 7 自由电子的平均能量与温度有何种关系?温度如何影响费米能级?根据自由 电子近似下的量子导电理论,试分析温度如何影响材料的导电性。 8 自由电子近似下的量子导电理论与经典导电理论在欧姆定律的微观解释方面 有何异同点?

9 何为能带理论?它与近自由电子近似和紧束缚近似下的量子导电理论有何关 系? 10 孤立原子相互靠近时,为什么会发生能级分裂和形成能带?禁带的形成规律 是什么?何为材料的能带结构? 11 在布里渊区的界面附近,费米面和能级密度函数有何变化规律?哪些条件下 会发生禁带重叠或禁带消失现象?试分析禁带的产生原因。 12 在能带理论中,自由电子的能量和运动行为与自由电子近似下有何不同? 13 自由电子的能态或能量与其运动速度和加速度有何关系?何为电子的有效质 量?其物理本质是什么? 14 试分析、阐述导体、半导体(本征、掺杂)和绝缘体的能带结构特点。 15 能带论对欧姆定律的微观解释与自由电子近似下的量子导电理论有何异同 点? 16 解释原胞、基矢、基元和布里渊区的含义

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

材料物理性能-复习资料

第二章材料的热学性能 热容:热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。 不同温度下,物体的热容不一定相同,所以在温度T时物体的热容为: 物理意义:吸收的热量用来使点阵振动能量升高,改变点阵运动状态,或者还有可能产生对外做功;或加剧电子运动。 晶态固体热容的经验定律: 一是元素的热容定律—杜隆-珀替定律:恒压下元素的原子热容为25J/(K?mol); 二是化合物的热容定律—奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。 热差分析:是在程序控制温度下,将被测材料与参比物在相同条件下加热或冷却,测量试样与参比物之间温差(ΔT)随温度(T)时间(t)的变化关系。 参比物要求:应为热惰性物质,即在整个测试的温度范围内它本身不发生分解、相变、破坏,也不与被测物质产生化学反应同时参比物的比热容,热传导系数等应尽量与试样接近。 第三章材料的光学性能 四、选择吸收:同一物质对各种波长的光吸收程度不一样,有的波长的光吸收系数可以非常大,而对另一波长 的吸收系数又可以非常小。 均匀吸收:介质在可见光范围对各种波长的吸收程度相同。 金属材料、半导体、电介质产生吸收峰的原因 (1)金属对光能吸收很强烈,这是因为金属的价电子 处于未满带,吸收光子后即呈激发态,用不着跃迁到导 带即能发生碰撞而发热。(2)半导体的禁带比较窄, 吸收可见光的能量就足以跃迁。(3)电介质的禁带宽, 可见光的能量不足以使它跃迁,所以可见光区没有吸收 峰。紫外光区能量高于禁带宽度,可以使电介质发生跃 迁,从而出现吸收峰。电介质在红外区也有一个吸收峰, 这是因为离子的弹性振动与光子辐射发生谐振消耗能量所致。 第六章材料的磁学性能 一、固有磁矩产生的原因 原子固有磁矩由电子的轨道磁矩和电子的自旋磁矩构成,电子绕原子核运动,产生轨道磁矩;电子的自旋也产生自旋磁矩。当电子层的各个轨道电子都排满时,其电子磁矩相互抵消,这个电子层的磁矩总和为零。原子中如果有未被填满的电子壳层,其电子的自旋磁矩未被抵消(方向相反的电子自旋磁矩可以互相抵消),原子就具有“永久磁矩”。 二、抗磁性与顺磁性 抗磁性:轨道运动的电子在外磁场作用下产生附加的且与外磁场反向的磁矩。 产生原因:外加磁场作用下电子绕核运动所感应的附加磁矩造成的。 顺磁性:材科的顺磁性来源于原子的固有磁矩。 产生原因:因为存在未填满的电子层,原子存在固有磁矩,当加上外磁场 时,为了降低静磁能,原子磁矩要转向外磁场方向,结果使总磁矩不为零而表 现出磁性。 三、强顺磁性:过渡族金属在高温都属于顺磁体,这些金属的顺磁性主要是由 于3d, 4d, 5d电子壳层未填满,而d和f态电子未抵消的磁矩形成晶体离子 构架的固有磁矩,因此产生强烈的顺磁性。 四、磁化曲线、磁滞回线

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

东南大学-材料物理性能复习题(2008)

材料物理性能复习题 第一章 1、C v 、C p 和c 的定义。C pm 和C vm 的关系,实际测量得到的是何种量?Cvm 与温度(包括ΘD )的关系。自由电子对金属热容的贡献。合金热容的计算。 2、哪些相变属于一级相变和二级相变?其热容等的变化有何特点? 3、撒克斯法测量热容的原理。何谓DTA 和DSC ?DTA 测量对标样有何要求?如何根据DTA 曲线及热容变化曲线判断相变的发生及热效应(吸热或放热)? 4、线膨胀系数和体膨胀系数的表达式及两者的关系。证明c b a v αααα++=(采用与教材不同的方法) 5、金属热膨胀的物理本质。热膨胀和热容与温度(包括ΘD )的关系有何类似之处?为何金属熔点越高其膨胀系数越小?为何化合物和有序固溶体的膨胀系数比固溶体低?奥氏体转变为铁素体时体积的变化及机理。膨胀测量时对标样有何要求? 6、比容的定义(单位重量的体积,为密度的倒数)。奥氏体、珠光体、马氏体和渗碳体的比容相对大小。 7、钢在共析转变时热膨胀曲线的特点及机理。如何根据冷却膨胀曲线计算转变产物的相对量? 8、傅里叶定律和热导率、热量迁移率。导温系数的表达式及物理意义。 9、金属、半导体和绝缘体导热的物理机制。魏德曼-弗兰兹定律。 10、何谓抗热冲击断裂性和抗热冲击损伤性?热应力是如何产生的,与哪些因素有关?提高材料的抗热冲击断裂性可采取哪些措施? 第二章 1、电阻、电阻率、电导率及电阻温度系数的定义及相互关系。 2、电阻的物理意义。为何温度升高、冷塑性变形和形成固溶体使金属的电阻率增加,形成有序固溶体使电阻率下降?马基申定律的表达式及各项意义。为何纯金属的电阻温度系数较其合金大?如何获得电阻温度系数很低的精密电阻合金? 3、对层片状组织,证明教材中的关系式(2.25)和(2.26)。 4、双电桥较单电桥有何优点?用电位差计测量电阻的原理。用电阻分析法测定铝铜合金时效和固溶体的溶解度的原理。 5、何谓本征半导体?其载流子为何?证明关系式J=qnv 和ρ=E/J (J 和E 分别为电流密度和电场强度)。 6、为何掺杂后半导体的导电性大大增强?为何有电子型和空穴型两种半导体。N 型和P 型半导体中的多子和少子。为何PN 结有单向导电性? 7、温差电势和接触电势的物理本质,热电偶的原理。 8、何谓压电效应?电偶极矩的概念。压电性产生的机理。 9、何谓霍尔效应和霍尔系数?推导出教材中的关系式(2.83)~(2.85)。如何根据霍尔效应判断半导体中载流子是电子还是空穴? 第三章 1、M 、P m 的关系。M 、H 的关系。μ0,μ,χ的概念。B 、H 的关系。磁化曲线

相关文档