文档库 最新最全的文档下载
当前位置:文档库 › 2016-2017学年第一学期工程数学Ⅰ(离线作业)

2016-2017学年第一学期工程数学Ⅰ(离线作业)

2016-2017学年第一学期工程数学Ⅰ(离线作业)
2016-2017学年第一学期工程数学Ⅰ(离线作业)

2016—2017学年第一学期

离线作业

科目:工程数学I

姓名:

学号:

专业:工程管理(专升本)

西南交通大学远程与继续教育学院

校本部学习中心

工程数学I

第一次作业

三、主观题(共9道小题)

22.

答:t=5。

23.答:24

24.答:-1

25.

答:

26.

答:x = -4 , y= 2

27.答:4

28.答:相关

29.

答:λ1 =λ2= 0 ,λ3=2

30.答:3

第二次作业

三、主观题(共6道小题)

13.

答:a=6 14.答:48

15.

答:-2

16.

答:或不定

17.

答:a=b=c=1

18.答:4

第三次作业

三、主观题(共6道小题)

13.

解答:令

,则

A的阶梯形有零行,所以向量组线性相关。

14.

求解齐次方程组

解答:

对方程组的系数矩阵作初等行变换化成简单阶梯形矩阵

15.已知四元线性方程组

解答:

16.设

,求A的特征值和特征向量。解答:

17.求一个正交矩阵P,将对称矩阵

化为对角矩阵。解答:

18.设二次型经过正交变换化为

求参数a、b及所用的正交变换矩阵。

解答:

变换前后的两个二次型的矩阵分别为

第四次作业三、主观题(共7道小题)

13.计算行列式

解答:

容易发现D的特点是:每列(行)元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到

由于上式右端行列式第一行的元素都等于1,那么让二、三、

四行都减去第一行得

14.求行列式中元素a和b的代数余子式。

解答:

行列式展开方法=

=

15.设,判断A是否可逆?若可逆,求出解答:

即所以

16.

求矩阵X使之满足

解答:

17.用初等行变换求矩阵的逆矩阵

解答:

于是

同样道理,由算式可知,若对矩阵(A,B)施行初等行变换,当把A变为E时,B就变为

18.讨论向量组,,的线性相关性。

解答:

19.用正交变换把二次型化为标准型。解答:二次型的矩阵

正交化得

位化得

第五次作业三、主观题(共7道小题)

14.

参考答案:主观题答案暂不公布,请先自行离线完成。

15.

参考答案:主观题答案暂不公布,请先自行离线完成。

16.

参考答案:主观题答案暂不公布,请先自行离线完成。

17.

答:t=5

18.

计算四阶行列式

解答:

将行列式D按第三行展开得

19.

求方程组

的一个基础解系并求其通解。解答:

对方程组的系数矩阵作初等行变换化成简单阶梯形矩阵:

原方程组的一个基础解系。

20.

a、b为何值时,线性方程组

有唯一解,无解或有无穷多解?在有无穷多解时,求其通解?解答:

工程数学基础第一次作业第一次答案

《工程数学基础(Ⅰ)》第一次作业答案 你的得分:100.0 完成日期:2013年09月03日20点40分 说明:每道小题括号里的答案是您最高分那次所选的答案,标准答案将在本次作业结束(即2013年09月12日)后显示在题目旁边。 一、单项选择题。本大题共20个小题,每小题4.0 分,共80.0分。在每小题给出的选项中,只有一项是符合题目要求的。 1.( D ) A.(-6, 2, -4) B.(6, 2, 4)T C.(2, 6, 4) D.(3, 6, 4)T 2.( D ) A. B. C. D. 3.设A为3x2矩阵,B为2x4矩阵,C为4x2矩阵,则可以进行的运算是 ( ) ( B ) A.AC T B B.AC T B T C.ACB T D.ACB 4.设A是可逆矩阵,且A+AB=I,则A-1 等于 ( )( C ) A.B B.1+ B C.I + B D.(I-AB)-1 5. ( D ) A.|A+B|=| A |+|B| B. | A B|=n| A||B| C. |kA|=k|A|

D.|-kA|=(-k)n|A| 6. ( D ) A. 6 B.-6 C.8 D.-8 7.设A B均为n阶方阵,则成立的等式是( )( B ) A.|A+B|=| A |+|B| B.| A B|=| BA| C.(AB)T= A T B T D.AB= BA 8.设A,B,C均为n阶方阵,下列各式中不一定成立的是 ( )( A ) A.A(BC)=(AC)B B.(A+B)+C=A+(C+B) C.(A+B)C=AC+BC D.A(BC)=(AB)C 9.设α1,α2,α3是3阶方阵A的列向量组,且齐次线性方程组Ax=b有唯一解, 则 ( )( B ) A.α1可由α2,α3线性表出 B.α2可由α1,α3线性表出 C.α3可由α1,α2线性表出 D.A,B,C都不成立 10.设向量组A是向量组B的线性无关的部分向量组,则 ( )( D ) A.向量组A是B的极大线性无关组 B.向量组A与B的秩相等 C.当A中向量均可由B线性表出时,向量组A,B等价 D.当B中向量均可由A线性表出时,向量组A,B等价 11.设n阶方阵A的行列式|A|=0则A中( )( C ) A.必有一列元素全为0 B.必有两列元素对应成比例 C.必有一列向量是其余向量线性表示 D.任一向量是其余向量的线性组合 12. ( A ) A. B.

最新中央电大工程数学形成性考核册作业1-4参考答案

中央电大工程数学作业(一)答案(满分100分) 第2章 矩阵 (一)单项选择题(每小题2分,共20分) ⒈设a a a b b b c c c 1 231 2312 32=,则a a a a b a b a b c c c 1 23 1122 331 2 3 232323---=(D ). A. 4 B. -4 C. 6 D. -6 ⒉若 0001000 02001001a a =,则a =(A ). A. 12 B. -1 C. -1 2 D. 1 ⒊乘积矩阵1124103521-??????-???? ? ?中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8 ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A B A B +=+---1 1 1 B. ()AB BA --=11 C. ()A B A B +=+---111 D. ()AB A B ---=111 ⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B = C. kA k A = D. -=-kA k A n () ⒍下列结论正确的是( A ). A. 若A 是正交矩阵,则A -1 也是正交矩阵 B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵 C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵 D. 若A B ,均为n 阶非零矩阵,则AB ≠0 ⒎矩阵1325??? ? ??的伴随矩阵为( C ). A. 1325--?????? B. --????? ?1325 C. 5321--?????? D. --????? ?5321 ⒏方阵A 可逆的充分必要条件是(B ). A.A ≠0 B.A ≠0 C. A *≠0 D. A *>0 ⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1 (D ). A. () '---B A C 1 11 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111 ⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(D ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2

工程数学离线作业

浙江大学远程教育学院 《工程数学》课程作业 姓名:钟标学号:715129202009 年级:2015春学习中心:浙大校内直属学习 中心(紫金港)—————————————————————————————《复变函数与积分变换》 第一章 1.1计算下列各式: (2)、(a-bi)3 解(a-bi)3=a3-3a2bi+3a(bi)2-(bi)3 =a3-3ab2+i(b3-3a2b) ; (3)、; 解== == 1.2、证明下列关于共轭复数的运算性质: (1); 证()-i() ==

(2) 证= = =-- ==()() =-- 即左边=右边,得证。 (3)=(Z2≠0) 证==() == == 1.4、将直线方程ax+by+c=0 (a2+b2≠0)写成复数形式[提示:记x+iy=z] z+A+B=0,其中A=a+ib,B=2C(实数) 。 解由x=,y=代入直线方程,得

()+()+c=0, az+-bi()+2c=0, (a-ib)z+( a+ib)+2c=0, 故z+A+B=0,其中A=a+ib,B=2C 1.5、将圆周方程a(x2+y2)+bx+cy+d=0 (a≠0)写成复数形式(即用z与来表示,其中z=x+iy) 解:x=,y=,x2+y2=z代入圆周方程,得 az+()+()+d=0,2az+(b-ic)z+(b+ic)+2d=0 故Az++B+C=0,其中A=2a,C=2d均为实数,B=b+ic 。 1.6求下列复数的模与辅角主值: (1)、=2, 解 arg()=arctan= 。 1.8将下列各复数写成三角表示式: (2)、i;

2018-2019学年第1学期工程数学I第1次作业

2018-2019学年第1学期工程数学I第1次作业 一、单项选择题(只有一个选项正确,共11道小题) 1. (A) (B) (C) (D) 正确答案:C 解答参考: 2. (A) (B) (C) (D) 正确答案:C 解答参考: 3. (A) (B) (C) (D) 正确答案:A 解答参考: 4. (A) 3 (B) 4 (C) 0 (D) 2 正确答案:C 解答参考: 5. (A) (B) (C) (D) 正确答案:B 解答参考: 6. (A) B=0 (B) BA=0 (C) (D)

正确答案:D 解答参考: 7. (A) 1,2,3 (B) 4,6,12 (C) 2,4,6 (D) 8,16,24 正确答案:B 解答参考: 8. (A) (B) (C) (D) 正确答案:D 解答参考: 9. (A) 充要条件 (B) 充分条件 (C) 必要条件 (D) 既非充分也非必要条件 正确答案:B 解答参考: 10. 已知n阶方阵A和某对角阵相似,则() (A) A有n个不同特征值 (B) A一定是n阶实对称阵 (C) A有n个线性无关的特征向量 (D) A的属于不同的特征值的特征向量正交 正确答案:C 解答参考: 11. (A) 只有0解 (B) 有非0解 (C) 有无穷多解 (D) 解无法判定 正确答案:A 解答参考:只有0解 二、判断题(判断正误,共10道小题) 12. 正确答案:说法正确

解答参考: 13. 正确答案:说法正确 解答参考: 14. 正确答案:说法错误 解答参考: 15. 正确答案:说法错误 解答参考: 16. 正确答案:说法正确 解答参考: 17. 正确答案:说法错误 解答参考: 18. 正确答案:说法错误 解答参考: 19. 正确答案:说法错误 解答参考: 20. 正确答案:说法正确 解答参考: 21. 正确答案:说法正确 解答参考: (注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。在线只需提交客观题答案。) 三、主观题(共9道小题) 22-30 主观题答案暂不公布,请先自行离线完成。

工程数学形成性考核册作业2、4

工程数学作业(第二次)(满分100分) 第3章 线性方程组 (一)单项选择题(每小题2分,共16分) ⒈用消元法得x x x x x x 12323324102+-=+=-=???? ?的解x x x 123??????????为( ). A. [,,]102-' B. [,,]--'722 C. [,,]--'1122 D. [,,]---'1122 ⒉线性方程组x x x x x x x 12313232326334 ++=-=-+=??? ? ?( ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解 ⒊向量组100010001121304?????????????????????????????????????????????? ? ???,,,,的秩为( ). A. 3 B. 2 C. 4 D. 5 ⒋设向量组为αααα12341100001110101111=????????????=????????????=????????????=??????? ? ? ???,,,,则( )是极大无关组. A. αα12, B. ααα123,, C. ααα124,, D. α1 ⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1 ⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是( ). A. 方程个数小于未知量个数的线性方程组一定有解 B. 方程个数等于未知量个数的线性方程组一定有唯一解 C. 方程个数大于未知量个数的线性方程组一定有无穷多解 D. 齐次线性方程组一定有解 ⒏若向量组ααα12,,, s 线性相关,则向量组内( )可被该向量组内其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量 (二)填空题(每小题2分,共16分)

2018-2019学年第1学期工程数学I第3次作业

2018-2019学年第1学期工程数学I第3次作业 一、单项选择题(只有一个选项正确,共6道小题) 1. 下列说法正确的是() (A) (B) (C) (D) 正确答案:D 解答参考: 2. (A) (B) (C) (D) 正确答案:D 解答参考: 3. (A) AB正定 (B) (C) (D) KA正定 正确答案:B 解答参考: 4. (A) (B) (C) (D) 正确答案:C 解答参考: 5. (A) (B) (C) (D) 正确答案:D 解答参考: 6. (A) (B) (C) (D)

正确答案:B 解答参考: 二、判断题(判断正误,共6道小题) 7. 正确答案:说法正确 解答参考: 8. 正确答案:说法错误 解答参考: 9. 正确答案:说法错误 解答参考: 10. 正确答案:说法正确 解答参考: 11. 正确答案:说法错误 解答参考: 12. 正确答案:说法正确 解答参考: (注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。在线只需提交客观题答案。) 三、主观题(共6道小题) 13. 参考答案:主观题答案暂不公布,请先自行离线完成。 14. 求解齐次方程组 参考答案:主观题答案暂不公布,请先自行离线完成。 15. 已知四元线性方程组 参考答案:主观题答案暂不公布,请先自行离线完成。 16. 设 ,求A的特征值和特征向量。 参考答案:主观题答案暂不公布,请先自行离线完成。

17. 求一个正交矩阵P,将对称矩阵 化为对角矩阵。 参考答案:主观题答案暂不公布,请先自行离线完成。 18. 设二次型经过正交变换化为求参数a、b及所用的正交变换矩阵。参考答案:主观题答案暂不公布,请先自行离线完成。

西南交大 工程数学I 第4次作业答案

工程数学I第4次作业客观题本次作业是本门课程本学期的第4次作业,注释如下: 一、判断题(判断正误,共33道小题) 1. 你选择的答案: [前面作业中已经做正确] [正确] 正确答案:说法正确 解答参考: 2. 你选择的答案: [前面作业中已经做正确] [正确] 正确答案:说法正确 解答参考: 3. 你选择的答案: [前面作业中已经做正确] [正确] 正确答案:说法错误 解答参考: 4. 你选择的答案: [前面作业中已经做正确] [正确] 正确答案:说法错误 解答参考: 5. 你选择的答案: [前面作业中已经做正确] [正确] 正确答案:说法正确

解答参考: 6. 你选择的答案:说法正确 [正确] 正确答案:说法正确 解答参考: 7. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考: 8. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考: 9. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考: 10. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考: 11. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考:

12. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考: 13. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考: 14. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确 解答参考: 15. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考: 16. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考: 17. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误 解答参考: 18. 你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确 解答参考: 19.

《工程数学》作业

成绩: 工程数学 形成性考核册 专业: 学号: 姓名: 河北广播电视大学开放教育学院 (请按照顺序打印,并左侧装订)

工程数学作业(一) 第2章 矩阵 (一)单项选择题(每小题2分,共20分) ⒈设a a a b b b c c c 1 231 2312 32=,则a a a a b a b a b c c c 1 23 1122 331 2 3 232323---=( ). A. 4 B. -4 C. 6 D. -6 ⒉若 0001000 02001001a a =,则a =( ). A. 12 B. -1 C. -1 2 D. 1 ⒊乘积矩阵1124103521-??????-???? ? ?中元素c 23=( ). A. 1 B. 7 C. 10 D. 8 ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( ). A. A B A B +=+---1 1 1 B. ()AB BA --=11 C. ()A B A B +=+---111 D. ()AB A B ---=111 ⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是( ). A. A B A B +=+ B. AB n A B = C. kA k A = D. -=-kA k A n () ⒍下列结论正确的是( ). A. 若A 是正交矩阵,则A -1 也是正交矩阵 B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵 C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵 D. 若A B ,均为n 阶非零矩阵,则AB ≠0 ⒎矩阵1325??? ? ??的伴随矩阵为( ). A. 1325--?????? B. --????? ?1325 C. 5321--????? ? D. --???? ? ?5321

工程数学(本科)形考任务答案

工程数学作业(一)答案 第 2 章矩阵 (一)单项选择题(每小题 2 分,共 20 分) ⒈设,则( D ). A. 4 B. - 4 C. 6 D. - 6 ⒉若,则( A ). A. B. - 1 C. D. 1 ⒊乘积矩阵中元素( C ). A. 1 B. 7 C. 10 D. 8 ⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ). A. B. C. D. ⒌设均为阶方阵,且,则下列等式正确的是( D ). A. B. C. D. ⒍下列结论正确的是( A ). A. 若是正交矩阵,则也是正交矩阵

B. 若均为阶对称矩阵,则也是对称矩阵 C. 若均为阶非零矩阵,则也是非零矩阵 D. 若均为阶非零矩阵,则 ⒎矩阵的伴随矩阵为( C ). A. B. C. D. ⒏方阵可逆的充分必要条件是( B ). A. B. C. D. ⒐设均为阶可逆矩阵,则( D ). A. B. C. D. ⒑设均为阶可逆矩阵,则下列等式成立的是( A ). A. B. C. D. (二)填空题(每小题 2 分,共 20 分) ⒈7 . ⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .

⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵. ⒋二阶矩阵. ⒌设,则 ⒍设均为 3 阶矩阵,且,则72 . ⒎设均为 3 阶矩阵,且,则- 3 . ⒏若为正交矩阵,则 0 . ⒐矩阵的秩为 2 . ⒑设是两个可逆矩阵,则. (三)解答题(每小题 8 分,共 48 分) ⒈设,求⑴;⑵;⑶; ⑷;⑸;⑹. 答案: ⒉设,求.

解: ⒊已知,求满足方程中的.解: ⒋写出 4 阶行列式 中元素的代数余子式,并求其值. 答案: ⒌用初等行变换求下列矩阵的逆矩阵: ⑴;⑵;⑶.

工程数学I第5次作业

工程数学I第5次作业 本次作业是本门课程本学期的第5次作业,注释如下: 一、单项选择题(只有一个选项正确,共6道小题) 1. (A) (B) (C) (D) 正确答案:B 解答参考: 2. (A) (B) (C) (D) 你选择的答案:未选择 [错误] 正确答案:C 解答参考: 3. (A) (B) (C) (D)

你选择的答案:未选择 [错误]正确答案:D 解答参考: 4. (A) m+n (B) -(m+n) (C) m-n (D) n-m 你选择的答案:未选择 [错误]正确答案:D 解答参考: 5. (A) (B) (C) (D) 你选择的答案:未选择 [错误]正确答案:D 解答参考: 6. (A) (B) (C)

(D) 你选择的答案:未选择 [错误] 正确答案:B 解答参考: 二、判断题(判断正误,共7道小题) 正确答案:说法错误 解答参考: 8. 你选择的答案:未选择 [错误] 正确答案:说法错误 解答参考: 9. 正确答案:说法错误 解答参考: 10. 你选择的答案:未选择 [错误] 正确答案:说法错误 解答参考: 1 1. 你选择的答案:未选择 [错误] 正确答案:说法正确 解答参考:

12. 你选择的答案:未选择 [错误] 正确答案:说法错误 解答参考: 13. 你选择的答案:未选择 [错误] 正确答案:说法正确 解答参考: (注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。在线只需提交客 观题答案。) 三、主观题(共7道小题) 14. 参考答案: 15. 参考答案: 16. 参考答案: 17. 参考答案: 18.

工程数学作业4答案

1 工程数学作业(第四次) 第6章 统计推断 (一)单项选择题 ⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量. A. x 1 B. x 1+μ C. x 122σ D. μx 1 ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计. A. max{,,}x x x 123 B. 12 12()x x + C. 212x x - D. x x x 123-- (二)填空题 1.统计量就是 __不含未知参数的样本函数 . 2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计两种方法. 3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 . 4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2 已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量 n x U /0σμ-=. 5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率. (三)解答题 1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5, 5.0, 3.5, 4.0 试分别计算样本均值x 和样本方差s 2. 解: 6.336101101101 =?==∑=i i x x 878.29.259 1)(110121012=?=--=∑=i i x x s 2.设总体X 的概率密度函数为f x x x (;)(),, θθθ=+<

工程数学离线作业解析

浙江大学远程教育学院 《工程数学》课程作业 姓名: 刘子凡 学 号: 713117202004 年级: 13年秋电气自动化 学习中心: 龙泉学习中心 ————————————————————————————— 教材:《复变函数与积分变换》 第一章 1.1计算下列各式: (2)(a-b i )3 解(a-bi) (3) i (i 1)(i 2) -- 1.2证明下列关于共轭复数的运算性质: (1)1212()z z z z ±=± (2)1212()z z z z =

(3)11 22 2 ()(0)z z z z z = ≠ 1.4将直线方程ax+by+c=0(a 2+b 2≠0)写成复数形式.[提示:记x+i y=z.] 1.5将圆周a(x 2+y 2)+bx+cy+d =0(a ≠0)写成复数形式(即用z 与z 来表示,其中z=x+iy ).

1.6求下列复数的模与辐角主值:(1)3 i 1.8将下列各复数写成三角表示式:(2)sin a+I cos a 1.10解方程:z3+1=0.

1.11指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域? (1)2<|z|<3 (3)4 π

(1)f(z)=z z 2 (2)f(z)=x 2+iy 2 2.3确定下列函数的解析区域和奇点,并求出导数: (1) 21 1 z 2.9由下列条件求解析函数f(z)=u+i v . (1)u(x-y)(x 2+4xy+y 2)

北邮网络学院工程数学阶段作业四

一、判断题(共5道小题,共50.0分) 1.设随机变量X与Y独立,则. A.正确 B.错误 知识点: 阶段作业四 学生答 案: [B;] 得分: [10] 试题分 值: 10.0 2.设,则,. A.正确 B.错误 知识点: 阶段作业四 学生答 案: [A;] 得分: [10] 试题分 值: 10.0 3.设随机变量X与Y独立,则X与Y的相关系数. A.正确 B.错误 知识点: 阶段作业四 学生答 案: [A;] 得分: [10] 试题分 值: 10.0 4.设(X,Y)的概率密度,则常数. A.正确

B.错误 知识点: 阶段作业四学生答 案: [A;] 得分: [10] 试题分 值: 10.0 5.(错误) 设(X,Y)的概率密度为,则X与Y相互独立. A.正确 B.错误 知识点: 阶段作业四 学生答 案: [A;] 得分: [0] 试题分 值: 10.0 二、单项选择题(共5道小题,共50.0分) 1.设X与Y的相关系数,,,则X与Y的协方 差(). A.-7.2 B.-1.8 C.-1.2 D.-0.18 知识点: 阶段作业四 学生答 案: [C;] 得分: [10] 试题分 值: 10.0

2.设随机变量X ~U[1,3],则( ). A. B. C. D. 知识点: 阶段作业四 学生答 案: [A;] 得分: [10] 试题分 值: 10.0 3.(错误) 设,如果,,则X的分布列(). A. B. C. D. 知识点: 阶段作业四 学生答 案: [C;] 得分: [0] 试题分 值: 10.0

4.设随机变量X的概率密度为,则D(X)= (). A. B. C. D. 知识点: 阶段作业四 学生答 案: [B;] 得分: [10] 试题分 值: 10.0 5.设随机变量X的分布列为 则( ). A. 1.7 B. 2.3 C.-2.3 D.-1.7 知识点: 阶段作业四 学生答 案: [A;]

工程数学作业答案#精选

工程数学作业(一)答案(满分100分) 第2章 矩阵 (一)单项选择题(每小题2分,共20分) ⒈设 a a a b b b c c c 1 231 2312 32=,则a a a a b a b a b c c c 123 112233123 232323---= (D ). A. 4 B. -4 C. 6 D. -6 ⒉若 0010000 2001 1a a =,则a = (A ). A. 12 B. -1 C. - 12 D. 1 ⒊乘积矩阵1124103521-??? ???-???? ? ?中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8 ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. AB A B +=+---111 B. ()A B B A --=1 1 C. () A B A B +=+---1 11 D. ()A B AB ---=111 ⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. A B n A B = C. k A kA = D. -=-k A k A n () ⒍下列结论正确的是( A ). A. 若 A 是正交矩阵,则A -1也是正交矩阵 B. 若A B ,均为n 阶对称矩阵,则A B 也是对称矩阵 C. 若A B ,均为n 阶非零矩阵,则A B 也是非零矩阵 D. 若A B ,均为n 阶非零矩阵,则A B ≠0 ⒎矩阵1 32 5??? ? ??的伴随矩阵为( C ). A. 132 5--??? ??? B. --???? ??1325 C. 532 1--??? ??? D. --????? ?5321 ⒏方阵A 可逆的充分必要条件是(B ). A.A ≠0 B.A ≠0 C. A *≠0 D. A *>0 ⒐设 A B C ,,均为n 阶可逆矩阵,则()A C B '=- 1(D ). A. ()' ---B AC 1 11 B. ' --B CA 11 C. AC B ---'111 () D. ( )B C A ---'111

工程数学(本科)形考任务答案

工程数学作业(一)答案 第2 章矩阵 (一)单项选择题(每小题2分,共20 分) ⒈设,则(D ). A. 4 B. -4 C. 6 D.-6 ⒉若,则(A ). A. B. -1 C. D. 1 ⒊乘积矩阵中元素(C ). A. 1 B. 7 C. 10 D. 8 ⒋设均为阶可逆矩阵,则下列运算关系正确的是(B). A. B. C. D. ⒌设均为阶方阵,且,则下列等式正确的是( D ). A. B. C. D. ⒍下列结论正确的是( A ). A. 若是正交矩阵,则也是正交矩阵

B. 若均为阶对称矩阵,则也是对称矩阵 C. 若均为阶非零矩阵,则也是非零矩阵 D. 若均为阶非零矩阵,则 ⒎矩阵的伴随矩阵为(C). A. B. C. D. ⒏方阵可逆的充分必要条件是( B ). A. B. C. D. ⒐设均为阶可逆矩阵,则(D ). A. B. C. D. ⒑设均为阶可逆矩阵,则下列等式成立的是( A ). A. B. C. D. (二)填空题(每小题 2 分,共20 分) ⒈7 . ⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .

⒊若为矩阵,为矩阵,切乘积有意义,则为 5 ×矩4 阵. ⒋二阶矩阵. ⒌设,则 ⒍设均为3 阶矩阵,且,则72 . ⒎设均为3 阶矩阵,且,则-3 . ⒏若为正交矩阵,则0. ⒐矩阵的秩为 2 . ⒑设是两个可逆矩阵,则. (三)解答题(每小题8 分,共48 分) ⒈设,求⑴;⑵;⑶; ⑷;⑸;⑹. 答案: ⒉设,求.

解: ⒊已知,求满足方程中的.解: ⒋写出 4 阶行列式 中元素的代数余子式,并求其值. 答案: ⒌用初等行变换求下列矩阵的逆矩阵: ⑴;⑵;⑶.

《工程数学(本)》作业解答(四)

工程数学(本)作业解答(四) (一)单项选择题(每小题2分,共14分) ⒈设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是( ). A. 6, B. 8, C. 12, D. 14, 答案:A ⒉设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=( ). A. xf x x ()d -∞ +∞? B. xf x x a b ()d ? C. f x x a b ()d ? D. f x x ()d -∞ +∞ ? 答案:A ⒊在下列函数中可以作为分布密度函数的是( ). A. f x x x ()sin ,,=-<

2013春浙大远程工程数学离线作业

工程数学答案 1.1计算下列各式: (2)、(a-bi)3 解(a-bi)3=a3-3a2bi+3a(bi)2-(bi)3 =a3-3ab2+i(b3-3a2b) ; (3)、; 解== == 1.2、证明下列关于共轭复数的运算性质: (1); 证()-i() == (2) 证= = =-- ==()()

=-- 即左边=右边,得证。 (3)=(Z2≠0) 证==() == == 1.4、将直线方程ax+by+c=0 (a2+b2≠0)写成复数形式[提示:记x+iy=z] z+A+B=0,其中A=a+ib,B=2C(实数) 。 解由x=,y=代入直线方程,得 ()+()+c=0, az+-bi()+2c=0, (a-ib)z+( a+ib)+2c=0, 故z+A+B=0,其中A=a+ib,B=2C 1.5、将圆周方程a(x2+y2)+bx+cy+d=0 (a≠0)写成复数形式(即用z与来表示,其中z=x+iy)

解:x=,y=,x2+y2=z代入圆周方程,得 az+()+()+d=0,2az+(b-ic)z+(b+ic)+2d=0 故Az++B+C=0,其中A=2a,C=2d均为实数,B=b+ic 。 1.6求下列复数的模与辅角主值: (1)、=2, 解 arg()=arctan= 。 1.8将下列各复数写成三角表示式: (2)、i; 解=1,arg()=arctan()= -a 故i=+i。 1.10、解方程:Z3+1=0 解方程Z3+1=0,即Z3=-1,它的解是z=,由开方公式计算得 Z==+i,k=0,1,2 即Z0==+i,

Z1==1, Z2=+ i=i 。 1.11指出下列不等式所确定的区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域? (1)、2<<3; 解圆环、有界、多连域。 (3)、<arg z<; 解圆环的一部分、单连域、有界。 (5)、Re z2<1; 解x2-y2<1无界、单连域。 (7)、<; 解从原点出发的两条半射线所成的区域、无界、单连域; 2.2下列函数在何处可导?何处不可导?何处解析?何处不解析?(1)f(z)=z2; 解f(z)=z2=·z·z=·z=( x2+y2)(x+iy)=x(x2+y2)+ iy(x2+y2), 这里u(x,y)=x( x2+y2),v(x,y)= y( x2+y2)。 u x= x2+y2+2 x2,v y= x2+y2+2 y2,u y=2xy,v x=2xy 。 要u x= v y,u y =-v x,当且仅当x=y=0,而u x, v y,u y ,v x均连续,

工程数学第三次作业

工程数学作业(第三次)(满分100分) 第4章 随机事件与概率 (一)单项选择题(每小题2分,共16分) ⒈A B ,为两个事件,则( )成立. A. ()A B B A +-= B. ()A B B A +-? C. ()A B B A -+= D. ()A B B A -+? ⒉如果( )成立,则事件A 与B 互为对立事件. A. A B =? B. A B U = C. A B =?且A B U = D. A 与B 互为对立事件 ⒊袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为( ). A. 5 84C B. ()38583 C. C 8433858() D. 38 ⒋10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为( ). A. C 1032 0703??.. B. 03. C. 07032..? D. 307032??.. ⒌同时掷3枚均匀硬币,恰好有2枚正面向上的概率为( ). A. 0.5 B. 0.25 C. 0.125 D. 0.375 ⒍已知P B A A (),>=?012,则( )成立. A. P A B ()10> B. P A A B P A B P A B [()]()()1212+=+ C. P A A B ()120≠ D. P A A B ()121= ⒎对于事件A B ,,命题( )是正确的. A. 如果A B ,互不相容,则A B ,互不相容 B. 如果A B ?,则A B ? C. 如果A B ,对立,则A B ,对立 D. 如果A B ,相容,则A B ,相容 ⒏某随机试验每次试验的成功率为p p ()01<<,则在3次重复试验中至少失败1次的概率为( ). A. ()13 -p B. 13-p C. 31()-p D. ()()()111322 -+-+-p p p p p (二)填空题(每小题2分,共18分) ⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为 . ⒉从n 个数字中有返回地任取r 个数(r n ≤,且n 个数字互不相同),则取到的r 个数字中有重复数字的概率为 . ⒊有甲、乙、丙三个人,每个人都等可能地被分配到四个房间中的任一间内,则三个人分配在同一间房间的概率为 ,三个人分配在不同房间的概率为 . ⒋已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= ,P A B ()= .

工程数学作业2答案

工程数学作业(第二次)(满分100分) 第3章 线性方程组 (一)单项选择题(每小题2分,共16分) ⒈用消元法得x x x x x x 12323324102+-=+=-=???? ?的解x x x 123????????? ?为(C ). A. [,,]102-' B. [,,]--'722 C. [,,]--'1122 D. [,,]---'1122 ⒉线性方程组x x x x x x x 12313232326334 ++=-=-+=??? ? ?(B ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解 ⒊向量组100010001121304?????????????????????????????????????????????? ? ???,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5 ⒋设向量组为αααα12341100001110101111=????????????=????????????=????????????=??????? ? ? ???,,,,则(B )是极大无关组. A. αα12, B. ααα123,, C. ααα124,, D. α1 ⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1 ⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ). A. 方程个数小于未知量个数的线性方程组一定有解 B. 方程个数等于未知量个数的线性方程组一定有唯一解 C. 方程个数大于未知量个数的线性方程组一定有无穷多解

《工程数学(本)》作业解答(五)

工程数学(本)作业解答(五) (一)单项选择题(每小题2分,共6分) ⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则( )是统计量. A. x 1 B. x 1+μ C. x 1 22 σ D. μx 1 答案:A ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量( )不是μ的无偏估计. A. max{,,}x x x 123 B. 12 12()x x + C. 212x x - D. x x x 123-- 答案:D 3.对正态总体方差的检验用的是( ). A . U 检验法 B . T 检验法 C . 2χ检验法 D . F 检验法 答案:C (二)填空题(每小题2分,共14分) 1.统计量就是 . 答案:不含未知参数的样本的函数 2.参数估计的两种方法是 和 .常用的参数点估计有 和 两种方法. 答案:点估计和区间估计, 矩估计法和最大似然估计法 3.比较估计量好坏的两个重要标准是 , . 答案:无偏性,有效性 4.设x x x n 12,,, 是来自正态总体N (,)μσ2 (σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量 . 答案: U = 5.假设检验中的显著性水平α为 发生的概率. 答案:弃真错误, 即事件{当0H 为真时拒绝0H } 6.当方差2σ已知时,检验0 100μμμμ≠=:,:H H 所用的检验量是 。 答案:U 检验量 7.若参数θ的估计量),,,(21n x x x ?满足 ,则),,,(21n x x x ?称 为θ的无偏估计。 答案:12[(,,,)]n E x x x ?θ= (三)解答题(每小题10分,共80分) 1.设对总体X 得到一个容量为10的样本值 4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5, 5.0, 3.5, 4.0

《工程数学基础(I)》第一次作业答案100分

首页- 我的作业列表- 《工程数学基础(Ⅰ)》第一次作业答案 欢迎你,你的得分:100.0 完成日期:2014年05月 说明:每道小题括号里的答案是您最高分那次所选的答案,标准答案将在本次作业结束(即2014年09月11日)后显示在题目旁边。 一、单项选择题。本大题共20个小题,每小题4.0 分,共80.0分。在每小题给出的选项中,只有一项是符合题目要求的。 1.( D ) A.(-6, 2, -4) B.(6, 2, 4)T C.(2, 6, 4) D.(3, 6, 4)T 2.( D ) A. B. C. D. 3.设A为3x2矩阵,B为2x4矩阵,C为4x2矩阵,则可以进行的运算是( )( B ) A.AC T B B.AC T B T C.ACB T D.ACB 4.设A是可逆矩阵,且A+AB=I,则A-1 等于( )( C ) A.B B.1+ B C.I + B D.(I-AB)-1 5.( D ) A.|A+B|=| A |+|B| B.| A B|=n| A||B| C.|kA|=k|A| D.|-kA|=(-k)n|A|

6.( D ) A. 6 B.-6 C.8 D.-8 7.设A B均为n阶方阵,则成立的等式是( )( B ) A.|A+B|=| A |+|B| B.| A B|=| BA| C.(AB)T= A T B T D.AB= BA 8.设A,B,C均为n阶方阵,下列各式中不一定成立的是( )( A ) A.A(BC)=(AC)B B.(A+B)+C=A+(C+B) C.(A+B)C=AC+BC D.A(BC)=(AB)C 9.设α1,α2,α3是3阶方阵A的列向量组,且齐次线性方程组Ax=b有唯一解,则( )( B ) A.α1可由α2,α3线性表出 B.α2可由α1,α3线性表出 C.α3可由α1,α2线性表出 D.A,B,C都不成立 10.设向量组A是向量组B的线性无关的部分向量组,则( )( D ) A.向量组A是B的极大线性无关组 B.向量组A与B的秩相等 C.当A中向量均可由B线性表出时,向量组A,B等价 D.当B中向量均可由A线性表出时,向量组A,B等价 11.设n阶方阵A的行列式|A|=0则A中( )( C ) A.必有一列元素全为0 B.必有两列元素对应成比例 C.必有一列向量是其余向量线性表示 D.任一向量是其余向量的线性组合 12.( A ) A. B. C.

相关文档
相关文档 最新文档