文档库 最新最全的文档下载
当前位置:文档库 › 高中数学高一数学第三章(第15课时)数列复习小结1教案

高中数学高一数学第三章(第15课时)数列复习小结1教案

高中数学高一数学第三章(第15课时)数列复习小结1教案
高中数学高一数学第三章(第15课时)数列复习小结1教案

课 题:数列复习小结(一)

教学目的:

1.系统掌握数列的有关概念和公式

2.了解数列的通项公式n a 与前n 项和公式n S 的关系.

3.能通过前n 项和公式n S 求出数列的通项公式n a .

授课类型:复习课

课时安排:1课时

教 具:多媒体、实物投影仪

教学过程:

一、

等比数列等差数列表示方法图像与函数的关系前n 项和通项定义数列正整数集上函数及性质数列知识结构

二、知识纲要

(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.

(2)等差、等比数列的定义.

(3)等差、等比数列的通项公式.

(4)等差中项、等比中项.

(5)等差、等比数列的前n 项和公式及其推导方法.

三、方法总结

1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.

2.等差、等比数列中,a 1、n a 、n 、d (q )、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.

3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.

4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.

四、等差数列

1相关公式:

(1) 定义:),1(1为常数d n d a a n n ≥=-+

(2)通项公式:d n a a n )1(1-+=

(3)前n 项和公式:d n n na a a n S n n 2

)1(2)(11-+=+= (4)通项公式推广:d m n a a m n )(-+=

2.等差数列}{n a 的一些性质

(1)对于任意正整数n ,都有21a a a a n n -=-+

(2)}{n a 的通项公式2()(2112a a n a a a n -+-=(3)对于任意的整数s r q p ,,,,如果s r q p +=+,那么

r q p a a a a +=+

(4)对于任意的正整数r q p ,,,如果q r p 2=+,则q r p a a a 2=+

(5)对于任意的正整数n>1,有12-++=n n n a a a

(6)对于任意的非零实数b ,数列}{n ba 是等差数列,则}{n a 是等

差数列

(7)已知}{n b 是等差数列,则}{n n b a ±也是等差数列

(8)}{},{},{},{},{23133122---n n n n n a a a a a 等都是等差数列

(9)n S 是等差数列{}n a 的前n 项和,则k k k k k S S S S S 232,,-- 仍

成等差数列,即(323m m m S S S -= (10)若)(n m S S n m ≠=,则=+n n S

(11)若p S q S q p ==,,则(q p S q p +-=+

(12)bn an S n +=2,反之也成立

五、等比数列 1相关公式:

(1)定义:0,1(1≠≥=+q n q a a n n (2)通项公式:1-=n n q a a (3)前n 项和公式:??

???≠--==q 1)1(1q 11q q a na S n n (4)通项公式推广:m n m n q a a -=

2.等比数列}{n a 的一些性质

(1)对于任意的正整数n ,均有1

21a a a n n =+ (2)对于任意的正整数s r q p ,,,,如果s r q p +=+,则r q p a a a a =

(3)对于任意的正整数r q p ,,,如果r p q +=2,则2

q r p a a a = (4)对于任意的正整数n>1,有12

+-=n n n a a a (5)对于任意的非零实数b ,}{n ba 也是等比数列

(6)已知}{n b 是等比数列,则}{n n b a 也是等比数列(7)如果0>n a ,则}{log n a a 是等差数列(8)数列}{log n a a 是等差数列,则}{n a 是等比数列

(9)}{},{},{},{},{23133122---n n n n n a a a a a 等都是等比数列(10)n S 是等比数列{}n a 的前n 项和,

①当q =-1且k 为偶数时,k k k k k S S S S S 232,,--不是等比数列.

②当q ≠-1或k 为奇数时,k k k k k S S S S S 232,,-- 仍成等比数列

六、数列前n 项和

(1)重要公式:

2

)1(321+=+++n n n ; 6)12)(1(3212222++=

+++n n n n ; 2333)]1(2

1[21+=++n n n (2)等差数列中,mnd S S S n m n m ++=+(3)等比数列中,n m m m n n n m S q S S q S S +=+=+

(4)裂项求和:1

11)1(1+-=+n n n n ;(!)!1(!n n n n -+=?) 七、例题讲解

例1 一等差数列共有9项,第1项等于1,各项之和等于369,一等比数列也有9项,并且它的第1项和最末一项与已知的等差数列的对应项相等,求等比数列的第7项.

选题意图:本题主要考查等差、等比数列的通项公式及前n 项和公式. 解:设等差数列为{a n },公差为d ,等比数列为{b n },公比为q .

由已知得:a 1=b 1=1,813692)(99919=?=+=

a a a S 又

b 9=a9,∴q8=81,∴q2=3,

∴b 7=b1q6

=27,即等比数列的第7项为27. 说明:本题涉及 例2 已知数列}{n a 的前n 项和1+n S =4n a +2(n ∈N +),a 1=1.

(1)设n b =1+n a -2n a ,求证:数列}{n b 为等比数列,

(2)设C n =n

n a 2,求证:}{n C 是等差数列. 选题意图:本题考查等差、等比数列的定义及逻辑推理能力. 证明:(1) 1+n S =4n a +2, 2+n S =41+n a +2,相减得2+n a =41+n a -4n a , ),2(22112n n n n a a a a -=-∴+++,21n n n a a b -=+又.21n n b b =∴+

,1,2411212=+=+=a a a a S 又,32,51212=-==∴a a b a ∴}{n b 是以3为首项,2为公比的等比数列,∴n b =3×2

1-n . (2) ∵,2

n n n a C = n n n n n n a a C C 22111-=-∴+++1122++-=n n n a a 12

+=n n b 4322311=?=+-n n 2

1211==a C ∴}{n C 是以21为首项,4

3为公差的等差数列. 说明:一个表达式中既含有n a 又含有Sn,一般要利用 n a =n S -1-n S (n≥2),消去n S 或n a ,这里是消去了n S .

八、课后作业:

1. 已知数列{n a }的前n 项和n S ,满足:log 2(n S +1)=n+1.求此数列的通项公式n a .

解:由log 2(n S +1)=n+1,得n S =2

1+n -1 当n=1时,a 1=S 1=22-1=3;

当n ≥2时,n a =n S -1-n S =21+n -1-(2n -1)=2n

2. 在数列{n a }中,a 1=0,1+n a +n S =n 2+2n (n ∈N+).求数列{n a }的通项公式.

解:由于1+n a +n S =n 2+2n ,1+n a =1+n S -n S , 则1+n a +n S =1+n S -n S +n S =1+n S ,即1+n S = n 2+2n .

九、板书设计(略)

十、课后记:

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

高中数学-数列公式及解题技巧

数列求和的基本方法和技巧 除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、 等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 自然数方幂和公式: 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论. (2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1 2 2 2-?+n ),……的前顶和为 n s ,则 n s 的值。

二、错位相减法求和 错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出 了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列 的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。 [例] 求和:1 32)12(7531--+???++++=n n x n x x x S ( 1≠x )………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。 对应高考考题:设正项等比数列{}n a 的首项2 1 1= a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例] 求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++ 证明: 设n n n n n n C n C C C S )12(53210++???+++=………………………….. ① 把①式右边倒转过来得 113)12()12(n n n n n n n C C C n C n S ++???+-++=- (反序)

高中数学数列复习题型归纳解题方法整理

数列 典型例题分析 【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数 列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an } 的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812d d ++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n. (Ⅱ)由(Ⅰ)知2m a =2n ,由等比数列前n 项和 公式得 S m =2+22+23+…+2n =2(12) 12 n --=2n+1-2. 小结与拓展:数列{}n a 是等差数列,则数列}{n a a 是 等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。(a>0且a ≠1).

【题型2】与“前n项和Sn与通项an”、 常用求通项公式的结合 例 2 已知数列{a n}的前三项与数列{b n}的前 三项对应相同,且a1+2a2+22a3+…+2n-1a n= 8n对任意的n∈N*都成立,数列{b n+1-b n}是等 差数列.求数列{a n}与{b n}的通项公式。 解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n -1)(n∈N*) ② ①-②得2n-1a n=8,求得a n=24-n, 在①中令n=1,可得a1=8=24-1, ∴a n=24-n(n∈N*).由题意知b1=8,b2=4, b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n

(word完整版)高中数学等差数列练习题

一、 过关练习: 1、在等差数列{}n a 中,2,365-==a a ,则1054a a a Λ++= 2、已知数列{}n a 中,() *+∈+==N n a a a n n 3 111,111,则50a = 3、在等差数列{}n a 中,,0,019181=+>a a a 则{}n a 的前n 项和n S 中最大的是 4、设数列{}n a 的通项为()*∈-=N n n a n 72,则1521a a a +++Λ= 二、 典例赏析: 例1、在等差数列{}n a 中,前n 项和记为n S ,已知50,302010==a a (1)求通项n a ;(2)若242=n S ,求n 例2、在等差数列 {}n a 中, (1)941,0S S a =>,求n S 取最大值时,n 的值; (2)1241,15S S a ==,求n S 的最大值。 例3、已知数列{}n a 满足()22,21 2 1≥-==-n a a a a a a n n ,其中a 是不为零的常数,令a a b n n -=1 (1) 求证:数列{}n b 是等差数列 (2)求数列{}n a 的通项公式 三、强化训练: 1、等差数列{}n a 中,40,19552==+S a a ,则1a = 2、等差数列{}n a 的前m 项和为30,前2m 项和为100,则前3m 项和为 3、等差数列{}n a 中,,4,84111073=-=-+a a a a a 记n n a a a S +++=Λ21,则13S 等于 4、已知等差数列{}n a 的前n 项和为n S ,且10,10010010==S S ,则110S = 。 5、在ABC ?中,已知A 、B 、C 成等差数列,求2tan 2tan 32tan 2tan C A C A ++的值 作业 A 组: 1、 在a 和b 两个数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为 2、 已知方程 ()()02222=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则n m -等于 B 组: 3、 已知一元二次方程()()()02=-+-+-b a c x a c b x c b a 有两个相等的实根, 求证: c b a 1,1,1成等差数列 4、 已知数列 {}n a 的通项公式是254-=n a n ,求数列{}n a 的前n 项和

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

高中数学 必修五 数列 全套教案(知识讲解+经典例题+巩固练习+答案)

数列的概念与简单表示法 【学习目标】 1.掌握数列的概念与简单表示方法,能处理简单的数列问题. 2.掌握数列及通项公式的概念,理解数列的表示方法与函数表示方法之间的关系. 3.了解数列的通项公式的意义并能根据通项公式写出数列的任一项. 4.理解数列的顺序性、感受数列是刻画自然规律的数学模型,体会数列之间的变量依赖关系. 【学习策略】 数列是自变量为正整数的一类特殊的离散函数,因此,学习数列,可类比函数来理解。关于数列的一些问题也常通过函数的相关知识和方法来解决. 【要点梳理】 要点一、数列的概念 数列概念: 按照一定顺序排列着的一列数称为数列. 要点诠释: ⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项: 数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项,第2项,…;排在第n 位的数称为这个数列的第n 项.其中数列的第1项也叫作首项. 要点诠释:数列的项与项数是两个不同的概念。数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号. 类比集合中元素的三要素,数列中的项也有相应的三个性质: (1)确定性:一个数是否数列中的项是确定的; (2)可重复性:数列中的数可以重复; (3)有序性:数列中的数的排列是有次序的. 数列的一般形式: 数列的一般形式可以写成: ,,,,,321n a a a a ,或简记为{}n a .其中n a 是数列的第n 项. 要点诠释:{}n a 与n a 的含义完全不同,{}n a 表示一个数列,n a 表示数列的第n 项. 要点二、数列的分类 根据数列项数的多少分: 有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6,…是无穷数列 根据数列项的大小分: 递增数列:从第2项起,每一项都大于它的前一项的数列。 递减数列:从第2项起,每一项都小于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 要点三、数列的通项公式与前n 项和 数列的通项公式 如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式()n a f n =来表示,那么这个公式就叫做这个数列的通项公式.

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高二数学数列练习题(含答案)

高二《数列》专题 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a = 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

(3)累乘法( n n n c a a =+1型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足?? ?≤≥+00 1 m m a a 的项数m使得m S 取最大值. (2)当 0,01>

高考数学数列答题技巧解析

2019-2019高考数学数列答题技巧解析 数列是高中数学的重要内容,又是学习高等数学的基础。下面是查字典数学网整理的数学数列答题技巧,请考生学习。 高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。 有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。 探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 (3)数列的应用问题,其中主要是以增长率问题为主。 试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关 问题。 2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。 单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,

高中数学数列练习题及答案解析

高中数学数列练习题及答案解析 第二章数列 1.{an}是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n等于. A.667B.668C.669D.670 2.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=. A.33B.7C.84D.189 3.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则. A.a1a8>a4a5B.a1a8<a4a5C.a1+a8<a4+a5D.a1a8=a4a5 4.已知方程=0的四个根组成一个首项为 |m-n|等于. A.1B.313C.D.8421的等差数列,则 5.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为. A.81 B.120 C.1D.192 6.若数列{an}是等差数列,首项a1>0,a003+a004>0,a003·a004<0,则使前n项和Sn>0成立的最大自然数n是. A.005B.006C.007D.008

7.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=. A.-4B.-6C.-8D.-10 8.设Sn是等差数列{an}的前n项和,若 A.1B.-1 C.2D.1 a2?a1的值是. b2a5S5=,则9=. a3S599.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则 A.11111B.-C.-或D.2222 210.在等差数列{an}中,an≠0,an-1-an+an+1=0,若S2n-1=38,则n=. 第 1 页共页 A.38B.20 C.10D.9 二、填空题 11.设f=1 2?x,利用课本中推导等差数列前n项和公式的方法,可求得f+f+…+f+…+ f+f的值为12.已知等比数列{an}中, 若a3·a4·a5=8,则a2·a3·a4·a5·a6=. 若a1+a2=324,a3+a4=36,则a5+a6=. 若S4=2,S8=6,则a17+a18+a19+a20=. 82713.在和之间插入三个数,使这五个数成等比数列,

高中数学数列教学课件

高中数学数列教学课件 高中数学数列教学课件 一、教材分析 1、教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 2、教学目标 根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标 a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入"数学建模"的思想方法并能运用。 b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。 c在情感上:通过对等差数列的研究,培养学生主动探索、勇于

发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。 3、教学重点和难点 根据教学大纲的要求我确定本节课的教学重点为: ①等差数列的概念。 ②等差数列的通项公式的推导过程及应用。 由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对"数学建模"的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。 二、学情教法分析: 对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。 针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。 三、学法指导: 在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的

(完整版)高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2 = 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 3 22111=== a S b , ∴ 21 2 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 212)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3n n n a (1)(2)n n =≥,1 2)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ΛΛ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n Λ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n Λ 例5.A 例6. 解:1324321-+++++=n n nx x x x S ΛΛ①()n n n nx x n x x x xS +-++++=-132132ΛΛ② ①-②()n n n nx x x x S x -++++=--1211ΛΛ, 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111∴()() 21111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++=ΛΛ 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+2732354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918=== a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列 ∴ b 1b 3=b 22,∴ b 23=81,∴ b 2=21,∴ 1312178 14 b b b b ? +=????=??,∴ 13218b b =???=??或 12182b b ?=?? ?=? ∴ 13212()24n n n b --== 或 1251 428n n n b --=?= ∵ 1 ()2n a n b =,∴ 12 log n n a b =,∴ a n =2n -3 或 a n =-2n +5 例20. 2392 n n +

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

数列教案、考点、经典例题_练习

澳瀚教育 学习是一个不断积累的过程,不积跬步无以至千里,不积小流无以 成江海,在学习中一定要持之以恒,相信自己,你一定可以获得成功! 高中数学 一、定义 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) 2.等差数列的通项公式: d n a a n )1(1-+= (=n a d m n a m )(-+) 3.有几种方法可以计算公差d ① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中 5是3和7的等差中项,1和9的等差中项 9是7和11的等差中项,5和13的等差中项 看来,73645142,a a a a a a a a +=++=+ 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 二.例题讲解。 一.基本问题 例1:在等差数列{}n a 中 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

相关文档
相关文档 最新文档