文档库 最新最全的文档下载
当前位置:文档库 › 雷达数据处理在空中交通管制系统中的应用

雷达数据处理在空中交通管制系统中的应用

雷达数据处理在空中交通管制系统中的应用
雷达数据处理在空中交通管制系统中的应用

雷达数据处理在空中交通管制系统中的应用

随着近年来国内航班流量的飞速增长,空中交通管制系统已经成为必不可少的一种技术手段,其不仅能够提供实时的空中交通态势显示,更关键的是能够有效地提醒管制员现在已经发生或者未来可能发生的飞行冲突和各类告警信息。雷达数据处理的主要任务就是通过雷达收集到的目标信息估算出相应目标的航迹,同时预测该目标将来的信息,空管系统就是它的一个重要应用领域,图1给出了两者结合的一个流程。在空管系统中,估算和预测目标的航迹并不是不是最终的目的,相关数据可以用于指挥飞机、保持间隔、控制航路航线、控制进离场程序、飞行冲突告警、最低安全高度告警和测量距离等等。

一、雷达数据处理在空管系统中的主要作用及构成

空管系统通过准确地定位及识别每一架航班,从而辅助民航空管管制员在各种气象条件下二十四小时不间断地监视空中的航班。用于民航空管系统的雷达主要被分为空管一次雷达和空管二次雷达。为了节约投资和场地,也可以将一次雷达的天线安装在二类雷达天线的上方,共用旋转铰链、马达和伺服机构等等。这样的配置方式能够结合一次雷达可以主动发现目标和二次雷达作用距离远、稳定可靠、编码信息丰富的优点,对于繁忙的机场或航线十分合适。空管系统是一个完备而复杂的整体系统,不仅包括技术资源和操作管理,还包括维护

人员和管理机构。这些构成元素均是为了保障安全有序并且高效的空中交通。它们能够更加合理的调配有限的空域资源、尽量缩短航班等待以及延误的时间、尽量选择经济节约的高度或者航线飞行,最终达到节约资金和提高服务质量的目的。

二、雷达数据处理的步骤和要求

在数据处理的过程中,第一步,需要对获得的雷达点迹数据进行必要的预处理,可以实时地修正测量数据中包含的系统误差,去掉固定的目标,保证在一定的虚警概率下尽可能地提高发现概率。第二步,针对点迹进行统一的坐标转换和数据格式转换。第三步,对比处理后的点迹数据和现存的航迹数据,进行航迹起始、航迹关联、跟踪滤波、航迹终止等操作。最后将航迹信息传送给空管自动化系统,并呈现给管制员。雷达数据处理需要满足以下的要求。

1、系统具备高可靠性和可用性。假设发生低等级故障时,整个系统必须能够正常工作;假设发生高等级故障时,整个系统必须能够按照降级的模式工作;假设局部设备故障,整个系统必须能够重新组合。

2、系统具备较高的自动化水平。要慎重考虑那些需要自动化的功能,既要避免系统过于复杂,还要避免操作过于复杂。

3、系统操作需要模块化和可扩展性。这样可以方便添加或者移除某些功能,使系统能够适应不同的航路管理和机场地面管理等。

雷达大数据处理步骤及效果展示

雷达数据处理步骤及效果展示 一、隧道衬砌质量检测数据处理步骤 1、打开软件RADAN,选择文件夹View→Customize→Directories; 2、打开文件File→Open(*.dzt); 3、扫描信息预编辑:选择一段扫描剖面,切除多余扫描信息Cut,保存特定扫描剖面; 4、文件测量方向反转:打开文件,选择File→Save As ,打勾,另存; 5、距离信息编辑:(1)编辑文件头内的距离信息Edit→File Header, 扫描/ 米[scans/m], 米/标记[m/mark],(2)编辑用户标记,(3)距离归一化处理; 6、里程编辑:Edit→File Header →3D option→X start输入里程起点坐标; 7、水平幅度调整:Process→Horizontal scale(叠加stacking、抽道skipping、加密stretching); 8、调整地面反射信号位置:方法有两种,(1)Edit→File Header→position(ns),(2)Process→Correct Position→delta pos (ns); 9、介电常数调整:利用经验或钻孔获得介电常数,通过Edit→File Header→DielConstant调整; 10、增益调整:Process→Range Gain,增益点数易选5个; 11、水平滤波:Process→FIR Filter; 12、背景去除:Process→FIR Filter; 13、一维频率滤波Process→IIR Filter; 14、反褶积、一维频率滤波:Process→Deconvolution;Process→IIR Filter; 15、文件拼接:选择File→Append files;

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

数据库期末考试名词解释

1. 概念模式 是数据库中全部数据的整体逻辑结构的描述。它由若干个概念记录类型组成。概念模式不仅要描述概念记录类型,还要描述记录间的联系、操作、数据的完整性、安全性等要求。? 2. X封锁 如果事务T对数据R实现X封锁,那么其他的事务要等T解除X封锁以后,才能对这个数据进行封锁。只有获准X封锁的事务,才能对被封锁的数据进行修改。? 3. 复制透明性 即用户不必关心数据库在网络中各个结点的数据库复制情况,更新操作引起的波及由系统去处理。 4. 主属性 包含在任何一个候选键中的属性。 5. 事务的原子性 一个事务对数据库的操作是一个不可分割的操作系列,事务要么完整地被全部执行,要么全部不执行。 1. DML 数据操纵语言(Data Manipulation Language),由DBMS提供,用于让用户或程序员使用,实现对数据库中数据的操作。DML分成交互型DML和嵌入型DML两类。依据语言的级别,DML 又可分成过程性DML 和非过程性DML两种。 2. S封锁 共享型封锁。如果事务T对某数据R加上S封锁,那么其它事务对数据R的X封锁便不能成功,而对数据R的S封锁请求可以成功。这就保证了其他事务可以读取R但不能修改R,直到事务T释放S封锁。? 3. 分布式DBS 是指数据存放在计算机网络的不同场地的计算机中,每一场地都有自治处理能力并完成局部应用; 而每一场地也参与(至少一种)全局应用程序的执行,全局应用程序可通过网络通信访问系统中的多个场地的数据。 4.事务 数据库系统的一个操作系列,这些操作或者都做,或者都不做,是一个不可分割的工作单位 5. 丢失更新 当两个或以上的事务同时修改同一数据集合时,由于并发处理,使得某些事务对此数据集合的修改被忽视了. 1. 实体完整性规则 这条规则要求关系中元组在组成主键的属性上不能有空值。如果出现空值,那么主键值就起不了唯一标识元组的作用。 1. 域和元组 在关系中,每一个属性都有一个取值范围,称为属性的值域,简称域;记录称为元组。元组对应表中的一行;表示一个实体。? 2. 无损联接 设R是一关系模式,分解成关系模式ρ={R1,R2...,Rk},F是R上的一个函数依赖集。如果对R中满足 F 的每一个关系r都有r=πR1(r)πR2(r)... πRk(r)则称这个分解相对于F 是"无损联接分解"。 3. 事务的原子性?

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

数据挖掘中的名词解释

第一章 1,数据挖掘(Data Mining),就是从存放在数据库,数据仓库或其他信息库中的大量的数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。 2,人工智能(Artificial Intelligence)它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。 3,机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 4,知识工程(Knowledge Engineering)是人工智能的原理和方法,对那些需要专家知识才能解决的应用难题提供求解的手段。 5,信息检索(Information Retrieval)是指信息按一定的方式组织起来,并根据信息用户的需要找出有关的信息的过程和技术。 6,数据可视化(Data Visualization)是关于数据之视觉表现形式的研究;其中,这种数据的视觉表现形式被定义为一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。 7,联机事务处理系统(OLTP)实时地采集处理与事务相连的数据以及共享数据库和其它文件的地位的变化。在联机事务处理中,事务是被立即执行的,这与批处理相反,一批事务被存储一段时间,然后再被执行。 8, 联机分析处理(OLAP)使分析人员,管理人员或执行人员能够从多角度对信息进行快速 一致,交互地存取,从而获得对数据的更深入了解的一类软件技术。8,决策支持系统(decision support)是辅助决策者通过数据、模型和知识,以人机交互方式进行半结构化或非结构化决策的计算机应用系统。它为决策者提供分析问题、建立模型、模拟决策过程和方案的环境,调用各种信息资源和分析工具,帮助决策者提高决策水平和质量。 10,知识发现(KDD:Knowledge Discovery in Databases)是从数据集中别出有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程。 11,事务数据库(Transaction Database)一个事务数据库由文件构成,每条记录代表一个事务。 典型的事务包含唯一的事务标记,多个项目组成一个事务 12,分布式数据库(Distributed Database)是用计算机网络将物理上分散的多个数据库单元连接起来组成一个逻辑统一的数据库。 第三章 13,并行关联规则挖掘(Parallel Association Rule Mining)是指利用并行处理机,使用挖掘算法或在并行计算的环境下完成数据的高效挖掘工作。 14,数量关联规则挖掘(Quantitive Association Rule Mining)对含有非离散的数值属性的数据进行挖掘的技术 14, 频繁项目集(Frequent Itemsets)对项目集I和事务数据库D,T中所有满足用户指定的最小支持度(Minsupport)的项目集,即大于或等于Minsupport的I的非空子集 15,最大频繁项目集(Maximum Frequent Itemsets)在频繁项目集中挑选出所有不被其他元素包含的频繁项目集 16,闭合项目集(Close Itemset)如果项目的直接超集都不具有和它相同的支持度技术则该项目是闭合的 17,多层次关联规则:具有概念分层的关联规则挖掘产生的规则称为多层关联规则。 18,多维关联规则:在关联规则中的项或属性每个涉及多个维,则它就是多维关联规则。

大数据处理技术的总结与分析

数据分析处理需求分类 1 事务型处理 在我们实际生活中,事务型数据处理需求非常常见,例如:淘宝网站交易系统、12306网站火车票交易系统、超市POS系统等都属于事务型数据处理系统。这类系统数据处理特点包括以下几点: 一就是事务处理型操作都就是细粒度操作,每次事务处理涉及数据量都很小。 二就是计算相对简单,一般只有少数几步操作组成,比如修改某行得某列; 三就是事务型处理操作涉及数据得增、删、改、查,对事务完整性与数据一致性要求非常高。 四就是事务性操作都就是实时交互式操作,至少能在几秒内执行完成; 五就是基于以上特点,索引就是支撑事务型处理一个非常重要得技术. 在数据量与并发交易量不大情况下,一般依托单机版关系型数据库,例如ORACLE、MYSQL、SQLSERVER,再加数据复制(DataGurad、RMAN、MySQL数据复制等)等高可用措施即可满足业务需求。 在数据量与并发交易量增加情况下,一般可以采用ORALCERAC集群方式或者就是通过硬件升级(采用小型机、大型机等,如银行系统、运营商计费系统、证卷系统)来支撑. 事务型操作在淘宝、12306等互联网企业中,由于数据量大、访问并发量高,必然采用分布式技术来应对,这样就带来了分布式事务处理问题,而分布式事务处理很难做到高效,因此一般采用根据业务应用特点来开发专用得系统来解决本问题。

2数据统计分析 数据统计主要就是被各类企业通过分析自己得销售记录等企业日常得运营数据,以辅助企业管理层来进行运营决策。典型得使用场景有:周报表、月报表等固定时间提供给领导得各类统计报表;市场营销部门,通过各种维度组合进行统计分析,以制定相应得营销策略等. 数据统计分析特点包括以下几点: 一就是数据统计一般涉及大量数据得聚合运算,每次统计涉及数据量会比较大。二就是数据统计分析计算相对复杂,例如会涉及大量goupby、子查询、嵌套查询、窗口函数、聚合函数、排序等;有些复杂统计可能需要编写SQL脚本才能实现. 三就是数据统计分析实时性相对没有事务型操作要求高。但除固定报表外,目前越来越多得用户希望能做做到交互式实时统计; 传统得数据统计分析主要采用基于MPP并行数据库得数据仓库技术.主要采用维度模型,通过预计算等方法,把数据整理成适合统计分析得结构来实现高性能得数据统计分析,以支持可以通过下钻与上卷操作,实现各种维度组合以及各种粒度得统计分析。 另外目前在数据统计分析领域,为了满足交互式统计分析需求,基于内存计算得数据库仓库系统也成为一个发展趋势,例如SAP得HANA平台。 3 数据挖掘 数据挖掘主要就是根据商业目标,采用数据挖掘算法自动从海量数据中发现隐含在海量数据中得规律与知识。

数据处理内容.

数据处理内容 1.标准曲线 作标准曲线时,对于可控性差的实验,可点数应多一些;对于可控性较的实验,取点数可少一些,但不应少于五个点。 r值应根据具体实验的要求,既要满足特定实验的要求,又不能过分人为的提高r值。 标准曲线完成后,检测样品时,测定值应落在标准曲线范围内。 2.有效数字 有效数字的保留应根据实验仪器的有效数字确定。 文字叙述中数字的表达应严谨,比如“精确称取2g样品”是一种典型错误,应表达为“精确称取2.0000g样品”,以表示所用天生秤为万分天秤。 再比如,1mL移液管的读数应为“0.683mL”,而不是“0.68mL”。 3.实验数据处理 实验数据的重复数应根据实验本身的要求决定。 对于可控性较差的实验,实验数据的重复数应增加;对于可控性较好的实验,实验数据的重复数可相应减少,但最少不应少于3个。 实验数据的表示方法应以“平均值(X)±标准差(SD)”表示,数据间应进行显著性分析,并标示出显著性水平和实验的重复数。比如: 表1 多酚对小鼠游泳竭耗实验的影响结果(X±SD) Table 1 Effects of polyphenol on swimming time of mice(X±SD) Group n Swimming time (s) Increase rate(%) 1 10 181.1±58.1 — 2 10 266.2±76.0ac47.0 3 10 354.7±103.9b95.9 4 10 261.7±62.1ac44.5

注:a:P<0.05,b :P<0.001,与1组相比较;c:P<0.05,与3组相比较 Note: a: P<0.05, b: P<0.001, compared with 1 group; c: P<0.05, compared with 3 group 对于表格中数字的描述也应标示其显著性水平。比如“第3组和第1组间有极著性差异”的说法是不完整的,应为“第3组和第1组间有极显著性差异(P<0.001)”。 对于正交实验,应根据极差分析和方差分析的结果综合考虑,以决定最终的结论,而不应只根据极差分析结果就得出结论。 对于论文中的图表应进行适当的说明,不应只把图表放在论文上,而不做任何说明。

地面雷达数据处理系统设计

地面雷达数据处理系统设计 摘要:针对目前地面雷达数据处理中存在的目标多,机动性强,地面杂波强,虚警率高等问题,采用并设计了解速度模糊、点迹凝聚、航迹处理等算法,结合软件编程技术,对信号处理后的数据进行综合处理,经过雷达外场鉴定试验测试,数据处理使雷达的发现概率、虚警率、方位距离精度、速度分辨力等指标各提高了约十个百分点。 0 引言 数据处理作为雷达系统的一个重要组成部分,可以看成是雷达信号处理的后处理过程,可以对信号处理后的数据进行筛选,并且从零星探测的小目标进行综合分析,消除由杂波、虚假目标、干扰目标、诱饵目标等造成的虚假检测,提高对目标的发现概率,降低虚警率,对目标建立航迹,并预测目标运动方向、位置的后果,其精度和可靠性都高于雷达的一次观测,改善雷达信号处理结果,使雷达的使用价值和性能得以提高。 早期的雷达数据处理方法有最小二乘法、现代滤波理论、Kalman滤波、机动目标跟踪方法等。目前对雷达数据处理的研究,特别是航迹处理部分,大多都是对付空中目标和海上目标的,这样的目标机动性不强,背景简单,容易预测航迹。而地面目标具有强机动性、情况复杂、目标种类繁多、同一范围内目标遮挡等环境干扰因素较多,这些对目标的检测、归并、凝聚、建航都提出了高的要求。需要对以前在航空和航海领域应用较多的航迹处理方法进行发展和完善,发展出适合强机动目标的改良算法。 随着信息技术的发展,雷达数据处理的研究有以下几个发展方向:弱小目标的自动跟踪,可利用帧间滤波、检测前跟踪和先进算法来提升自动跟踪性能;高速计算与并行处理;多传感器信息融合与控制一体化;搜索、跟踪、引导、识别与指挥一体化。 1 数据处理的系统设计 雷达数据处理采用计算机作为载体,通过编写数据处理软件来实现,计算机能够非常灵活地完成各种类型的数据处理工作;数据处理的软件化也能使整个雷达系统的兼容性和可扩展性更强,功能更完善,界面更友好。 数据处理软件完成的功能主要包括:采集数据(信号处理的目标数据、定北数据、定位数据),对信号处理后的目标数据进行格式转换、点迹凝聚等优选目标数据后形成更加准确、精确的目标点迹数据;对点迹数据进行航迹处理后形成目标的航迹;把处理后的目标点迹、航迹数据进行输出。数据处理功能。 在研究和参考已有雷达数据处理算法的基础上,对模拟目标数据、同类型其他雷达试验中录取的实际目标数据进行了仿真处理,根据处理结果,对已有算法进行修改完善,以适用本雷达技术特点和指标的要求。 2 点迹形成的算法设计 由于雷达波束在连续扫描时,波束波瓣有一定宽度,至少有好几个脉冲连续扫到目标,每个脉冲都对应一个方位值,同一目标被捕捉到多次,多次捕获目标时的方位值都不同,这就造成了方位角的分裂程度较大。因此需要把一次扫描中同一目标的多个点迹凝聚成一个点迹。先在距离上进行凝聚,得到水平波瓣内不同方位上的距离值;再在方位上凝聚,可获得惟一方位估计值;然后把距离值进行线性内插获得惟一的距离估计值。 (1)同一目标在距离上的凝聚处理,需将在距离上连续或间隔一个量化单元的点迹按照式(1)求取质心,将质心作为目标点迹的距离估计值: 式中:n为目标的点迹个数;Ri,Vi分别为第i个目标点迹的距离和回波幅度值。 (2)同一目标在方位上的凝聚处理,需将在方位上相邻的点迹按照式(2)求取质心,将质心作

数据处理名词解释

名词解释: 第一章 试验设计与数据处理:是以概率论、数理统计及线性代数为理论基础,研究如何有效的安排试验、科学的分析和处理试验结果的一门科学。 试验考察指标(experimental index):依据试验目的而选定的衡量或考察试验效果的特征值. 试验因素;对特征值产生影响的原因或要素. 因素水平:试验实际考虑采用的(某一)因素变化的状态或条件的种类数称为因素水平,简称水平。 局部控制(local control)原则:控制隐藏变量对反应的效应。 重复(replication)原则:重复试验于许多试验单位,以降低结果的机会变异 随机化(randomization)原则:随机化(Randomization)安排试验单位接受指定的处理。实验的目标特性(实验考察指标)目标特性:就是考察和评价实验结果的指标。 定量指标:可以通过实验直接获得,便于计算和进行数据处理。 定性指标:不易确定具体的数值,为便于用数学方法进行分析和处理,必须是将其数字化后进行计算和处理。 因素:凡是能影响实验结果的条件或原因,统称为实验因素(简称为因素)。 水平:因素变化的各种状态和条件称为因素的水平 总体、个体:我们所研究对象的某特性值的全体,叫做总体,又叫母体;其中的每个单元叫做个体。 子样(样本)、样本容量:自总体中随机抽出的一组测量值,称为样本,又叫子样。样本中所含个体(测量值)的数目,叫做样本容量,即样本的大小。 抽样:从总体中随机抽取若干个个体观测其某种数量指标的取值过程称为抽样。 样本空间:就样本而言,一次抽取、观测的结果是n个具体数据x1,x2,…,xn,称为样本(X1,X2,…X n)的一个观测值,而样本观测值所有可能取值的全体称为样本空间。 重复性:由一个分析者,在一个给定的实验室中,用一套给定的仪器,在短时间内,对某物理量进行反复定量测量所得的结果。也称为室内精密度。 再现性;由不同的实验室的不同分析者和仪器,共同对一个物理量进行定量测量的结果。也称室间精密度。 误差:测量值和真值的差数 偏差:测量值和平均值的差数。也叫离差。 偏差平方和:测量值对平均值的偏差的平方的加和,叫偏差平方和。 方差(variance):是测量值在其总体均值周围分布状况的一种量度,方差表征随机变量分布的离散程度。 总体方差的定义是:测量值对总体均值的误差的平方的统计平均 样本方差:只作过有限次测量的样本方差,通常用s2表示。s2是测量值对样本均值的偏差的平方的平均 标准偏差(标准差):方差的平方根的正值,叫标准偏差,或标准差 自由度:是指可以自由取值的数据的个数。 相对标准偏差(变异系数)(relative standard deviation, RSD):是样本标准偏差与平均值的比值,表示偏差值与平均值的相对大小。 第二章

大数据应用案例分析

在如今这个大数据的时代里,人人都希望能够借助大数据的力量:电商希望能够借助大数据进一步获悉用户的消费需求,实现更为精准的营销;网络安全从业者希望通过大数据更早洞悉恶意攻击者的意图,实现主动、超前的安全防护;而骇客们也在利用大数据,更加详尽的挖掘出被攻击目标信息,降低攻击发起的难度。 大数据应用最为典型的案例就是国外某著名零售商,通过对用户购买物品等数据的分析,向该用户——一位少女寄送了婴儿床与衣服的优惠券,而少女的家人在此前对少女怀孕的事情一无所知。大数据的威力正在逐步显现,银行、保险公司、医院、零售商等等诸多企业都愈发动力十足的开始搜集整理自己用户的各类数据资料。但与之相比极度落后的数据安全防护措施,却让骇客们乐了:如此重要的数据不仅可以轻松偷盗,而且还就是整理好的,凭借这些数据骇客能够发起更具“真实性”的欺诈攻击。好在安全防御者们也开始发现利用大数据抵抗各类恶意攻击的方法了。 扰动安全的大数据 2014年IDC在“未来全球安全行业的展望报告”中指出,预计到2020年信息安全市场规模将达到500亿美元。与此同时,安全威胁的不断变化、IT交付模式的多样性、复杂性以及数据量的剧增,针对信息安全的传统以控制为中心的方法将站不住脚。预计到2020年,60%的企业信息化安全预算将会分配到以大数据分析为基础的快速检测与响应的产品上。 瀚思(HanSight)联合创始人董昕认为,借助大数据技术网络安全即将开启“上帝之眼”模式。“您不能保护您所不知道的”已经成为安全圈的一句名言,即使部署再多的安全防御设备仍然会产生“不为人知”的信息,在各种不同设备产生的海量日志中发现安全事件的蛛丝马迹非常困难。而大数据技术能将不同设备产生的海量日志进行集中存储,通过数据格式的统一规整、自动归并、关联分析、机器学习等方法,自动发现威胁与异常行为,让安全分析更简单。同时通过丰富的可视化技术,将威胁及异常行为可视化呈现出来,让安全瞧得见。 爱加密CEO高磊提出,基于大数据技术能够从海量数据中分析已经发生的安全问题、病毒样本、攻击策略等,对于安全问题的分析能够以宏观角度与微观思路双管齐下找到问题根本的存在。所以,在安全领域使用大数据技术,可以使原本

专业雷达数据分析模块

专业雷达数据分析模块 PCI Geomatica 高级SAR数据滤波:包括增强的Frost, Lee, Kuan 滤波功能 极化SAR数据分析:读取、分析并校准JPL aircraft SAR Stokes和散射矩阵数据. SAR 数据校准:包括生产校准的后向散射系数和雷达亮度。 SAR 数据分析:包括特征提取和变化检测 EarthView 产品系列 EarthView 套装软件提供从航天SAR数据生成高质量影像、DEM及变形图的完整的软件包。套装软件目前由四个产品组成: 1) EarthView APP v3.1 -- 完整解释为The Advanced Precision Processor,可将原始航天SAR数据转换为高质量影像产品。 2) EarthView InSAR v3.1 -- 干涉测量工作站可从处理的航天SAR影像生成DEM及变形图。CTM模块-- EarthView InSAR v3.1新增了CTM模块,CTM InSAR用来对连续性的目标进行变化监测。 3) EarthView Hypac -- 高光谱处理软件包,用来进行大数据量的高光谱图像处理。 4) EarthView Stereo v3.1 -- 三维模块应用一对SAR影像,生成区域的数字地形高程模型。产品特点 Atlantis致力于现代化其生产线,提供新水平的集成与交互操作能力、改进的易用性、常用的“look and feel”、对所有支持平台的可移植性。产品的几个主要特点包括: 1) 采用多CPU增强生产的能力; 2) 更新的生产“look and feel”以确保直观的版面、更新的设计及改进的交互生产连贯性; 3) 新的借助于硬件加速能力的可视化技术; 4) 简化的安装和授权程序; 5) 教育版,包含所有操作模式,但只支持有限数量的训练数据(注意教育版只能在Windows NT/2000下操作)。

数据处理总结

第一章 本课程的主要内容 一、资料的整理及统计分析 平均数 标准差 标准误 二、显著性检验 1. 平均数间差异显著性检验 2. F 检验法 三、相关与回归 四、试验设计 五、Excel 、DPS 统计软件系统 常用术语 1. 总体与样本 总体( polulation )是指根据研究目的确定的、符合指定条件的研究对象的全体。它是由相同性质的(个体)成员所构成的集团。样本( sample )是指从总体中抽取一定数量的个体所组成的集合。 2. 参数与统计量 参数( parameter )是指由总体计算的用来描述总体的特征性数值。它是一个真值,通常用希腊字母表示。如总体 平均数以□表示,总体标准差以b表示。 统计量( statistics )是指由样本计算的用来描述样本的特征性数值。 3. 误差与错误

误差( error )是指试验中由无法控制的非试验因素所引起的差异。它是不可避免的,试验中只能设法减少,而不能 消除。 错误( mistake )是指试验过程中人为的作用所引起的差错,在试验中完全可以避免。 4. 精确性与准确性 精确性( precision )是指试验或调查中同一试验指标或性状的重复观察值彼此的接近程度。 准确性( accuracy )是指试验或调查中某一试验指标或性状的观察值(统计量)与真值(或总体参数)之间的接近程度。 5. 试验指标 在某项试验设计中,用来衡量试验效果的特征量称为试验指标,也称试验结果。试验指标可分为定量指标和定性指标两类。 6. 试验因素试验中对试验指标可能产生影响的原因或要素称为试验因素,也称为因子。 7. 因素水平试验中试验因素所处的各种状态或取值称为因素水平,简称水平。 8. 试验处理试验中各试验因素的水平所形成的一种具体组合方式称为试验处理,简称处理,是在试验单位上的一种具体实现。 9. 试验单位 在试验中能接受不同试验处理的试验载体叫做试验单位。 10. 重复 在一项试验中,将1 个处理在两个或两个以上的试验单位上实施的称为重复。1 个处理所实施的试验单位数称为处理的重复数,或者说某个水平组合重复n 次试验,这个处理的重复数就是n。 试验设计应遵循的基本原则重复随机化局部控制第二章 第一节样品的采集与前处理 一、资料的来源 经常性记录 试验研究记录 调查记录

2.2雷达、雷达数据处理技术指标

1 雷达子系统设备技术指标 (1)雷达天线 天线类型:X波段波导开缝天线 天线尺寸:≥18ft 天线增益:≥35dB 水平波宽:≤0.45°(-3dB) 垂直波宽:≥10° 天线转速:20r/min(转速可编程) 极化方式:水平线极化 付瓣电平:≤-26dB(±10°内) ≤-30dB(±10°外) 驻波比:≤1.25 马达:有保护、有告警 电源:380V/220V±10%,50Hz±5% (2)雷达收发机 发射功率:25kw 发射频率:9375±30MHz 脉冲宽度:40ns~80ns/250ns~1000ns可调 脉宽误差:≤10ns 脉冲前沿宽度:≤20ns 脉冲后沿宽度:≤30ns 重复频率:400~5000Hz可调 噪声系数:≤4dB 中放带宽:3~20MHz与脉冲宽度自适应 对数中放范围:≥120dB 镜像抑制:≥18dB

扇形发射区数:4 扇形发射分辨力:1° (3)雷达维修终端 CPU:最新双核处理器,主频率≥3.0GHz,支持二级缓存,二级缓存≥2M,处理器数量≥2 内存:≥2GB,支持ECC内存纠错技术 内存磁盘:≥120GB,接口SATA,转速≥10000rpm 主板:CPU插座与CPU匹配 内存插槽:≥3 外设接口:并口≥1,串口≥1,PS/2≥2,USB≥4显示器:液晶,17in,1280*1024 2

3雷达数据综合处理子系统设备技术指标 (1)雷达信号处理器 采样频率:≥60MHz 幅度量化:≥8bit 方位量化:≥8192 处理范围:≥30n mile(每个雷达站) 视频更新延迟时间:≤300ms 陆地掩膜单元:≤0.044° 杂波处理:相关处理、STC、CFAR及门限处理等(2)目标录取器 目标视频:数字视频(反映目标回波的大小、形状、幅度、运 动尾迹) 视频幅度:≥4bit 视频分辨力:≤3m(距离,最小值) ≤0.088°(方位,最小值) 标绘视频:计算目标的大小及轴向 最大模拟目标数:100个 (3)目标跟踪器 跟踪能力:≥700(动目标)+300(静目标) 跟踪性能:在跟踪目标航速≤70kn,跟踪目标加速度≤1kn/s, 跟踪目标转向率≤3o/s时,能保持稳定跟踪;在目 标航向和航速基本不变的情况下,当两个跟踪目标

大数据分析系统项目方案

大数据分析系统 方案

目录 第1章项目概述 (5) 1.1项目背景 (5) 1.2项目必要性 (5) 1.3建设目标 (6) 第2章需求分析 (8) 2.1功能及性能需求 (8) 2.2系统集成需求 (9) 2.3运行环境 (10) 2.4安全需求 (10) 第3章总体设计 (12) 3.1总体设计原则 (12) 3.2总体目标 (13) 3.3系统总体结构 (13) 3.4系统逻辑结构 (15) 第4章详细设计方案 (16) 4.1信息资源规划和数据库设计 (16) 4.1.1数据模型概述 (16) 4.1.2数据建模方法论 (17) 4.1.3数据建模基本原则 (18) 4.1.4数据库架构设计 (19) 4.2数据应用支撑系统设计 (21) 4.2.1大数据平台关键技术 (21) 4.2.2云平台数据共享功能 (26) 4.3数据服务层计 (33) 4.3.1模型的应用 (33) 4.3.2平台基础应用 (33) 4.4数据处理和存储系统设计 (34) 4.4.1大数据处理核心技术 (35) 4.4.2数据存储采用MPP与hadoop融合架构 (35) 4.5网络系统设计 (35) 4.6安全系统设计 (36) 4.6.1系统安全满足情况 (36) 4.6.2系统安全配置管理功能 (37) 4.6.3系统无安全漏洞保障 (40) 4.6.4软件自身安全 (43) 4.6.5性能和可靠性 (44) 4.7运行维护系统设计 (46)

4.7.2网络设备管理 (46) 4.7.3进程管理 (46) 4.7.4服务管理 (46) 4.7.5数据库管理 (46) 4.7.6中间管理 (46) 4.7.7集群管理 (47) 4.7.8故障管理 (47) 4.7.9性能管理 (47) 4.7.10配置文件管理 (47) 4.7.11SYSLOG管理 (47) 4.8其他系统设计 (47) 4.9系统配置及软硬件选型原则 (48) 4.9.1软硬件部署 (48) 4.9.2数据要求 (48) 4.9.3技术要求 (49) 4.10系统软硬件物理部署方案 (49) 第5章项目建设与运行管理 (51) 5.1项目领导机构 (51) 5.2项目管理机构 (51) 5.3项目承建机构 (53) 5.4运行维护机构 (53) 5.5相关管理制度 (54) 5.6项目测试 (55) 5.6.1单元测试 (55) 5.6.2集成测试 (55) 5.6.3系统测试 (56) 5.6.4性能测试 (56) 5.6.5验收测试 (57) 5.6.6安装测试 (57) 5.7安全性测试 (58) 5.7.1功能验证 (58) 5.7.2漏洞扫描 (58) 5.7.3模拟攻击实验 (58) 5.8项目验收 (60) 5.8.1项目验收要求 (60) 5.8.2项目验收的目的和原则 (61) 5.8.3项目验收的组织和实施 (61) 5.8.4项目验收的步骤和程序 (61) 5.8.5项目验收的测试方案 (61) 5.8.6项目验收的文档清单 (61) 第6章项目培训计划 (62) 6.1培训对象和培训目标 (62)

地理信息系统名词解释大全(整理版本)

地理信息系统名词解释大全 地理信息系统Geographic Information System GIS作为信息技术的一种,是在计算机硬、软件的支持下,以地理空间数据库(Geospatial Database)为基础,以具有空间内涵的地理数据为处理对象,运用系统工程和信息科学的理论,采集、存储、显示、处理、分析、输出地理信息的计算机系统,为规划、管理和决策提供信息来源和技术支持。简单地说,GIS就是研究如何利用计算机技术来管理和应用地球表面的空间信息,它是由计算机硬件、软件、地理数据和人员组成的有机体,采用地理模型分析方法,适时提供多种空间的和动态的地理信息,为地理研究和地理决策服务的计算机技术系统。地理信息系统属于空间型信息系统。 地理信息是指表征地理圈或地理环境固有要素或物质的数量、质量、分布特征、联系和规律等的数字、文字、图像和图形等的总称;它属于空间信息,具有空间定位特征、多维结构特征和动态变化特征。 地理信息科学与地理信息系统相比,它更加侧重于将地理信息视作为一门科学,而不仅仅是一个技术实现,主要研究在应用计算机技术对地理信息进行处理、存储、提取以及管理和分析过程中提出的一系列基本问题。地理信息科学在对于地理信息技术研究的同时,还指出了支撑地理信息技术发展的基础理论研究的重要性。 地理数据是以地球表面空间位置为参照,描述自然、社会和人文景观的数据,主要包括数字、文字、图形、图像和表格等。 地理信息流即地理信息从现实世界到概念世界,再到数字世界(GIS),最后到应用领域。 数据是通过数字化或记录下来可以被鉴别的符号,是客观对象的表示,是信息的表达,只有当数据对实体行为产生影响时才成为信息。 信息系统是具有数据采集、管理、分析和表达数据能力的系统,它能够为单一的或有组织的决策过程提供有用的信息。包括计算机硬件、软件、数据和用户四大要素。 四叉树数据结构是将空间区域按照四个象限进行递归分割(2n×2n,且n ≥1),直到子象限的数值单调为止。凡数值(特征码或类型值)呈单调的单元,不论单元大小,均作为最后的存储单元。这样,对同一种空间要素,其区域网格的大小,随该要素分布特征而不同。 不规则三角网模型简称TIN,它根据区域有限个点集将区域划分为相连的三角面网络,区域中任意点落在三角面的顶点、边上或三角形内。如果点不在顶点上,该点的高程值通常通过线性插值的方法得到(在边上用边的两个顶点的高程,在三角形内则用三个顶点的高程)。 拓扑关系拓扑关系是指网结构元素结点、弧段、面域之间的空间关系,主要表现为拓扑邻接、拓扑关联、拓扑包含。根据拓扑关系,不需要利用坐标或距离,可以确定一种地理实体相对于另一种地理实体的位置关系,拓扑数据也有利于空间要素的查询。 拓扑结构为在点、线和多边形之间建立关联,以及彻底解决邻域和岛状信息处理问题而必须建立的数据结构。这种结构应包括以下内容:唯一标识,多边形标识,外包多边形指针,邻接多边形指针,边界链接,范围(最大和最小x、y坐标值)。 游程编码是逐行将相邻同值的网格合并,并记录合并后网格的值及合并网

基于无人船的雷达数据处理系统的制作方法

本技术公开了一种基于无人船的雷达数据处理系统,包括数据采集模块以及数据处理模块;所述数据采集模块包括雷达传感器、遥感影像接收器、摄像模块、船体数据采集模块,所述数据采集模块将所采集的信息预处理后传输至数据处理模块;所述雷达传感器,所述雷达传感器发射电磁波对覆盖水域上的目标进行照射并接收其回波,获得目标跟踪数据并将接收到的电磁波处理为模拟信号。优点在于:本技术的数据处理模块通过模拟建模分析,计算出三维雷达数据,再通过激光雷达得到激光点云分类图、数字高程模型DEM、等高线、数字表面模型DSM、数字正射影像图DOM,最终计算出障碍物点得到障碍信息与前文所得障碍信息比对,保证最终得出的障碍信息准确无误。 权利要求书 1.一种基于无人船的雷达数据处理系统,其特征在于,包括数据采集模块以及数据处理模块; 所述数据采集模块包括雷达传感器、遥感影像接收器、摄像模块、船体数据采集模块,所述数据采集模块将所采集的信息预处理后传输至数据处理模块; 所述雷达传感器,所述雷达传感器发射电磁波对覆盖水域上的目标进行照射并接收其回波,获得目标跟踪数据并将接收到的电磁波处理为模拟信号; 所述遥感影像接收器,用于实时接收卫星下传的遥感影像,并转化为数字信号; 所述摄像模块,至少包括10个全景摄像机,其中至少50%的全景摄像机位于船体的前进方向,用于获取船体周边的视频数据,并转化为数字信号; 所述船体数据采集模块,用于获取船体的位置数据数据、船体的行驶速度数据和船体的加速度数据,并将其电信号转化为数字信号;

所述数据处理模块处理数据采集模块所传输的数据处理后得到障碍信息。 2.根据权利要求1所述的基于无人船的雷达数据处理系统,其特征在于,所述数据处理模块包括模拟建模分析: S1、通过NVIDIA Tegra K1移动处理器进行将雷达传感器所传输的模拟信号进行三维雷达数据转换; S2、通过激光雷达数据处理,得到激光点云数据分类图、数字高程模型DEM、等高线、数字表面模型DSM、数字正射影像图DOM,并将三维数据点投影到栅格地图上; 将所有栅格相对高度大于某个阈值的栅格设定为障碍物点,即得到障碍信息。 3.根据权利要求2所述的基于无人船的雷达数据处理系统,其特征在于,使用分布式计算系统存储雷达数据,通过建立MapReduce模型以云计算的方式对雷达数据进行高速处理,将处理结果与障碍信息进行比对,将一致信息输出,将不一致的信息重新导入步骤S1计算。 4.根据权利要求2所述的基于无人船的雷达数据处理系统,其特征在于,所述数据采集模块在将数据传输至数据处理模块时,按照同一时间戳为时间基准,对每路数据按各自的固有帧周期进行顺序编号,并在存储数据的同时将各路数据帧编号的对应关系存储下来。 5.根据权利要求2所述的基于无人船的雷达数据处理系统,其特征在于,遥感影像的处理步骤如下: 1)遥感影像接收器在接收遥感影像后,确定遥感影像的分辨率并截取,对截取遥感影像进行数据标注; 2)使用Canny边缘检测算法对截取的遥感影像进行预处理,通过对图像边缘进行提取,并将提取得到的图像与原图像叠加,突出航道特征,用以加速分析; 3)搭建图像分类模型,通过在对基础的网络进行分类任务的训练中,在网络的参数存留下低

雷达数据处理

雷达数据处理-雷达数据处理 雷达数据处理-正文 *从一系列雷达测量值中,利用参数估值理论估计目标的位置、速度、加速度等运动参数;进行目标航迹处理;选择、跟踪目标;形成各种变换、校正、显示、报告或控制等数据;估计某些与目标形体、表面物理特性有关的参数等。早期的一些雷达,采用模拟式解算装置进行数据处理。现代雷达已采用数字计算机完成这些任务。 数据格式化雷达数据的原始形式是一些电的和非电的模拟量,经接收系统处理后在计算机的输入端已变成数字量。数字化的雷达数据以一定格式组成雷达数据字。雷达数据字可编成若干个字段,每一个字段指定接纳某个时刻测量到的雷达数据。雷达数据字是各种数据处理作业的原始量,编好后即送入计算机存储器内的指定位置。 校正雷达系统的失调会造成设备的非线性和不一致性,使雷达数据产生系统误差,影响目标参数的无偏估计。为保证高质量的雷达数据,预先把一批校正补偿数据存储于计算机中。雷达工作时,根据测量值或系统的状态用某种查表公式确定校正量的存储地址,再用插值法对测量值进行校正和补偿,以清除或减少雷达数据的系统误差。 坐标变换雷达数据是在以雷达天线为原点的球坐标系中测出的,如距离、方位角、仰角等。为了综合比较由不同雷达或测量设备得到的目标数据,往往需要先把这些球坐标数据变换到某个参考坐标系中。常用直角坐标系作为参考坐标系。另外,在球坐标系中观察到的目标速度、加速度等状态参数是一些视在几何分量的合成,不能代表目标在惯性空间的运动特征。若数据处理也在雷达球坐标系中进行,会由于视在角加速度和更高阶导数的存在使数据处理复杂化,或者产生较大的误差。适当选择坐标系,可以简化目标运动方程,提高处理效率或数据质量。 跟踪滤波器跟踪滤波器是雷达数据处理系统的核心。它根据雷达测量值实时估计当前的目标位置、速度等运动参数并推算出下一次观察时目标位置的预报值。这种预报值在跟踪雷达中用来检验下一次观测值的合理性;在搜索雷达中用于航迹相关处理。常用的跟踪滤波器有α-β滤波器、卡尔曼滤波器和维纳滤波器,可根据拥有的计算资源、被处理的目标数、目标的动态特性、雷达参数和处理系统的精度要求等条件选用。α-β滤波器的优点是算法简单,容易实现,对于非机动飞行的等速运动目标,位置估值和速度估值的平方误差最小,故可对等速运动目标进行最佳滤波。对于机动飞行的目标,由于α-β滤波器描述的目标运动模型与实际情况存在差异,会产生较大的误差。为此,广泛采用一种称为机动检测器的检测装置,以便在发现目标作机动飞行时能自动调整测量周期或修改α值和β值,使跟踪误差保持在允许的范围内。同α-β滤波器不同,卡尔曼滤波器中除装有稳态的目标轨迹模型外,还设有测量误差模型和目标轨迹的随机抖动模型。因此,它对时变和非时变的目标动态系统能作出最佳线性、最小方差的无偏估计。除目标状态的估计外,卡尔曼滤波器还能估计状态估值的误差协方差矩阵。利用误差协方差矩阵可以检测目标机动,调整滤波系数,实现对机动目标的自适应滤波。 目标航迹处理早期的搜索雷达由操作员从显示器上判定目标的存在,并逐次报出目标的位置。标图员根据报告的目标数据进行标图,并把图上的点顺序连接,形成目标航迹。这个过程称为目标航迹处理。现代雷达系统的航迹处理已无需人工处理,而主要由计算机来完成。利用计算机进行数据处理的搜索雷达,称为边跟踪边扫描雷达系统。雷达测量到的离散

相关文档