文档库 最新最全的文档下载
当前位置:文档库 › 《自动控制原理》实验指导书3

《自动控制原理》实验指导书3

《自动控制原理》实验指导书3
《自动控制原理》实验指导书3

自动控制原理实验指导书

刘利贤韩兵欣编著

石家庄铁道学院

电气工程分院

目录

实验一、典型线性环节的模拟 (1)

实验二、二阶系统的阶跃响应 (5)

实验三、根轨迹实验 (7)

实验四、频率特性实验 (10)

实验五、控制系统设计与校正实验 (15)

实验六、控制系统设计与校正计算机仿真实验 (17)

实验七、采样控制系统实验 (19)

实验八、典型非线性环节模拟 (21)

实验九、非线性控制系统分析 (24)

实验十、非线性系统的相平面法 (26)

实验一、典型线性环节的模拟

一、实验目的:

1、学习典型线性环节的模拟方法。

2、研究电阻、电容参数对典型线性环节阶跃响应的影响。

二、实验设备:

1、XMN-2型实验箱;

2、LZ2系列函数记录仪;

3、万用表。

三、实验内容:

1、比例环节:

r(t)

方块图模拟电路

图中:

i

f

P R

R

K=

分别求取R i=1M,R f=510K,(K P=0.5);

R i=1M,R f=1M,(K P=1);

R i=510K,R f=1M,(K P=2);

时的阶跃响应曲线。

2、积分环节:

r(t)

方块图模拟电路图中:T i=R i C f

分别求取R i=1M,C f=1μ,(T i=1s);

R i=1M,C f=4.7μ,(T i=4.7s););

R i=1M,C f=10μ,(T i=10.0s);时的阶跃响应曲线。

3、比例积分环节:

r(t)

方块图模拟电路

图中:

i

f

P R

R

K=;T i=R f C f

分别求取R i=R f=1M,C f=4.7μ,(K P=1,T i=4.7s);

R i=R f=1M,C f=10μ,(K P=1,T i=10s);

R i=2M,R f=1M,C

f

=4.7μ,(K P=0.5,T i=4.7s);

时的阶跃响应曲线。

4、比例微分环节:

r(t)

方块图模拟电路

图中:

i

1

f

P R

R

K

R

+

=;C

R

R

R

R

R

R

T

f

f

d

?

+

+

+

=

1

2

f

1

2

1

R

R

;T f=R2C

分别求取R i=R f=R1=R2=1M,C=2μ,(K P=2,T d=3.0s);

R i=2M,R f=R1=R2=1M,C f=2μ,(K P=1,T d=3.0s);

R i=2M,R f=R1=R2=1M,C f=4.7μ,(K P=1,T d=7.05s);时的阶跃响应曲线。

5、比例积分微分环节:

r(t)

方块图模拟电路

图中:

i

1

f

P R

R

K

R

+

=+

f

C

C

R

?

+

i

2

1

R

R

;T i=(R f+R1)C f+(R1+R2)C;

()

()()C

R

R

C

R

R

C

C

R

R

R

R

R

R

T

2

1

f

f

1

f

f

2

f

1

2

1

d+

+

+

?

+

+

=;T f=R2

C

求取R i=4M,R f=R1=R2=1M,C=C f=4.7μ,(K P=1,T i=18.8s,T d=3.525s)时的阶跃响应曲线。

6、一阶惯性环节:

r(t)

方块图模拟电路

图中:

i

f

P R

R

K=;T=R f C f

分别求取R i=R f=1M,C f=1μ,(K=1,T=1s);

R i=R f=1M,C f=4.7μ,(K=1,T=4.7s);

R i=510K,R f=1M,C f=4.7μ,(K=2,T=4.7s);

时的阶跃响应曲线。

四、实验结果

记录上述实验曲线。

五、实验结果分析

1、对给定的电路结构和参数计算阶跃响应;

2、将实验结果与计算结果对照,对实验的满意度进行分析;

3、根据电路参数分析计算系统响应,与实验数据对照分析测试误差原因;

4、提高精度的方法和措施(或建议);

5、实验体会。

六、思考题

1、设计一个能满足e1+e2+e3=e运算关系的实用加法器;

2、一阶惯性环节在什么条件下可视为积分环节;在什么条件可视为比例环节?

3、如何设置必要的约束条件,使比例微分环节、比例积分微分环节的参数计算工作

得以简化?

实验二、二阶系统的阶跃响应

一、实验目的:

1、学习二阶系统阶跃响应曲线的实验测试方法。

2、研究二阶系统的两个重要参数ξ、ωn 对阶跃瞬态响应指标的影响。

二、实验设备:

1、XMN-2型实验箱;

2、LZ2系列函数记录仪;

3、万用表。

三、实验内容:

典型二阶系统方块图

典型二阶系统方块图

其闭环传递函数

2

222)()

()(n

n n s s s R s C s ωξωω++==Φ ωn ——无阻尼自然频率;ξ——阻尼比;T =n

ω1

——时间常数 模拟电路

r (t )

运算放大器的运算功能: (op1)——积分??? ??

=-RC T Ts ,1; (op2)——积分??

?

??

=-

RC T Ts ,1; (op9)——反相(-1); (op6)——反相比例???

?

??

=

-i f R R K K ,; RC T n 1

1=

=

ω(rad/s ); i

f

R R K ?==212ξ

1、调整R f =40K ,使K =0.4(ξ=0.2);取R =1M ,C =0.47μ,使T =0.47秒(ωn =1/0.47),加入单位阶跃扰动r (t )=1(t )V ,记录响应曲线c (t ),记作①。

2、保持ξ=0.2不变,阶跃扰动r (t )=1(t )V 不变,取R =1M ,C =1.47μ,使T =1.47秒(ωn =1/1.47),加入单位阶跃扰动r (t )=1(t )V ,记录响应曲线c (t ),记作②。

3、保持ξ=0.2不变,阶跃扰动r (t )=1(t )V 不变,取R =1M ,C =1.0μ,使T =1.0秒(ωn =1/1.0),加入单位阶跃扰动r (t )=1(t )V ,记录响应曲线c (t ),记作③。

4、保持ωn =1/1.0不变,阶跃扰动r (t )=1(t )V 不变,调整R f =80K ,使K =0.8秒(ξ=0.4),记录响应曲线c (t ),记作④。

5、保持ωn =1/1.0不变,阶跃扰动r (t )=1(t )V 不变,调整R f =200K ,使K =2.0秒(ξ=1.0),记录响应曲线c (t ),记作⑤。

四、实验结果

记录上述实验曲线。

五、实验结果分析

1、根据电路的结构和参数计算阶跃响应;

2、将实验结果与计算结果对照,对实验的满意度进行分析;

3、根据电路参数分析计算系统响应,与实验数据对照分析测试误差原因;

4、提高精度的方法和措施(或建议);

5、实验体会。

六、思考题

1、设计一个能满足e 1+e 2+e 3=e 运算关系的实用加法器;

2、一阶惯性环节在什么条件下可视为积分环节;在什么条件可视为比例环节?

3、如何设置必要的约束条件,使比例微分环节、比例积分微分环节的参数计算工作得以简化?

实验三、根轨迹实验

一、实验目的:

1、掌握根轨迹的意义;

2、掌握控制系统根轨迹的绘制方法。

二、实验设备:

1、计算机;

2、数据采集卡;

3、MA TLAB 软件。

三、实验内容:

1、预备知识——MA TLAB 绘制根轨迹命令; 建立数学模型

参数矩阵:numerator=[b 0,b 1,b 2,……,b m ]; denominator=[a 0,a 1,a 2,……,a n ]; zeropoint=[z 1,z 2,……,z m ];poles=[p 1,p 2,……,p n ];k=k ; 系统传递函数:system=tf(numerator, denominator)=zpk(z,p,k); 绘制开环系统的零极点图:

[z,p]=pzmap(system)=pzmap(numerator, denominator)=pzmap(p,z); 绘制闭环根轨迹命令:

[r,k]=rlocus(system)=rlocus(numerator, denominator)= rlocus(numerator, denominator,k); 确定给定一组根的根轨迹增益命令:

[k,poles]=rlocfind(system)= rlocfind(system,p)=rlocfind(numerator, denominator); 2、根据实际物理系统建立数学模型; 设数学模型为

2

222)(n

n n

s s s G ωζωω++= 3、改变系统参数绘制系统根轨迹; 输入系统参数:w=ωn =1;b=ζ=0.5; 建立数学模型:numerator=ωn ;denominator=[1,2*ζ*ωn ,1];G=tf(numerator, denominator); 则

G (s)=

1

1

2++s s

4、绘制系统根轨迹,输入命令:rlocus(G)

5、微分二阶系统的根轨迹

输入系统参数:w=ωn =2;b=ζ=0.5;

建立数学模型:number=[2,1];den=[4,5,6];G=tf(number,den);

6

541

2)(2

+++=

s s s s G 输入命令:rlocus(G) ,制系统根轨迹; 6、针对作业题绘制根轨迹 7、记录根轨迹图

例:绘制单位反馈控制系统

6

541

2)(2

+++=

s s s s G 的根轨迹。

输入命令:a=[2,1];b=[4,5,6];g=tf(a,b);rlocus(g);则绘制出的根轨迹如下图所示。

试绘制如下系统的根轨迹。

1、 )

4()(*

+=s s k s GH

2、)204)(4()(2*

+++=s s s s k s GH

3、)

5)(2()(2*

++=s s s k s GH

4、2

2*)2()1()(++=

s s k s GH

四、实验结果

记录上述实验曲线。

五、实验结果分析

1、根据数学模型和根轨迹绘制规则分析计算概略根轨迹,与计算机绘制的根轨迹对照,分析误差原因;

2、对实验结果的满意度进行分析;

3、提高精度的方法和措施(或建议);

4、实验体会。

六、实验结果分析

1、给定物理系统对象,即可建立数学模型;

2、只要有系统数学模型,即可绘制系统根轨迹;

3、根据系统根轨迹可分析系统的稳定性及系统性能指标。

实验四、频率特性实验

一、实验目的:

1、学习频率特性的实验方测定法;

2、掌握根据频率响应实验结果绘制bode 图方法;

3、根据实验结果所绘制的Bode 图,分析系统的主要动态特性(M p ,t s )。

二、实验设备:

1、XMN-2型自动控制原理实验箱;

2、LZ3系列函数记录仪;

3、DX5型超低频信号发生器;

4、万用表。

三、实验内容:

典型二阶系统方块图

典型二阶系统方块图

其闭环传递函数

2

222)()

()(n

n n s s s R s C s ωξωω++==Φ ωn ——无阻尼自然频率;ξ——阻尼比;T =n

ω1

——时间常数 闭环频率特性

2

211

)

()()(?

??? ?

?+???? ??+=

n n

j j j X j Y j G ωωω

ωζωωω

???

?

??+???

????????? ??-=

n

n j ωωζωω211

2 其中:T

n 1

=

ω(rad/s )

模拟电路图

r (t )

运算放大器的运算功能: (op1)——积分??? ??

=-RC T Ts ,1; (op2)——积分??

?

??

=-

RC T Ts ,1; (op9)——反相(-1); (op6)——反相比例???

?

??

=

-i f R R K K ,; RC

T n 1

1=

=

ω(rad/s );i f R R K ?==212ξ 1、选定R 、C 、R f 值,使ωn =1;ζ=0.2;

2、使用XD5型超低频信号发生器产生正弦波输入信号r (t )=Sin ωt 稳态时其响应c (t )=Ysin(ωt +?);

3、改变输入信号频率,使ω=0.2,0.4,0.6,0.8,0.9,1.0,1.2,1.4,1.6,2.0,3.0rad/s ;

4、根据上述表格所整理的实验数据,在半对数坐标纸上绘制bode 图,标出M r ,ωr 。

5、根据所绘制的bode 图分析二阶系统的主要瞬态响应指标标出M p ,t s 。

6、改变二阶系统的ωn 值或ζ值,重复上述步骤3,4,5,6。

四、绘制系统的频率特性

在MA TLAB 环境下建立开环系统的数学模型,同系统根轨迹。 在MA TLAB 环境下绘制开环系统的频率特性。

1、绘制连续系统的幅相(Nyquist 曲线)频率特性曲线。

[re,im,w]=nyquist(system)= nyquist(num,den)= nyquist(system,w)= nyquist(num,den,w) 绘制坐标网格线命令:grid on 去除坐标网格线命令:grid off

2、绘制连续系统的对数(Bode 图)频率特性曲线。

[mag,phrase,w]=bode(system)=bode(num,den)= bode(system,w)= bode(num,den,w) 绘制对数坐标网格线命令:grid on 去除坐标网格线命令:grid off

3、绘制连续系统的尼柯尔斯(Nichols 图)频率特性曲线。

[mag,phrase,w]=nichols(system)= nichols(num,den)= nichols(system,w)= nichols(num,den,w)

绘制Nichols 曲线网格线命令:ngrid on

4、在对数(Bode 图)频率特性曲线上求增益裕量和相位裕量。

[gm,pm,wcp,wcg]=margin(system)= margin(num,den)= margin(mag,phrase,w) 5、结合作业题绘制系统的频率特性。

7、记录系统的频率特性(Nyquist 曲线,Bode 图) 例:绘制单位反馈控制系统

6

541

2)(2+++=

s s s s G

的开环幅相频率特性和对数频率特性。

输入命令:a=[2,1];b=[4,5,6];g=tf(a,b);nyquist(g);则绘制出的开环幅相频率特性如下图所示。

输入命令:a=[2,1];b=[4,5,6];g=tf(a,b);bode(g);则绘制出的开环幅相频率特性如下图所示。

试绘制如下系统的开环幅相频率特性和对数频率特性。

1、 )

4()(*

+=s s k s GH

2、)204)(4()(2*

+++=s s s s k s GH

3、)

5)(2()(2*

++=s s s k s GH

4、2

2*)2()1()(++=

s s k s GH

五、实验结果

记录上述实验曲线。

六、实验结果分析

1、根据数学模型和频率特性绘制规则绘制概略频率特性;

2、与计算机绘制的频率特性对照,分析误差原因;

3、对实验结果的满意度进行分析;

4、提高精度的方法和措施(或建议);

5、实验体会。

七、思考题

1、理论计算不同ω值时的L(ω)和?(ω),并与实验结果进行比较。

2、能否根据实验所得Bode 图确定一个二阶系统的闭环传递函数。

实验五、控制系统设计与校正实验

一、实验目的:

1、研究校正装置对系统动态性能指标的影响;

2、学习校正装置的设计和实现方法。

3、掌握串联校正装置的设计方法和参数调试技术。

二、实验设备:

1、XMN-2型实验机;

2、LZ3系列函数记录仪;

3、DX5型超低频信号发生器;

4、万用表。

三、实验内容:

典型二阶系统方块图

典型二阶系统方块图

其开环传递函数

)

(1

)(k s s s G +=

闭环传递函数为

2

222)(n

n n

s s s G ωζωω++= 在该系统中加入超前校正装置,使系统的相位裕量γ(ω)≥500,增益裕量h ≥10db ,同时保持静态速度误差系数不变。

四、实验结果分析

1、对给定的被控物理系统,建立数学模型;

2、对给定的被控系统数学模型,绘制频率特性;

3、根据系统的频率特性可分析系统的稳定性及系统性能指标。

五、思考题

1、模拟电路

e 0(t )

能否作为超前校正装置?试计算其传递函数)

()

(0s E s E i ? 2、若1

5.01

5.1)(++=

s s s G c ,能否计算出校正后系统的闭环主导极点与之对应的ωn 和ζ?

实验六、控制系统设计与校正计算机仿真实验

一、实验目的:

1、研究校正装置对系统动态性能指标的影响;

2、学习校正装置的设计和实现方法。

3、掌握串联校正装置的设计方法和参数调试技术。

二、实验设备:

1、计算机;

2、MA TLAB 软件。

三、实验任务:

典型二阶系统方块图

典型二阶系统方块图

其开环传递函数

)

(1

)(k s s s G +=

闭环传递函数为

2

222)(n

n n

s s s G ωζωω++= 串联校正的目标:

1、校正后系统的开环增益(静态速度误差系数)k v ≥25 (1/s );

2、调节时间(过度过程时间)t s ≤1s ;

3、超调量M p ≤25%;

4、记录校正前系统的响应曲线

5、设计控制系统;

6、求校正环节的传递函数;

7、记录校正后系统的响应曲线。

四、实验结果分析

1、对给定物理系统,建立数学模型;

2、对被控系统数学模型,绘制其频率特性;

3、根据系统的频率特性分析系统的稳定性及系统性能指标;

4、按照给定的性能指标,设计校正装置;

5、根据校正系统模型,仿真出系统的时域响应;

6、将校正前后的系统进行仿真,分析其性能指标的改善。

五、思考题

1、模拟电路

e 0(t )

能否作为超前校正装置?试计算其传递函数)

()

(0s E s E i ? 2、若1

5.01

5.1)(++=

s s s G c ,能否计算出校正后系统的闭环主导极点与之对应的ωn 和ζ?

耕作学实验指导

耕作学实验指导书 河北农业大学农学院 作物栽培与耕作系 2005年8月修订

目录 实验一作物种类与复种形式的确定 (1) 实验二作物布局优化方法之——原理与基本方法 (5) 实验三作物布局优化方法之二—最优化计算机软件的应用 (10) 实验四轮作制度设计 (12) 实验五土地耕作制设计 (15) 实验六土壤施肥制的设计 (17) 附录1 选修实验目录 (32)

实验一种植制度的农业资源分析 ——作物类型与复种形式的确定 一、目的意义: 农业的稳产高产是以作物与其环境的高度统一与适应为基础的。依据当地的气候、土壤及生产经济条件确定所种植的作物种类及复种方式,是安排农业生产的首要问题。在我们还不能大面积控制作物环境的条件下,因地制宜,适地适作是农业费省效宏的有效手段。本实验旨在掌握各作物生态适应性及所规划地区生态条件的基础上,运用所掌握的生态学与耕作学知识,学会分析种植制度与资源关系的方法,为耕作制度设计奠定基础。 二、原则: 1.以作物与其环境的统一为总原则。不同地区在地理、地形、地貌、气候,土壤及生产条件诸方面存在差异,而各种作物又要求不同的生活环境,只有使作物与环境相互统一,组成—个协调的生态系统,作物才能稳产高产。 2.从大农业观出发,农林草综合发展,在充分利用农业资源,大力发展商品生产的同时,要积极保护农业资源,保证农业生态系统的良好循环,以同时获得高的经济效益和生态效益。 3.既要考虑因地制宜,适地适作,又要注意满足人民群众及社会的多种需要,在发展粮食生产的同时,发展经济作物、果品蔬菜及饲料绿肥作物的生产。 三、依据: 1.作物对热量的要求: 热量是决定作物种类与复种方式的首要条件。多种作物在其系统发育中形成了对热量要求的不同类型。因此,可将作物分为耐寒作物、低温作物、中温作物及喜温作物,它们对温度的要求如附表1。 某作物在此地能否种植,首先取决于当地生长季内的积温状况。当一个生长季内的积温除能满足—茬作物需要(考虑一定的保证率,—般80%以上)尚有剩余时,就可考虑复种。复种形式可根据热量及其它条件采取一年两熟、二年三熟等熟制类型。根据条件可采取套作复种或平作复种。以冬小麦为前茬的平作复种作需≥0℃积温,如附表2。 2.作物对水分的要求:

实验-3-资源管理-实验指导书

大连东软信息学院 《项目时间与进度管理》 实验指导书 编写者:陈倩 信息技术与商务管理系

实验三:资源管理 1学时 2学时 2实验目的与要求 【目的】 了解项目资源管理的内容;掌握使用项目管理软件管理项目资源。包括建立项目资源库、分配资源、识别和解决资源分配中的冲突;了解资源管理中资源调配的主要方法; 【交付成果】实验报告(截图) 【交付时间】下次上课 3实验环境 WINDOWS操作系统,项目管理软件Project 4准备工作 预先安装软件Project,做好项目计划。 5实验内容 (一)资源管理基本操作 1.建立项目资源库 2.为任务分配资源 (二)资源调配 1.延迟任务,解决过度分配 2.让Project自动调配资源 3.控制整个项目周期中的资源可用性 6实验步骤 (一)资源管理基本操作 1.在上一实验的综合案例“征求项目建议书”基础上(文件名为“05_test.mpp”),为项目建立和分配资源,然后分析资源使用状况并加以改进。请按照要求和步骤逐一进行,并将项目文件保存为“06_test.mpp”。 2.按照表1建立项目资源库。 表1

【提交截图】-资源工作表 3.分配资源前确定工时 在分配资源之前,最好先将所有详细任务的工时设定好,这样第一次为任务分配资源时,不会出现因资源单位改变导致工时变化的情况。这步工作在甘特图的工时表中进行,摘要任务无需填写工时,系统会自动计算。 提示:在甘特图编辑区的灰色标题栏上点击右键【插入列】,【域名称】选择“工时”,即可看到“工时”列,按下图输入每项任务的工时: 按照表2,给每个详细任务确定工时。 表2 4.调整任务的类型 任务2.6“最终确定RFP”和3.3“确定具有竞争力的投标商”计划都要在1个工作日内完成,多个部门需要参与讨论工作,但参与讨论的人数多少不能改变工期,所以要将任务类型改为“固定工期”型,如图1。 提示:在任务窗体或任务信息对话框中进行(双击该任务),将任务设为“固定工期”型和“非投入比导向”属性(即工期不会因为资源数量的改变而变化)。

大地测量学实验指导书汇总

《大地测量学基础》实验指导书 XXX大学土木工程系测绘工程教研室 2010年7月

第一部分:实验与实习须知 控制测量学是测绘工程专业一门践性很强的专业主干课程,其实验与实习是教学中必不可少的重要环节。只有通过实验与实习,才能巩固课堂所学的基本理论,进而掌握仪器操作的基本技能和测量作业的基本方法,并为深入学习测绘专业理论和有关专业知识打下基础。在进行实验之前,必须明确实验的基本规定,了解仪器的借还手序及仪器的保护、保养等知识,做到爱护仪器,达到实习之目的,防患于未然。 实验与实习规定 1.在实验或实习之前,必须复习教材中的有关内容,认真仔细地预习本指导书,以明确目的、了解任务、熟悉实验步骤和过程、注意有关事项并准备好所需文具用品。 2.实验或实习分小组进行,组长负责组织协调工作,办理所用仪器工具和借领和归还手续。 3.实验或学习应在规定的时间进行,不得无故缺席或迟到早退;应在指定的场地进行,不得擅自改变地点或离开现场。 4.必须遵守“测量仪器工具的借领与使用规则”和“测量记录与计算规则”。 5.应该服从教师的指导,严格按照本指导书的要求认真、按时、独立地完成任务。每项实验或实习,都应取得合格的成果,提交书写工整规范的实验报告或实习记录,经指导教师审阅同意后,才可交还仪器工具,结束工作。 6.在实验或实习过程中,还应遵守纪律,爱护现场的花草、树木和农作物,爱护周围的各种公共设施,任意砍折、踩踏或损环者应予赔偿。 测量仪器工具的借领与使用规则 对测量仪器工具的正确使用、精心爱护和科学保养,是测量人员必须具备的素质和应该掌握的技能,也是保证测量成果质量、提高测量工作效率和延长仪器工具使用寿命的必要条件。在仪器工具的借领与使用中,必须严格遵守下列规定。 一、仪器工具的借领 1.在指定的地点凭学生证办理借领手续,以小组为单位领取仪器工具。 2.借领时应该当场清点检查。实物与清单是否相符,仪器工具及其附件是否齐全,背带及提手是否牢固,脚架是否完好等。如有缺损,可以补领或更换。 3.离开借领地点之前,必须锁好仪器箱并捆扎好各种工具;搬运仪器工具时,必须轻取轻放,避免剧烈震动。 4.借出仪器工具之后,不得与其他小组擅自调换或转借。

作物栽培学教学大纲

《作物栽培学实验》教学大纲 【课程编号】17315132 【英文名Experiment of Crop Culture 【课程学时】32学时,分为上下两个学期,每学期各16学时。 【适用专业】农学 一、本实验课程的教学目的和要求 本实验课程的教学目是在《作物栽培学》理论课程教学的基础上,培养学生在作物栽培方面的基本操作技能,为学生从事作物栽培、作物育种等方面的科学研究、作物生产技术创新、推广及相关生产实践活动打下基础,同时加深学生对相关理论教学内容的理解。本课程属于农学专业的专业必修课程。 本课程要求学生能熟练地将理论教学中的相关知识与实际操作相结合,能理解所开设实验的目的、意义及关键环节,有良好的动手能力,能较好地掌握各个实验的操作技能;同时逐步培养学生的创新能力和从事相关科学研究的能力,并能分析和解决科研和生产活动中的实际问题。 二、本实验课程与其它课程的关系 本实验课程以《作物栽培学》理论教学为基础,同时与《植物学》、《植物生理学》和《土壤肥料学》等课程紧密联系,必须把本实验课程与以这些课程的知识有机结合。还应将本课程内容与《作物栽培学教学实习》等实践性课程的内容相互完善和补充。 三、实验课程理论教学内容安排 本实验课不安排理论教学内容。 四、实验内容安排

实验一、小麦、油菜田间种植密度测定 【目的要求】掌握作物田间种植密度测定的基本方法 【内容】实测小麦、油菜的种植规格,计算其种植密度。 【方法】选择不同种植方式的小麦、油菜田各2-3块,学生分小组分别测定不同田块的行距、穴距或单位行段内的植株数,根据株、穴距或单位行段内的植株数计算单位面积种植密度,并做出比较。 实验二、小麦田间种植设计及全程生育动态观测 【目的要求】掌握小麦种植的基本程序和田间调查的方法,熟悉小麦全生育期的生育进程变化。 【内容】小麦播种及田间管理;调查小麦全生育期苗情动态,计算单位面积的最高苗、有效穗及成穗率等;观察和记载小麦拔节、孕穗、抽穗、开花、乳熟、蜡熟和完熟等重要生育时期及病虫害等情况。 【方法】学生先在教师指导下,自选小麦品种、自行设计种植方案,在指定地块按方案种植一定面积的小麦,并负责进行田间管理,在小麦整个生育期内分不同生育时期观测8—10次小麦茎蘖数,并根据小麦生育进程观察和记载上述内容。 实验三、水稻田间种植设计及全程生育动态观测 【目的要求】掌握水稻种植的基本程序和田间调查的方法,熟悉水稻全生育期的生育进程变化。 【内容】水稻育秧、移栽及田间管理;调查水稻全生育期苗情动态,计算单位面积的最高苗、有效穗及成穗率等;观察和记载水稻拔节、孕穗、抽穗、开花、乳熟、蜡熟和完熟等重要生育时期及病虫害等情况。 【方法】学生先在教师指导下,自选水稻品种、自行设计种植方案,在指定地块按方案培育水稻秧苗和大田移栽,并负责进行田间管理,在水稻整个生育期内分不同生育时期观测8—10次水稻茎蘖数,并根据水稻生育进程观察和记载上述内容。 实验四、主要农作物种子形态、结构观察和识别 【目的要求】熟悉主要农作物种子形态、结构 【内容】观察和比较水稻、小麦、玉米和花生种子的形态、结构。 【方法】以不同类型的水稻、小麦、玉米和花生等作物种子为材料,进行相应的预处理后在实验室观察和比较,分别以图示和文字相结合描述各种作物种子的主要形态特征。 实验五、主要农作物幼苗形态观察 【目的要求】熟悉主要农作物种子幼苗形态特征。 【内容】观察水稻、小麦、玉米、花生、蚕豆、豌豆、大豆等农作物种子的幼苗形态特征。 【方法】在盆栽条件下播种上述农作物种子,在发芽后分2-3个不同时期观察幼苗形态,分别以图示和文字相结合描述各种作物幼苗的主要形态特征。 实验六、常见农田杂草的识别与防除 【目的要求】熟悉冬、春常见农田杂草的名称、所属科及特征特性 【内容】观察常见冬、春农田杂草的主要种类及其特征,现场识别和采集不同种类农田杂草。

3模拟飞行实验指导书

飞机观察及模拟实践实验指导书 空中交通管理学院 中国民航大学 2006.12.30

试验一:直线平飞 本实验是在学习掌握飞行原理知识的基础上,了解直线平飞的操作要领及如何控制飞行姿态、保持高度和速度,通过模拟飞行,使学生掌握如何实现直线平飞、在飞机姿态不变的情况下匀速飞行。 实验目的: 1 了解掌握在直线匀速水平飞行时驾驶员的动作要领及操作; 2 能在飞行操作中进一步了解、掌握运用飞行操纵的技能; 3 了解掌握平飞中油门(转速)和速度的关系并能准确运用; 4 通过飞行了解飞机配平的作用; 5 通过飞行了解飞行仪表的判读; 实验条件: 安装有模拟飞行软件的计算机,每台计算机均配有操纵杆,飞行所选机型为塞斯纳轻型飞机。 所需理论知识: 1 飞机空中四力的平衡 2 副翼、方向舵及升降舵的作用 3 飞行仪表的显示及判读 4 调整片的作用 5 油门及转速与飞行速度的关系 实验步骤: 1 首先温习所需基本理论知识,对本科目将用到的知识能灵活掌握; 2 进入模拟飞行软件,点击进入STUDENT PILOT中的Lesson 1内容,教 师进行演示飞行; 3 学生点击本科目界面最下方的按钮进入实际模拟飞行演练; 4 演练过程中记录相关姿态、仪表数据变化; 5 飞行时间结束后观看飞行过程分析,分析、总结心得; 6 课后填写实验报告; 实验报告要求: 1 实验地点、人员、时间,所用软件名称、科目;

2 实验内容及过程,按照飞行过程做好各项数据记录及其变化,主要涉及以 下: 1)飞行高度及偏离; 2)飞行速度及偏离; 3)航向保持及偏离; 4)发动机转速; 5)飞机姿态及配平; 6)其他; 3 飞行结束后分析自己的操作及飞行结果,是否按照要求达到科目要求 4 实验心得体会; 附件: 实验报告 实验科目名称:直线平飞 日期: 内容:

电工学实验指导书汇总Word版

电工学实验指导书 武汉纺织大学 实验一直流电路实验 (1)

实验二正弦交流电路的串联谐振 (4) 实验三功率因数的提高 (6) 实验四三相电路实验 (9) 实验五微分积分电路实验 (12) 实验六三相异步电动机单向旋转控制 (14) 实验七三相异步电动机正、反转控制 (16) 实验八单相桥式整流和稳压电路 (18) 实验九单管交流放大电路 (19) 实验十一集成运算放大器的应用 (24) 实验十二组合逻辑电路 (26) 实验十三移位寄存器 (29) 实验十四十进制计数器 (33)

实验一直流电路实验 一、实验目的: 1.验证基尔霍夫定律 2.研究线性电路的叠加原理 3.等效电源参数的测定 二、实验原理: 1.基尔霍夫定律是电路理论中最重要的定律之一,它阐明了电路整体结构必须遵守的定律,基尔霍夫定律有两条即电流定律和电压定律。 电流定律:在任一时刻,流入电路中任一节点的电流之和等于流出该节点的电流之和,换句话来说就是在任一时刻,流入到电路中任一节点的电流的代数和为零,即∑I=0。 电压定律:在任一时刻,沿任一闭合回路的循行方向,回路中各段电压降的代数和等于零,即 ∑U=0。 2.叠加原理:n个电源在某线性电路共同作用时,它们在电路中任一支路中产生的电流或在任意两点间所产生的电压降等于这些电源单独作用时,在该部分所产生的电流或电压降的代数和。三、仪器设备及选用组件箱: 1.直流稳压电源 GDS----02 GDS----03 2.常规负载 GDS----06 3.直流电压表和直流电流表 GDS----10 四、实验步骤: 1.验证基尔霍夫定律 按图1—1接线,(U S1、U S2分别由GDS---02,GDS---03提供)调节U SI=3V,U S2=10V,然后分别用电流表测取表1—1中各待测参数,并填入表格中。 2.研究线性电路的叠加原理 ⑴将U S2从上述电路中退出,并用导线将c、d间短接,接入U S1,仍保持3V,测得各项电流,电压,把所测数据填入表1—2中;

单片机实验3指导书

实验3 LED数码管显示实验 一、实验目的: 1、巩固Proteus软件和Keil软件的使用方法; 2、学习端口输入输出的高级应用; 3、掌握7段数码管的连接方式和显示原理 4、掌握查表程序和延时等子程序的设计 二、实验内容 1、仿真部分: 用51单片机驱动一个八位一体LED数码管和两个按钮开关,实现:按钮1按下实现八个LED数码管同时循环显示“0,1,2……E,F”的十六进制数。按钮2按下实现八个LED 数码管显示数字“12345678”不变。 2、真机部分: 利用实验箱上的BANK3,在真机上观察到仿真部分的实验现象。BANK3的相关电路图见后(五)。 三、实验原理 1、LED数码管显示原理 LED数码管:“8”字型,7段(不包括小数点)或8段(包括小数点),每段对应一个发光二极管,有共阳极和共阴极两种,见下图1。共阳极数码管的阳极连接在一起,接+5V;共阴极数码管阴极连在一起接地。 图1 8段LED数码管结构及外形 对于共阴极数码管,当某发光二极管阳极为高电平时,发光二极管点亮,相应段被显示。同样,对于共阳极数码管,当某个发光二极管阴极接低电平时,该发光二极管被点亮,相应段被显示。 为使LED数码管显示不同字符,要把某些段点亮,就要为数码管各段提供一字节的二进制码,即字型码(也称段码)。习惯上以“a”段对应字型码字节的最低位。各字符段码见下表所示:

2、LED数码管的静态显示与动态显示 LED数码管有两种显示方式:静态显示和动态显示。 (1)静态显示方式:无论多少位LED数码管,都同时处于显示状态。 多位LED数码管工作于静态显示方式时,各位共阴极(或共阳极)连接在一起并接地(或接+5V);每位数码管段码线(a~dp)分别与一个8位I/O口锁存器输出相连。如果送往各个LED数码管所显示字符的段码一经确定,则相应I/O口锁存器锁存的段码输出将维持不变,直到送入下一个显示字符段码。静态显示方式显示无闪烁,亮度较高,软件控制较易。例如,下图2为4位LED数码管静态显示电路,各数码管可独立显示,只要向控制各位I/O口锁存器送相应显示段码,该位就能保持相应的显示字符。 图2 4位LED静态显示的示意图 这样在同一时间,每一位显示的字符可各不相同。静态显示方式占用I/O口端口线较多。如图2所示电路,要占用4个8位I/O口(或锁存器)。如数码管数目增多,则需增加I/O 口数目。 (2)动态显示方式:实质是以执行程序时间来换取I/O端口减少。 当显示位数较多时,静态显示所占的I/O口多,这时常采用动态显示。为节省I/O口,通常将所有显示器段码线相应段并联在一起,由一个8位I/O口控制,各显示位公共端分别由另一单独I/O口线控制,如下图3所示。其中单片机发出的段码占用1个8位I/O(1)端口,而位选控制使用I/O(2)端口中4位口线。

农学专业本科人才培养方案

农学专业本科人才培养方案 一、专业名称:农学(Agronomy);专业代码:090101 二、培养目标:培养具备作物生产、作物遗传育种及种子科学等方面的基本理论、基本知识和基本技能,能在农业及其他相关的部门、企业或单位从事与农学有关的技术与设计、推广与开发、经营与管理、教学与科研等工作的应用型、复合型科学技术人才。 三、培养要求:本专业毕业生应具有良好的思想品德、社会公德和职业道德,具有宽厚的人文社会科学和自然科学的基本知识,掌握农业生物科学、农业生态科学、作物生长发育和遗传规律、作物育种、栽培、耕作、种子及农业推广等方面的基本理论和基本知识,受到作物生产和作物新品种选育等方面的基本训练,具有作物育种、作物栽培和耕作、种子生产与检验等方面的基本能力。 毕业生应获得以下几方面的知识和能力: 1. 具备扎实的数学、物理、化学等基本理论知识; 2. 掌握生物学科和农学学科的基本理论、基本知识; 3. 掌握农业生产,特别是作物生产的技能和方法; 4. 具备农业可持续发展的意识和基本知识,了解农业生产和科学技术的前沿和发展趋势; 5. 熟悉农业生产,了解农村、农业、农民及有关方针政策; 6. 掌握科技文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力; 7. 掌握种子生产、种子检验、种子加工与贮藏和经营管理的技术、原理和方法; 8. 有较强的调查研究与决策、组织与管理、口头与文字表达能力,具有独立获取知识、信息处理和创新的基本能力; 9. 掌握农业推广的基本方法、手段,通过试验、示范、培训、指导以及咨询服务等,把农业技术普及应用于农业生产的产前、产中、产后全过程。 四、主干学科:作物学。 五、主要课程:植物学,植物生理学,生物化学,微生物学,气象学,遗传学,土壤肥料学,植物保护学,试验统计方法,作物栽培学,作物育种学,种子学,耕作学等。 六、主要实践教学环节:军事技能训练,思政实践,社会实践,农学实践,教学实习,生产实习,科学研究能力训练,毕业实习及毕业论文等。 七、学制与修业年限:标准学制4年,修业年限3-6年。 八、授予学位:农学学士。 九、毕业学分要求:最低修读171学分,其中课内教学不低于129学分,实践教学不低于42学分。 十、课程设置及教学进程表:

实验指导书

Matlab实验指导书 河北大学电子信息工程学院 2004年1月

目录 MATLAB实验教学计划 (2) 实验一MATLAB基本操作 (3) 实验二MATLAB图形系统......................................................... . (5) 实验三 MATLAB程序设计 (6) 实验四 MATLAB基本应用领域 (7) 实验五设计性综合实验1---数字信道编译码 (14) 实验六设计性综合实验2---fir滤波器设计................................. . (16) 2

MATLAB实验教学计划 指导教师:郑晓昆薛文玲王竹毅学时数:12学时周4学时2次实验,共3周6次实验,第7—9教学周,每次实验2学时 所用仪器设备:MATLAB7.0实验软件系统 实验指导书:Matlab实验指导书 自编 实验参考书:, 楼顺天等编著, 西安电子科大出版社,06年5月第二版 实验项目: A, MATLAB基本操作 内容:矩阵操作,基本数学函数,逻辑函数操作等; 要求:循序渐进完成P83练习题1—10 B, MATLAB图形系统 内容:图形绘制,图形标注,对数和极坐标,坐标轴控制,颜色控制等要求:循序渐进完成P146练习题1—10 C, MATLAB程序设计 内容:脚本script和函数function认识,流程控制,参数交互输入,基本程序设计技巧练习,程序调试DEBUG等 要求:循序渐进完成P184练习题1—10 D, MATLAB基本应用领域 内容:线性代数,多项式与内插,曲线拟合,数据分析与统计,泛函基础等 要求:循序渐进完成P146练习题1—4,6—19 E, 设计性综合实验----数字信道编译码 内容:1数字通信系统信道编码AMI编译码 2数字通信系统信道编码HDB3编译码 F,设计性综合实验----fir滤波器设计 内容:设计一个有限冲击相应数字滤波器FIR是该滤波器能够滤出规定频率以上的信号,而该频率以下的信号不受影响。 3

测试技术实验指导书及实验报告2006级用汇总

矿压测试技术实验指导书 学号: 班级: 姓名: 安徽理工大学 能源与安全学院采矿工程实验室

实验一常用矿山压力仪器原理及使用方法 第一部分观测岩层移动的部分仪器 ☆深基点钻孔多点位移计 一、结构简介 深基点钻孔多点位移计是监测巷道在掘进和受采动影响的整个服务期间,围岩内部变形随时间变化情况的一种仪器。 深基点钻孔多点位移包括孔内固定装置、孔中连接钢丝绳、孔口测读装置组成。每套位移计内有5~6个测点。其结构及其安装如图1所示。 二、安装方法 1.在巷道两帮及顶板各钻出φ32的钻孔。 2.将带有连接钢丝绳的孔内固定装置,由远及近分别用安装圆管将其推至所要求的深度。(每个钻孔布置5~6个测点,分别为;6m、5m、4m、3m、2m、lm或12m、10m、8m、6m、4m、2m)。 3.将孔口测读装置,用水泥药圈或木条固定在孔口。 4。拉紧每个测点的钢丝绳,将孔口测读装置上的测尺推至l00mm左右的位置后,由螺丝将钢丝绳与测尺固定在一起。 三、测试方法 安装后先读出每个测点的初读数,以后每次读得的数值与初读数之差,即为测点的位移值。当读数将到零刻度时,松开螺丝,使测尺再回到l00mm左右的位置,重新读出初读数。 ☆顶板离层指示仪 一、结构简介: 顶板离层指示仪是监测顶板锚杆范围内及锚固范围外离层值大小的一种监测仪器,在顶板钻孔中布置两个测点,一个在围岩深部稳定处,一个在锚杆端部围岩中。离层值就是围岩中两测点之间以及锚杆端部围岩与巷道顶板表面间的相对位移值。顶板离层指示仪由孔内固定装置、测量钢丝绳及孔口显示装置组成如图1所示。

二、安装方法: 1.在巷道顶板钻出φ32的钻孔,孔深由要求而定。 2.将带有长钢丝绳的孔内固定装置用安装杆推到所要求的位置;抽出安装杆后再将带有短钢丝绳的孔内固定装置推到所要求的位置。 3.将孔口显示装置用木条固定在孔口(在显示装置与钻孔间要留有钢丝绳运动的间隙)。 4.将钢丝绳拉紧后,用螺丝将其分别与孔口显示装置中的圆管相连接,且使其显示读数超过零刻度线。 三、测读方法: 孔口测读装置上所显示的颜色,反映出顶板离层的范围及所处状态,显示数值表示顶板的离层量。☆DY—82型顶板动态仪 一、用途 DY-82型顶板动态仪是一种机械式高灵敏位移计。用于监测顶底板移近量、移近速度,进行采场“初次来压”和“周期来压”的预报,探测超前支撑压力高 峰位置,监测顶板活动及其它相对位移的测量。 二、技术特征 (1)灵敏度(mm) 0.01 (2)精度(%) 粗读±1,微读±2.5 (3)量程(mm) 0~200 (4)使用高度(mm) 1000~3000 三、原理、结构 其结构和安装见图。仪器的核心部件是齿条6、指针8 以及与指针相连的齿轮、微读数刻线盘9、齿条下端带有读 数横刻线的游标和粗读数刻度管11。 当动态仪安装在顶底板之间时,依靠压力弹簧7产生的 弹力而站立。安好后记下读数(初读数)并由手表读出时间。 粗读数由游标10的横刻线在刻度管11上的位置读出,每小 格2毫米,每大格(标有“1”、“22'’等)为10毫米,微读数 由指针8在刻线盘9的位置读出,每小格为0.01毫米(共200 小格,对应2毫米)。粗读数加微读数即为此时刻的读数。当 顶底板移近时,通过压杆3压缩压力弹簧7,推动齿条6下 移,带动齿轮,齿轮带动指针8顺时针方向旋转,顶底板每 移近0.01毫米,指针转过1小格;同时齿条下端游标随齿条 下移,读数增大。后次读数减去前次读数,即为这段时间内的顶底板移近量。除以经过的时间,即得

实验3:外部中断实验指导书

《—嵌入式系统原理与应用—》实验指导书 黄鹏程、谢勇编写 适用专业:计算机科学与技术 物联网工程 厦门理工学院计算机与信息工程院(系) 2016 年 3 月

实验3:外部中断实验 实验学时:2 实验类型:(演示、验证√、综合、设计研究) 实验要求:(必修√、选修) 一、实验目的 1. 理解中断的概念及其在嵌入式系统中的应用; 2. 熟悉LPC1700系列CortexM3 微控制器的NVIC的配置; 3. 熟悉LPC1700系列CortexM3 微控制器外部中断的控制。 二、实验内容 在EasyARM1768开发板的硬件平台上,基于流水灯显示实验,结合向量中断控制器NVIC和外部中断,设计并实现外部中断实验。要求实现三种方式的流水灯实现,并且通过三个按键利用通过外部中断实现三种不同方式的切换。 三、实验原理、方法和手段 中断对嵌入式系统来说是很重要的一个概念,利用中断,可以开发出很接近产品的嵌入式系统。市场上大部分的不带嵌入式操作系统的嵌入式系统都采用了“前后台系统”来实现产品功能,这其中的前台就是中断机制。故我们要理解中断的概念,并且能够应用中断到实际的嵌入式系统中来。 图1 前后台系统

图2 中断处理流程示意图 1、 中断向量控制器(NVIC ) 嵌套向量中断控制器(NVIC )是 Cortex-M3 处理器的一个内部器件,它与 CPU 内核紧密耦合,共同完成对中断的响应,降低了中断延时,使得最新发生的中断可以得到高效处理。 它能够管理中断的各种事务,比如使能或禁止外设中断源的中断,设置外设中断源的优先级,挂起中断,查看外设中断源的中断触发状态等。然后把中断信号给ARM 内核。NVIC 的应用示意图如下所示: 图3 NVIC 的作用

耕作学实习报告

青岛农业大学 本科生实习报告 报告题目耕作学实习报告 学生学院农学与植物保护学院 专业班级农学1204 姓名学号闫董丰20124927

耕作学实习报告 一、实习目的:通过对莱阳某农村的种植制度以及养地制度调查访问,即对莱阳校区实习基地的调查了解,进一步学习种植制度以及养地制度的主要内容及相关技术。 二、实习时间:2015年10月27日 三、实习地点:莱阳市某农村莱阳校区实习基地 四、实习内容 此次实习首先回顾了课堂相关知识,进而在老师指导下对照的种植制度和养地制度进行了参观调查,由于实习时间为十月份,因此我们观察到有些土地是刚刚收获上一茬作物但还没有种植下茬作物的。 进而在老师指导下,对当地农民进行了采访,采访内容主要有: 1、自然条件 莱阳市地处位于胶东半岛腹地,东北与烟台市接壤,西南与青岛市毗邻,南临黄海,是北温带东亚季风区。大陆度为64.3%,属大陆季风型半湿润性气候。具有光照充足,四季分明,春季风多易旱,夏季炎热多雨,秋季昼暖夜凉,冬季寒冷干燥的特点。全市年平均降水量为800MM,年平均气温11.2°,全市平均无霜期173天。全市总面积1734平方公里,耕地面积120万亩。境内土壤划分为棕壤、褐土、潮土、砂姜黑土、盐土、风砂土6个土类,11个土壤亚类,18个土属,137个土种。 2、作物种植概况 莱阳农学院实验基地及附近农户土地地势为平坦,紧邻咸河,雨水充足,少量来自农户家庭生活用水,水质较好,不含对作物有害的污染物。基地灌溉条件设施良好,大部分是旱涝保收,只有少部分地势低洼的地方难排水而常年有积水。 从整体上来看,实验田主要以玉米,小麦等粮食作物为主,花生,大豆等经济作物为辅,饲料作物很少。 (1)光照、热量、水对资源等自然资源的利于状况较好,但仍有可改进

实验指导书

苯甲酸红外光谱的测绘—溴化钾压片法制样 一、实验目的 1、了解红外光谱仪的基本组成和工作原理。 2、熟悉红外光谱仪的主要应用领域。 3、掌握红外光谱分析时粉末样品的制备及红外透射光谱测试方法。 4、熟悉化合物不同基团的红外吸收频率范围.学会用标准数据库进行图谱检索 及化合物结构鉴定的基本方法。 二、实验原理 红外光谱分析是研究分子振动和转动信息的分子光谱。当化合物受到红外光照射,化合物中某个化学键的振动或转动频率与红外光频率相当时,就会吸收光能,并引起分子永久偶极矩的变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应频率的透射光强度减弱。分子中不同的化学键振动频率不同,会吸收不同频率的红外光,检测并记录透过光强度与波数(1/cm)或波长的关系曲线,就可得到红外光谱。红外光谱反映了分子化学键的特征吸收频率,可用于化合物的结构分析和定量测定。 根据实验技术和应用的不同,我们将红外光划分为三个区域:近红外区(0.75~2.5μm;13158~40001/cm),中红外区(2.5~25μm;4000~4001/cm)和远红外区(25~1000μm;400~101/cm)。分子振动伴随转动大多在中红外区,一般的红外光谱都在此波数区间进行检测。 傅立叶变换红外光谱仪主要由红外光源、迈克尔逊干涉仪、检测器、计算机和记录系统五部分组成。红外光经迈克尔逊干涉仪照射样品后,再经检测器将检测到的信号以干涉图的形式送往计算机,进行傅立叶变换的数学处理,最后得到红外光谱图。

傅立叶变换红外光谱法具有灵敏度高、波数准确、重复性好的优点,可以广泛应用于有机化学、金属有机化学、高分子化学、催化、材料科学、生物学、物理、环境科学、煤结构研究、橡胶工业、石油工业(石油勘探、润滑油、石油分析等)、矿物鉴定、商检、质检、海关、汽车、珠宝、国防科学、农业、食品、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、法庭科学(司法鉴定、物证检验等)、气象科学、染织工业、日用化工、原子能科学技术、产品质量监控(远距离光信号光谱测量:实时监控、遥感监测等)等众多方面。 三、仪器和试剂 1、Nicolet 5700 FT-IR红外光谱仪(美国尼高力公司) 2、压片机(日本岛津公司) 3、压片模具(日本岛津公司) 4、玛瑙研钵(日本岛津公司) 5、KBr粉末(光谱纯,美国尼高力公司) 6、苯甲酸(分析纯) 四、实验步骤 1、样品的制备(溴化钾压片法)

操作系统实验指导书汇总

操作系统实验指导书 东北大学软件学院 2008年10月

实验要求 (1)预习实验指导书有关部分,认真做好实验的准备工作。 (2)实验中及时分析记录。 (3)按指导书要求书写实验报告,提交打印版(A4)。 实验的验收将分为两个部分。第一部分是上机操作,包括检查程序运行和即时提问。第二部分是提交的实验报告。

实验一进程调度(4学时) 一、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。当就绪进程个数大于处理机数时,就必须依照某种策略来决定哪些进程优先占用处理机。本实验模拟在单处理机情况下的处理机调度,帮助学生加深了解处理机调度的工作。 二、实验类型 设计型。 三、预习内容 预习课本处理机调度有关内容,包括进程占用处理机的策略方法。 四、实验内容与提示 本实验中共有两个实验题。 第一题:编写并调试一个模拟的进程调度程序,采用“最高优先数优先”调度算法对五个进程进行调度。 <一>最高优先级优先调度算法 1)优先级简介 动态优先数是指在进程创建时先确定一个初始优先数,以后在进程运行中随着进程特性的改变不断修改优先数,这样,由于开始优先数很低而得不到CPU 的进程,就能因为等待时间的增长而优先数变为最高而得到CPU运行。 例如:在进程获得一次CPU后就将其优先数减少1。或者,进程等待的时间超过某一时限时增加其优先数的值,等等。 2)详细设计 优先权调度算法: 1、设定系统中有五个进程,每一个进程用一个进程控制块( PCB)表示,

进程队列采用链表数据结构。 2、进程控制块包含如下信息:进程名、优先数、需要运行时间、已用 CPU时间、进程状态等等。 3、在每次运行设计的处理调度程序之前,由终端输入五个进程的“优 先数”和“要求运行时间”。 4、进程的优先数及需要的运行时间人为地指定。进程的运行时间以时 间片为单位进行计算。 5、采用优先权调度算法,将五个进程按给定的优先数从大到小连成就 绪队列。用头指针指出队列首进程,队列采用链表结构。 6、处理机调度总是选队列首进程运行。采用动态优先数办法,进程每 运行一次优先数减“1”,同时将已运行时间加“1”。 7、进程运行一次后,若要求运行时间不等于已运行时间,则再将它加 入就绪队列;否则将其状态置为“结束”,且退出就绪队列。 8、“就绪”状态的进程队列不为空,则重复上面6,7步骤,直到所 有进程都成为“结束”状态。 9、在设计的程序中有输入语句,输入5个进程的“优先数”和“要求 运行时间”,也有显示或打印语句,能显示或打印每次被选中进程 的进程名、运行一次后队列的变化,以及结束进程的进程名。10、最后,为五个进程任意确定一组“优先数”和“要求运行时间”,运行并调试所设计的程序,显示或打印出逐次被选中进程的进程名及其进程控制块的动态变化过程。

电磁场实验3指导书

电磁场理论实验三 1、 利用Matlab 模拟亥姆霍兹线圈磁场分布; 2、 利用Matlab 模拟匝线圈产生的磁场; 3、 利用Matlab 模拟直流环等效磁偶极子。 以上实验在内容上相差不多,每位同学自选其中一个实验。三个实验的内容都是与毕奥-萨伐尔定律相关,这次实验只要是为了加深大家对毕奥-萨伐尔定律的认识。实验相关内容都可以在网上找得到。 一、 利用Matlab 模拟亥姆霍兹线圈磁场分布 1、 理论基础 亥姆霍兹线圈(如图1)是一对彼此平行且连通的共轴圆形线圈。两线圈内的电流方 向一致,大小相同。线圈之间距离d 正好等于圆形线圈的半径R 。亥姆霍兹线圈轴线附近的磁场大小分布十分均匀,而且都沿x 方向。基于Matlab 软件对亥姆霍兹线圈轴线磁场均匀分布的现象进行验证和动态仿真,以便于更形象地体现出来。 图1亥姆霍兹线圈结构 根据毕奥-萨伐尔定律,一个通电圆圈的磁场分布可以积分得到。在通过圆心而且垂直于线圈平面的轴线上,距离圆心X 处,磁场大小为2 /322 2 0) (2/X R NI R B +=μ。其 中I 为电流大小,R 为圆圈半径,0μ为一个常数。从上面已知亥姆霍兹线圈是两个彼此平行且连通的共轴圆形线圈,它的磁场分布是两个通电圆圈磁场的叠加。

假设两个线圈的半径为R ,各有N 匝,每匝中的电流均为I ,且流向相同(如图1)。两线圈在轴线上各点的场强方向均沿轴线向右,在圆心1O 、2O 处磁感应强度相等,大小都是: R NI R NI NIR R NI B 003/2 22 2 000667 .0)2 211(2) R (R 22μμμμ=+ = ++ = 两线圈间轴线上中点P 处,磁感应强度大小为: R NI R NI R NIR B p 002 /3222 0716 .0)2 211(558])2 ([22 μμμ=+ = += 此外,在P 点两侧各4R 处的1Q 、2Q 两点处磁感应强度都等于: R NI R NI R NIR R NIR B Q 033 3/2302 /3222 02 /3222 00.712)54174(2])4 3R ( [2])4 R ([2μμμμ=+=++ += 在图1假设左边线圈为A ,右边的线圈为B ,把观测区域聚在两线圈之间的小范围内。 B 生成的线圈左边的磁场就等于A 线圈的右边磁场,因此,A ,B 两线圈在中间部分合成磁场等于A 线圈的右磁场与左磁场平衡Rh 后的和。因此,只要观测A 线圈的左右区间x=[-Rh,Rh]内的磁场就可以。在建立了亥姆霍兹线圈产生的磁场数学模型后,依据上面的分析与所建立的数学模型可以在Matlab 环境下编制可仿真,可执行的仿真程序。 二、 利用Matlab 模拟匝线圈产生的磁场 基本原理 截流导线产生磁场的基本规律为:任一电流元→ dl I 在空间任一点P 处产生的磁感应强度 → B d 是下列向量叉乘积: 3 04r r l Id B d → →→ ?? =πμ(1) 式中→ r 为电流元到P 点的矢径,l d → 为导线元的长度矢量。P 点的总磁场可沿截流导体全长积分产生的磁场来求得。 若将→ B d 视为一小段电流l d → 在→ r 处产生的磁场,则上式可写为

《耕作学》课程教学大纲

《耕作学》课程教学大纲 课程名称:耕作学学分:2.5总学时:40 理论学时40实验学时0课程类别:专业课课程性质:必修课 适用层次:本科开课学期:8适用专业:农学 先修课程:植物学、植物生理学、农业微生物学、基础生物化学、农业气象学、土壤学、农业昆虫学、农业经营管理、植物营养与肥料、植物病理学、作物育种学、作物栽培学I、农业生态学 后续课程:种子生产学、试验数据的计算机处理、荒漠土壤培肥与改良、现代农业专题 一、课程性质、地位和任务 1、课程性质: 耕作学以作物栽培学、植物生理学、土壤学、农业生态学、农业经济学、农业气象学等学科为基础,研究并阐明耕作制度形成、发展、演进和改革的规律,探讨气候、作物、土壤之间以及它们和农业技术措施之间的辨证关系,而达到既充分利用当地的自然资源好社会资源,提高农作物的单产,又积极保护农业自然资源,改善环境,培养地力,为作

物稳产提供良好的土壤、气候、环境的一门生产性、综合性很强的学科。本课程是农学专业必修课。 2、课程的地位: 耕作学把农业生产当作一个系统,从农业发展的全局研究综合的农业技术体系,解决农业生产在时间、空间上的优化问题,是一门综合性农业应用科学,主要培养学生具有现代化农业的总体战略观点和组织指导生产的能力,提高学生综合分析问题和解决问题的能力,辩证地、全面地认识和分析农业生产问题。因此本课程在农学专业的学生培养方面具有重要的作用。 3、课程的任务: 耕作学在性质上属于自然科学,但它与社会经济及相关学科有着十分密切的关系,其内容包括作物结构与布局、复种、间混套作、轮连作以及与之相适应的提高土地生产力的对策,又属应用科学,有较强的技术性,同时也包含农业宏观决策管理等一些软科学内容。耕作学的任务就是在自然与社会条件下建立稳产、高产、优质、高效率和低成本的耕作制度。 二、教学目标及要求 耕作学是农学及其他相关农科专业的重要专业课,是一门生产性、综合性很强的应用科学。农学专业的学生在学习《耕作学》这一课程时应了解耕作学发展的阶段、耕作制度

实验指导书

混凝土基本理论及钢桁架静力测试试验指导书

试验一、钢筋混凝土受弯构件正截面破坏试验 一、试验目的 1.了解受弯构件正截面的承载力大小、挠度变化及裂缝出现和发展过程; 2.观察了解受弯构件受力和变形过程的三个工作阶段及适筋梁的破坏特征; 3.测定受弯构件正截面的开裂荷载和极限承载力,验证正截面承载力计算方法。 二、试件、试验仪器设备 1.试件特征 (1). 根据试验要求,试验梁的混凝土强度等级为C20,纵向受力钢筋强度等级I级。 (2). 试件尺寸及配筋如图1所示,纵向受力钢筋的混凝土净保护层厚度为15mm 。 (3). 梁的中间500mm 区段内无腹筋,其余区域配有 6@60的箍筋,以保证不发生斜 截面破坏。 (4). 梁的受压区配有两根架立筋,通过箍筋与受力筋绑扎在一起,形成骨架,保证受力钢筋处在正确的位置。 2.试验仪器设备 (1). 静力试验台座、反力架、支座及支墩 (2). 20T 手动式液压千斤顶 (3). 读数显微镜及放大镜 (4). 位移计(百分表)及磁性表座 三、试验装置及测点布置 1.试验装置见图2 (1). 在加荷架中,用千斤顶通过分配梁进行两点对称加载,使简支梁跨中形成长 500mm 的纯弯曲段(忽略梁的自重)。 (2). 构件两端支座构造应保证试件端部转动及其中一端水平位移不受约束,基本符 合铰支承的要求。 2.测点布置 梁的跨中及两个对称加载点各布置一位移计f 3~f 5,量测梁的整体变形,考虑在加载的过程中,两个支座受力下沉,支座上部分别布置位移测点f 1和f 2,以消除由于支座下沉对挠度测试结果的影响。 图1 试件尺寸及配筋图

C语言实验指导书(刘联海20131106)

《C语言程序设计》实验指导书

目录 实验1 C语言编程环境和运行C程序的方法 (1) 实验2 简单的顺序结构程序设计 (3) 实验3 数据类型和表达式 (5) 实验4 选择结构程序设计 (7) 实验5 循环结构程序设计(1) (10) 实验6 循环结构程序设计(2) (13) 实验7 数组 (16) 实验8 函数 (18)

实验1 C语言编程环境和运行C程序的方法 一、实验目的 1、熟悉Visual C6.0集成开发环境的使用方法; 2、熟悉C语言程序从编辑、编译、连接到最后运行得到结果的过程及各过程的作用; 3、了解C语言程序的结构特征与书写规则,能够编写简单的C程序; 4、初步理解程序调试的思想,能找出并改正C程序中的语法错误。 二、实验内容 1、熟悉上机环境 ⑴熟悉VC++6.0集成环境,重点是其中常用菜单、工具按钮的功能; ⑵在D盘建立一个自己的工作文件夹,文件夹以班名+学号后两位+姓名来命名(如:应用1105张三);分别创建、编辑并运行下列程序,初步熟悉C源程序的结构特点和运行方式。 #include main() { printf(“This is my first program!\n") ; } 2、编写一个程序实现分两行输出自己的姓名及联系电话。 3、程序改错调试 以下给定程序的功能是在屏幕上显示“Welcome to You!”,其中存在3处错误,请指出错误所在,并调试程序使其能运行得到正确结果。 #include mian() //1 { printf(Welcome to You!\n") //2 } 4、选做题 ⑴自学教材P47内容以及附录B中的字符与ASCII码对照表,编程输出以下图形: ? ? ⑵编程输出如下通讯录功能菜单界面

相关文档
相关文档 最新文档