文档库 最新最全的文档下载
当前位置:文档库 › 并联电容提高功率因数的图解计算

并联电容提高功率因数的图解计算

并联电容提高功率因数的图解计算
并联电容提高功率因数的图解计算

并联电容提高功率因数的图解计算

摘要:有关并联电容提高功率因数的分析和计算,不少人由于理不清思路,抓不住要点,再加上中职学生数学知识的欠缺,而无处着手,所以本文借助图形,以形象直观的方式,紧扣正弦交流电路的特征,数形结合,帮助学生分析各个量之间的关系,达到分析和计算的目的。

关键词:并联电容;功率因数;图解;计算

中图分类号:g714 文献标志码:a 文章编号:1674-9324(2013)16-0181-02

在正弦交流电路中,电路的有功功率与无功功率的比值叫做功率因数,用公式表示为:λ=cosφ=■。其中φ是电路中总电流与总电压的相位差,称为功率因数角。

一、功率因数的意义

1.由功率因数的定义:cos=■,可知:p=scosφ。显然,在供电设备容量(即电源视在功率s)一定的情况下,电路的功率因数cos φ越高,有功功率p就越大。表示电源发出的电能转换为热能或机械能越多,而与电感或电容之间相互交换就越少;电路的功率因数cosφ越低,有功功率p就越小。表示电源发出的电能转换为热能或机械能越少,而与电感或电容之间相互交换就越多。由于交换的这一部分能量没有被利用,因此,功率因数越大,说明电源的利用率越高。

2.增加供电设备的容量,建立更大的发电厂。由p=scosφ可知:

功率因数如何计算

许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。 在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cosφ,其计算公式为: cosφ=P/S=P/[(P2+Q2)^(1/2)] P为有功功率,Q为无功功率。 在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。 1 影响功率因数的主要因素 (1)大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。据有关的统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。 (2)变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。 (3)供电电压超出规定范围也会对功率因数造成很大的影响。 当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。 无功补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。下面简单介绍这3种补偿方式的适用范围及使用该种补偿方式的优缺点。 (1)低压个别补偿: 低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,因此不会造成无功倒送。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。 (2)低压集中补偿: 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接

功率因数自动补偿控制器

功率因数自动补偿控制器/低压无功补偿柜专用补偿器 ARC-10/J 安科瑞徐孝峰 江苏安科瑞电器制造有限公司江苏江阴214405 1概述 ARC系列功率因数自动补偿控制器是用于低压配电系统进行无功功率补偿的专用控制器,可以与电压等级在400V以下的静态电容屏(柜)配套使用。输出路数有6、8、10、12四种规格。产品符GB/T15576-2008国家标准,具有功能完善、运行稳定可靠、控制精度高等特点。-低压无功补偿柜专用补偿器ARC-10/J ARC系列功率因数自动补偿控制器具备RS485通讯接口,其所采样得到的电压、电流、频率、有功功率、无功功率、谐波含量、功率因数、温度可通过通讯接口传送到其它外部设备。 具备过电压保护、欠流锁定、电网谐波过大保护功能。 可选配开关量输入与温度控制,扩展开关量输入,能对外部中间控制接触器进行监控。温度控制能对电容屏(柜)降温风机进行自动控制。 2型号说明 3选型表

4使用条件 ●海拔高度不超过2500米 ●周围环境温度为-25℃~60℃,24小时的平均温度不高于40℃ ●空气的相对湿度在25℃时不大于85%,不结露 ●周围环境无腐蚀性气体,无导电尘埃,无易燃易爆介质存在 ●工作的电网电压波动幅度不得大于±20% ●安装地点无剧烈震动、无雨雪直接侵蚀 5技术参数 6面板图示 7外形及尺寸(mm)

8接线端子 上排端子 中排端子 下排端子 9接线图

工作电源为AC220V,相电压采样,继电器输出 工作电源为AC380V,线电压采样,继电器输出 工作电源为AC220V,相电压采样,带隔离的复合开关输出

工作电源为AC380V,线电压采样,带隔离的复合开关输出

电容器的串并联的计算方法

电容器的串并联的计算方法 电容器的串并联的计算方法 电容器并联时,相当于电极的面积加大,电容量也就加大了。并联时的总容量为各电容量之和:C并=C1+C2+C3+…… 顺便说说电容器的串联。若三个电容器串联后外加电压为U, 则U=U1+U2+U3=Q1/C1+Q2/C2+Q3/C3, 而电荷Q1=Q2=Q3=Q,所以Q/C串=(1/C1+1/C2+1/C3)Q 1/C串=1/C1+1/C2+1/C3 可见,串联后总电容量减小。 电容器串联时,要并联阻值比电容器绝缘电阻小的电阻,使各电容器上的电压分配均匀,以免电压分配不均而损坏电容器。 又可知,电容的串、并联计算正好与电阻的串、并联计算相反。 电压是充电时的电压,容量与电流,电压的关系和功率相似,和负载有关, 电压和容量为定量时,负载电阻越小,电流越大,时间越短 电压和负载为定量时,容量越大,电流不变,时间越长 但实际放电电路中,一般负载是不变的,电容的电压是逐渐下降的,电流也就逐渐下降。 1.电容量(uf)=电流(mA)/15 限流电阻(Ω)=310/最大允许浪涌电流 放电电阻(KΩ)=500/电容(uf) 2.计算方式C=15×I C为电容容量单位微法i设备为工作电流单位为安 如一个灯泡的电阻为0.6安电容就选择15×0.6=9微法在电路里串连9微法的电容就可以了 3.经验公式,1uF输出50mA(如果是线性的话,10000F的超级电容可以达到500兆安培的浪涌电流)还有

4.半波整流方式计算应该是每uF电容量提供约30mA电流,这是在中国的50Hz220V线路上的参考。 全波整流时电流加倍,即每uF可提供60mA电流。 而我比较清楚的是,书本上的公式:R*C≥(3~5)*T/2,需要知道纹波成份中的频率最低信号的频率是多少(即最大的T),然后来确定C的值。 电容的容量。 电容容量表示能贮存电能的大小。电容对交流信号的阻碍作用称为容抗,容抗与交流信号的频率和电容量有关,容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。 ④电容的容量单位和耐压。 电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。换算关系:1F=1000000μF, 1μF=1000nF=1000000pF。 每一个电容都有它的耐压值,用V表示。一般无极电容的标称耐压值比较高有:63V、100V、160V、250V、400V、600V、1000V等。有极电容的耐压相对比较低,一般标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。 电力电容器计算:如标称电压690v,容量15kvar的三相电容组。用于600v电路中,三角形接法,则实际有效的容量为:s=15kvar*600*600/(690*690)=11.34kvar。 即:容量和电压成平方比关系

DCDC电容电感计算

BOOST电路的电感、电容计算 升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 其他参数: 电感:L 占空比:D 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd ***************************************************** 1:占空比 稳定工作时,每个开关周期导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*D/(f*L)=(Vo+Vd-Vi)*(1-D)/(f*L),整理后有 D=(Vo+Vd-Vi)/(Vo+Vd),参数带入,D=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量,其值为Vi*(1-D)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*D/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,

当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面 影响取L=60uH, deltaI=Vi*D/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-D)-(1/2)*deltaI, I2= Io/(1-D)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容: 此例中输出电容选择位陶瓷电容,故ESR可以忽略 C=Io*D/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径

功率因数计算公式及提高功率因数的方法

功率因数计算公式功率因数统计计算公式 视在功率S 有功功率P 无功功率Q 功率因数cos@(符号打不出来用@代替一下) 视在功率S=(有功功率P的平方+无功功率Q 的平方)再开平方而功率因数cos@=有功功率P/视在功率S 功率因数统计计算公式 可分为提高自然功率因数和采用人工补尝两种方法: 提高自然因数的方法: 1). 恰当选择电动机容量,减少电动机无功消耗,防止“大马拉小车”。 2). 对平均负荷小于其额定容量40%左右的轻载电动机,可将线圈改为三角形接法(或自动转换)。 3). 避免电机或设备空载运行。 4). 合理配置变压器,恰当地选择其容量。

5). 调整生产班次,均衡用电负荷,提高用电负荷率。 6). 改善配电线路布局,避免曲折迂回等。 人工补偿法: 实际中可使用电路电容器或调相机,一般多采用电力电容器补尝无功,即:在感性负载上并联电容器。一下为理论解释: 在感性负载上并联电容器的方法可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载于电源之间原有的能量交换。 在交流电路中,纯电阻电路,负载中的电流与电压同相位,纯电感负载中的电流滞后于电压90o,而纯电容的电流则超前于电压90o,电容中的电流与电感中的电流相差180o,能相互抵消。 电力系统中的负载大部分是感性的,因此总电流将滞后电压一个角度,如图1所示,将并联电容器与负载并联,则电容器的电流将抵消一部分电感电流,从而使总电流减小,功率因数将提高。 并联电容器的补偿方法又可分为: 1.个别补偿。即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。 适合用于低压网络,优点是补尝效果好,缺点是电容器利用率低。 2.分组补偿。即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。 优点是电容器利用率较高且补尝效果也较理想(比较折中)。 3.集中补偿。即把电容器组集中安装在变电所的一次或二次侧的母

电容并联与串联

引用为什么在一个大的电容上还并联一个小电容 因为大电容由于容量大,所以体积一般也比较大,且通常使用多层卷绕的方式制作(动手拆过铝电解电容应该会很有体会,没拆过的也可以拿几种不同的电容拆来看看),这就导致了大电容的分布电感比较大(也叫等效串联电感,英文简称ESL)。大家知道,电感对高频信号的阻抗是很大的,所以,大电容的高频性能不好。而一些小容量电容则刚刚相反,由于容量小,因此体积可以做得很小(缩短了引线,就减小了ESL,因为一段导线也可以看成是一个电感的),而且常使用平板电容的结构,这样小容量电容就有很小的ESL,这样它就具有了很好的高频性能,但由于容量小的缘故,对低频信号的阻抗大。所以,如果我们为了让低频、高频信号都可以很好的通过,就采用一个大电容再并上一个小电容的方式。常使用的小电容为0.1uF的瓷片电容,当频率更高时,还可并联更小的电容,例如几pF、几百pF的。而在数字电路中,一般要给每个芯片的电源引脚上并联一个0.1uF的电容到地(这电容叫做去耦电容,当然也可以理解为电源滤波电容。它越靠近芯片的位置越好),因为在这些地方的信号主要是高频信号,使用较小的电容滤波就可以了。 电容的串并联容量公式-电容器的串并联分压公式 1.串联公式:C = C1*C2/(C1 + C2) 2.并联公式C = C1+C2+C3 补充部分: 串联分压比——V1 = C2/(C1 + C2)*V ........电容越大分得电压越小,交流直流条件下均如此并联分流比——I1 = C1/(C1 + C2)*I ........电容越大通过的电流越大,当然,这是交流条件下 一个大的电容上并联一个小电容 大电容由于容量大,所以体积一般也比较大,且通常使用多层卷绕的方式制作,这就导致了大电容的分布电感比较大(也叫等效串联电感,英文简称ESL)。 电感对高频信号的阻抗是很大的,所以,大电容的高频性能不好。而一些小容量电容则刚刚相反,由于容量小,因此体积可以做得很小(缩短了引线,就减小了ESL,因为一段导线也可以看成是一个电感的),而且常使用平板电容的结构,这样小容量电容就有很小ESL这样它就具有了很好的高频性能,但由于容量小的缘故,对低频信号的阻抗大。 所以,如果我们为了让低频、高频信号都可以很好的通过,就采用一个大电容再并上一个小电容的方式。

电感电容计算

纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。 降压型开关电源的电感选择 为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大纹波电流、占空比。下面以图2为例说明降压型开关电源电感值的计算,首先假设开关频率为300kHz、输入电压范围12V±10%、输出电流为1A、最大纹波电流300mA。 图2:降压型开关电源的电路图。 最大输入电压值为13.2V,对应的占空比为: D=Vo/Vi=5/13.2=0.379 (3) 其中,Vo为输出电压、Vi为输出电压。当开关管导通时,电感器上的电压为: V=Vi-Vo=8.2V (4) 当开关管关断时,电感器上的电压为: V=-Vo-Vd=-5.3V (5) dt=D/F (6) 把公式2/3/6代入公式2得出:

升压型开关电源的电感选择 对于升压型开关电源的电感值计算,除了占空比与电感电压的关系式有所改变外,其它过程跟降压型开关电源的计算方式一样。以图3为例进行计算,假设开关频率为300kHz、输入电压范围5V±10%、输出电流为500mA、效率为80%,则最大纹波电流为450mA,对应的占空比为: D=1-Vi/Vo=1-5.5/12=0.542 (7) 图3:升压型开关电源的电路图。 当开关管导通时,电感器上的电压为: V=Vi=5.5V (8) 当开关管关断时,电感器上的电压为: V=Vo+Vd-Vi=6.8V (9) 把公式6/7/8代入公式2得出: 请注意,升压电源与降压电源不同,前者的负载电流并不是一直由电感电流提供。当开关管导通时,电感电流经过开关管流入地,而负载电流由输出电容提供,因此输出电容必须有足够大的储能容量来提供这一期间负载所需的电流。但在开关管关断期间,流经电感的电流除了提供给负载,还给输出电容充电。

功率因数的考核标准及计算方式

功率因数的考核标准及计算方式 一、功率因数考核范围及考核标准客户的无功电力应就地平衡。为提高电能使用效率,减少电能损耗,客户应在提高用电自然功率因数的基础上,按有关标准设计和安装无功补偿设备,并做到随其负荷和电压变动及时投入或切除。除电网有特殊要求的客户外,客户的功率因数应达到下列规定: (1)功率因数标准0.90,适用于160kVA(kW)以上的高压供电工业用户(包括社队工业用户)、装有带负荷调整电压装置的高压供电电力用户和3200kVA(kW)及以上的高压供电电力排灌站。 (2)功率因数标准0.85,适用于100kVA(kW)及以上的其他工业用户(包括社队工业用户)、100kVA(kW)及以上的非工业用户和100kVA(kW)及以上的电力排灌站。(3)功率因数标准0.80,适用于100kVA(kW)及以上的农业用户和趸售用户,但大工业用户未划由电业部门直接管理的趸售用户,功率因数标准应为0.85。 (4)居民生活用电户和100 kVA(kW)以下的客户不执行功率因数调整电费。 各供电企业应按上述标准,严格执行功率因数调整电费。 二、功率因数的电量计算依据 (1)各类功率因数标准值是指供电企业(电网)与客户资产产权分界处的功率因数。各供电企业应在用户每一个受电点内按不同电价类别,分别安装用电计量装置。每个受电点作为用户一个计费单位。客户装设的内部考核电能计量装置不得作为计费依据。在客户受电点内难以按电价类别分别装设用电计量装置时,可装设总的用电计量装置。然后按其不同电价类别的用电设备容量的比例或实际可能的用电量,确定不同电价类别用电量的比例或定量进行分算,分别计价。各供电企业每年必须至少对上述比例或定量核定一次,并经本单位审批后作为计费依据。

各种电抗器的计算公式

各种电抗器的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:电感量(mH) = 阻抗 (ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入: zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位 F 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l

安装负荷需要系数功率因数计算负荷的关系还有变压器的容量是根据哪个量估算的

安装负荷需要系数功率因数计算负荷的关系还有变压器的容量是根据哪个量估算的 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

安装负荷、需要系数、功率因数、计算负荷的关系,还有变压器的容量是根据哪个量估算的 1、安装容量:系统中所有安装用电设备的标称功率之和,P 2、需用系数:系统中有多个用电设备,同类设备同时满载运行的几率小于1,这个系数成为需用系数,K 3、功率因数:电感性负载引入的参数,cosφ 4、计算负荷:综合以上所有参数,计算出系统需要提供的实际运行电流,Ijs 关系:Ijs=KP/3/220/cosφ这里按380/3相(相电压220V)电源计算 变压器容量选择,按计算负荷Pjs=KP选择,并应使变压器经常处于70~80%负载率状态 (实际选取变压器需考虑更多的因素,仅供参考) 求计算负荷的时候不用乘以同时系数吗 通常民建计算用电K,实际上可以理解为综合了Kx(需用系数)和Kc(同时系数) 工业用电中涉及大功率设备,且设备运行负载率有较大差异,或许才要分别对待 (我见到的民建设计只用Kx) 电容补偿就是无功补偿或者功率因数补偿。电力系统的用电设备在使用时会产生无功功率,而且通常是电感性的,它会使电源的容量使用效率降低,而通过在系统中适当地增加电容的方式就可以得以改善。电力电容补偿也称功率因数补偿!(电压补偿,电流补偿,相位补偿的综合). 工业与民用配电设计手册(第三版)第3页起详细介绍了需求系数。 什么是有功功率、无功功率、视在功率、功率三角形及三相电路的功率如何计算

什么是有功功率、无功功率、视在功率及功率三角形 三相电路的功率如何计算 一、有功功率 在交流电路中,凡是消耗在电阻元件上、功率不可逆转换的那部分功率(如转变为热能、光能或机械能)称为有功功率,简称 “有功”,用“P”表示,单位是瓦(W)或千瓦(KW)。 它反映了交流电源在电阻元件上做功的能力大小,或单位时间内转变为其它能量形式的电能数值。实际上它是交流电在一个周期内瞬时转变为其他能量形式的电能数值。实际上它是交流电在一个周期内瞬时功率的平均值,故又称平均功率。它的大小等于瞬时功率最大值的1/2,就是等于电阻元件两端电压有效值与通过电阻元件中电流有效值的乘积。 二、无功功率 在交流电路中,凡是具有电感性或电容性的元件,在通过后便会建立起电感线圈的磁场或电容器极板间的电场。因此,在交流电每个周期内的上半部分(瞬时功率为正值)时间内,它们将会从电源吸收能量用建立磁场或电场;而下半部分(瞬时功率为负值)的时间内,其建立的磁场或电场能量又返回电源。因此,在整个周期内这种功率的平均值等于零。就是说,电源的能量与磁场能量或电场能量在进行着可逆的能量转换,而并不消耗功率。 为了反映以上事实并加以表示,将电感或电容元件与交流电源往复交换的功率称之为无功功率。 简称“无功”,用“Q”表示。单位是乏(Var)或千乏(KVar)。 无功功率是交流电路中由于电抗性元件(指纯电感或纯电容)的存在,而进行可逆性转换的那部分电功率,它表达了交流电源能量与磁场或电场能量交换的最大速率。 实际工作中,凡是有线圈和铁芯的感性负载,它们在工作时建立磁场所消耗的功率即为无功功率。如果没有无功功率,电动机和变压器就不能建立工作磁场。

电容器的串并联的计算方法

电容器的串并联的计算方 法 Final revision on November 26, 2020

电容器的串并联的计算方法 电容器并联时,相当于电极的面积加大,电容量也就加大了。并联时的总容量为各电容量之和:C并=C1+C2+C3+…… 顺便说说电容器的串联。若三个电容器串联后外加电压为U, 则U=U1+U2+U3=Q1/C1+Q2/C2+Q3/C3, 而电荷Q1=Q2=Q3=Q,所以Q/C串=(1/C1+1/C2+1/C3)Q 1/C串=1/C1+1/C2+1/C3 可见,串联后总电容量减小。 电容器串联时,要并联阻值比电容器绝缘电阻小的电阻,使各电容器上的电压分配均匀,以免电压分配不均而损坏电容器。 又可知,电容的串、并联计算正好与电阻的串、并联计算相反。 电压是充电时的电压,容量与电流,电压的关系和功率相似,和负载有关,电压和容量为定量时,负载电阻越小,电流越大,时间越短电压和负载为定量时,容量越大,电流不变,时间越长但实际放电电路中,一般负载是不变的,电容的电压是逐渐下降的,电流也就逐渐下降。 1.电容量(uf)=电流(mA)/15 限流电阻(Ω)=310/最大允许浪涌电流 放电电阻(KΩ)=500/电容(uf) 2.计算方式C=15×IC为电容容量单位微法i设备为工作电流单位为安 如一个灯泡的电阻为0.6安电容就选择15×0.6=9微法在电路里串连9微法的电容就可以了 3.经验公式,1uF输出50mA(如果是线性的话,10000F的超级电容可以达到500兆安培的浪涌电流) 还有 4.半波整流方式计算应该是每uF电容量提供约30mA电流,这是在中国的50Hz220V线路上的参考。 全波整流时电流加倍,即每uF可提供60mA电流。 而我比较清楚的是,书本上的公式:R*C≥(3~5)*T/2,需要知道纹波成份中的频率最低信号的频率是多少(即最大的T),然后来确定C的值。 电容的容量。

电感的计算方法和BOOST升压电路的电感、电容计算

电感计算方法 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗 (ohm) ?(2*3.14159) ?F (工作频率) = 360 ?(2*3.14159) ?7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ?圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ?2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈)

功率因数的计算原理

1.三相电路的功率因数的计算原理 三相电机的三路瞬时电压、瞬时电流分别为: sin()A a a U wt ?=+ sin()B b b U wt ?=+ sin()C c c U wt ?=+ sin()A a a I wt ?'=+ sin()B b b I wt ?'=+ sin()C c c I wt ?'= + a U 、 b U 、 c U 为三相电的电压有效值 a I 、b I 、c I 为三相电的电流有效值 三相电路的瞬时功率为 sin()*sin()[cos()cos(2)][cos cos(2)] A A A a a a a a a a a a a a a A a a P U I wt wt U I wt U I wt ?????????''''==++=--++=-++

sin()*sin()[cos()cos(2)][cos cos(2)] B B B b b b b b b b b b b b b B b b P U I wt wt U I wt U I wt ?????????''''==++=--++=-++ sin()*sin()[cos()cos(2)][cos cos(2)] C C C c c c c c c c c c c c c C c c P U I wt wt U I wt U I wt ?????????''''==++=--++=-++ 三相电的有功功率即是各相的平均功率 00 11 [cos cos(2)]cos A A T T a a a A a a a a A P P P dt U I wt dt U I T T ????'===-++=?? 00 11 [cos cos(2)]cos A A T T a a A a a a a A P P dt U I wt dt U I T T ????'==-++=?? 00 11 [cos cos(2)]cos b T T b B B b b B b b b B P P P dt U I wt dt U I T T ????'===-++=?? 00 11 [cos cos(2)]cos b T T B B b b B b b b B P P dt U I wt dt U I T T ????'==-++=??

功率因数自动补偿控制器工作原理

功率因数自动补偿控制器工作原理 功率因数自动补偿器是提高电网系统中功率因数的全自动化电子装置,通过它的调节作用,使电网中的无功消耗降到最小,达到充分利用电能、节约用电的目的。我站使用的GBK4-1C 型控制器,是通过检测系统中的负荷的功率因数自动投、切补偿电容器使系统功率因数在规定的范围内运行。 检测功率因数投、切法的思想是,当一个系统功率因数下降至低于下限整定值时投入补偿电容器,当功率因数超过上限整定值时切除补偿电容器。图一说明此控制方式的原理。 图中OA为功率因数下限整定值COSj A线,OB为功率因数上限整定值COSj B线,假设负荷线沿OD直线增加,其功率因数为COSj ,当负荷增至临界调节功率点M1时,电容器C1投入,这时补偿的无功功率为M1K1,视在功率为OK1,使功率因数在OA、OB两直线限定的范围内。若负荷继续增至M2点时,电容器C2又投入运行,又将功率因数控制在规定的范围内,负荷若再增至M3点时,电容器C3投入,使功率因数维持在规定的范围内。当负荷减少时,如由K3点减少至N1点时,电容器C1被切除,负荷若减少到N2点时,电容器C2又被切除,当负荷减少至临界调节功率线左面时,电容器被全部切除。这里临界调节线的位置取决于最小补偿电容器组的容量,负荷的性质以及所规定的功率因数的调节范围。图二为自动补偿控制器原理图。 图中按虚线将控制器分成:、测量部分;、直流放大部分;、执行部分;、电源部分。工作如下:先将交流电压与电流间的相位差,转换成直流电压信号,再将直流信号放大驱动执行部分动作,投入或切除补偿电容器。 测量部分的交流信号取自电网系统中母线A、C相线电压uAC和B相电流iB,由图三知三相交流系统中,当B相电流iB与B相电压uB同相,即COSj =1时,相电流iB与线电压uAC相差为p /2,当iB超前或滞后uB时,iB、uAC相位差就会小于或大于p /2,为了测出这种相位关系的变化,测量部分采用半波相敏差分放大线路,u1、u2分别反映交流侧uAC 及iB相位的两个交流电压值。由图知,只有当u2处于负半周时T1、T2的发射结正向偏置,才有可能导通。根据u1的极性决定是否产生集电极电流i1、i2。图四、图五、图六是反映u1与u2的相位关系与检测回路中T1、T2集电极电流流通的情况。图四为u1、u2同相在一周内只有T1导通,由于发射极与集电极所加的电压u1、u2的平均值最大,集电极电流i1最大而T2不会导通,故一周内a、b间的直流输出电压Uab=i1R1>0并为最大。图五为u1超前、u2相位p /2,由图可见,在0~p /2时,u1处于正半周,u2处于负半周,T2发射结正向偏置而导通,集电极电流i2经过二极管D2流达电阻R2,在3p /2~2p 期间,u1、u2均处于负半周,T1发射结正向偏置导通,集电极电流i1经二极管D1流过电阻R1,这样在一个周期内,T1、T2均导通p /2,而且导通期间两只三极管基极电压和集电极电压平均值相同,故i1=i2,选择R1=R2,则此时在一周内直流输出电压Uab=i1R1-i2R2=0。图六为u1与u2相差小于p /2,显而易见,T2导通时间比T1导通时间短,此时一周内i1平均值大于i2平均值,故Uab=i1R1-i2R2>0,此时Uab小于u1与u2同相位时的直流输出值,如果u1与u2相位差大于p /2时,同样可得Uab=i1R1-i2R2AC与电流iB的相位差使相敏放大线路输出不同的直流电压去控制直流放大部分,在Uabab经D4、R4加到T3、T5的发射结,再由T3、T5放大后驱动继电器J1动作,反之Uab>0时,Uab经D3、R3加到T4、T6发射结,由T4、T6放大后驱动J2动作。当J1动作后,J1常闭触点打开,C5经R7由负电源充电,使T7基极电位不断下降,经过一段时间(延时)后T7、T9导通,继电器J3动作,使第一组电容器投入系统运行,同时控制第二组电容器投入的J3的常闭触点打开,第二组开始延时,如果第一组电容器投入系统运行后系统功率因数仍达不到要求,测量回路的直流

RLC串联谐振频率及其计算公式

R L C串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C Q T=Q L Q C=0 6. 串联谐振电路之频率: (1) 公式:

(2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L X C) 当 f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。

功率因数电费计算方法

功率因数电费计算方法 计量是高压侧计量。如果是低压侧计量,计算要复杂的多。 功率因数=有功用电量/√(有功用电量的平方+无功用电量的平方)0.92=42919/√(42919*42919+18000*18000) 然后根据力率(也就是功率因数)的大小,查供电力率调整办法就可以知道力率电费的多少了。如果达到0.92应该有奖励了,因为一般的用电单位都是力率达到0.90不奖不罚,而你的力率0.92已经超出了0.90,应该有电费奖励了。 在电费单据上显示的是负的力率电费。 力率电费调整办法全国供用电规则规定,凡是功率因数达不到上述规定的用户,供电部门对其加收一部分电费——力率调整电费;如果功率因数超过上述规定的用户,供电部门会对其减收一部分电费——奖励电费。具体按照《功率因数调整电费办法》执行。 高压计量的用户:力率电费=(电度电费+基本电费)×罚款比例 奖励电费=(电度电费+基本电费)×奖励比例 低压计量的用户:力率电费=电度电费×罚款比例 奖励电费=电度电费×奖励比例 电度电费是指动动力电费,不包括照明电费,照明不参与力率考核。高压计量的用户当变压器的容量超过315KVA时收基本电费。基本电费是按变压器容量来收取的。由此可见,《力率电费调整办法》是用电管理部门督促电力用户做好无功补偿的促进手段,做好无功补

偿工作对供、用电双方都有巨大的经济效益。以0.90为标准值的功率因数调整电费表

实例:总有功电量:42919 总无功电量:18000 力率:92 力调系数:-0.8 有功变损:0 无功电损:0 线损电量:0 计算力率电费,把计算过程写清楚```计算方法。 首先计算电费:42919*0.735(我们着的商业用电单价)=31545.5元 算力调电费,你的力调系数是负值说明要奖励: 用总有功42919*0.7022(我们这的无税电价)=30137.7元(这个是参加力调电费) 然后用参加力调电费*-0.8%=奖励给你的力调电费 30137.7*-0.8%=-241.1元 总电费(31545.5)+力调电费(-241.1)=实际电费

功率因数控制器RVC的使用说明

功率因数控制器R V C的使 用说明 Prepared on 24 November 2020

?功率因数控制器RVC的使用 1)、控制器RVC上电后可看到其默认界面为自动状态(Auto),按Mode键进入手动界面; 2)、按Mode键进入自动设定参数的界面; 3)、按Mode键进入手动设定目标功率因数cosψ的界面,通过按“+”和“-”键调整其大小,推荐cosψ为; 4)、按Mode键进入设定灵敏系数C/k的界面,通过按“+”和“-”键调整其大小,可查阅RVC使用说明书的C/k表得到其值,也可通过下面的方法计算:其中: Q:单步无功功率(kvar); U:系统电压(V); K:电流互感器变比。 5)、按Mode键进入手动设定相位值PHASE的界面,通过按“+”和“-”键调整其大小。严格按照RVC使用说明书要求的接线方式进行电压电流互感器信号的输入接线的前提下,可查阅使用说明书中的相位表得到相位值,也可以用以下方法设置: 确定RVC测试点实际的功率因数cosψ,然后调整相位值,进入RVC的自动界面查看其显示的功率因数是否与先前的实际值一致,若否,则调整相位值直到与实际值一致; 6)、按Mode键进入手动设定投切延迟时间Delay的界面,通过按“+”和“-”键调整其大小,推荐运行时的延迟时间为10秒,也可根据调试需要将其增大至40秒; 7)、按Mode键进入手动设定输出组数Output的界面,通过按“+”和“-”键调整其大小,补偿柜中的组数即为其值; 8)、按Mode键进入手动设定序列Sequence的界面,通过按“+”和“-”键调整其设定,可参见下表: 序列类型(组间容量的比例关系)显示值 1∶1∶1∶1∶1∶…∶1 1.1.1 1∶2∶2∶2∶2∶…∶2 1.2.2 1∶2∶4∶4∶4∶…∶4 1.2.4 1∶2∶4∶8∶8∶…∶8 1.2.8 1∶1∶2∶2∶2∶…∶2 1.1.2 1∶1∶2∶4∶8∶…∶8 1.1.8 1∶2∶3∶3∶3∶…∶3 1.2.3 1∶2∶3∶6∶6∶…∶6 1.2.6 1∶1∶2∶3∶3∶…∶3 1.1.3 1∶1∶2∶3∶6∶…∶6 1.1.6 9)、按Mode键进入自动界面(Auto),显示值即为测试到的功率因数值。若显示值与实际值不符,可以通过调整相位值PHASE改变相位关系,直到与实际值一致,设定参数结束。 ?智能电流表DH8的使用

详解滤波电容的选择及计算

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.

相关文档
相关文档 最新文档