文档库 最新最全的文档下载
当前位置:文档库 › 铁塔放样讲座一(酒杯型铁塔构造设计尺寸计算)

铁塔放样讲座一(酒杯型铁塔构造设计尺寸计算)

铁塔放样讲座一(酒杯型铁塔构造设计尺寸计算)
铁塔放样讲座一(酒杯型铁塔构造设计尺寸计算)

酒杯型铁塔构造设计尺寸计算

1、身腿部展开尺寸计算

此节不仅适用于酒杯塔,对于任何其他类似的铁塔身腿部尺寸计算均适用。

1.1 身腿部展开图,见图4-1

1.2 身腿部展开尺寸计算

1.根据设计图纸给定的已知控制尺寸

a ——正面下口

b ——正面上口

c ——侧面下口

d ——侧面上口

H0——垂直中心高

2.按下面公式计算出正面塔面高H 1,侧面塔面高H2,主材展开实际

长Sb或Sx,如果是正方形断面,则a=c,b=d,Sb=Sx,H1=H2.

Sb--正侧面不同时的实长

S X--正侧面相同时的实长

根据Sx,a,b 就可以获得正方形断面的四个相同的展开面。正面(10-11-21-20),右侧面(10-12-22-20),左侧面(11-13-23-21),后面(12-13-23-22)。如果是矩形断面就可以根据Sb,a ,b,c,d获得前后相同,左右相同的展开面。

2、身腿部几何尺寸计算

此节不仅适用天酒杯塔,对于其他类似铁塔的身腿尺寸计算均适用。

2.1身腿部几何尺寸图,见图4-2。

2.2 身腿部几何尺寸计算

当将塔的身腿某一段按每一节的方法计算展开以后,我们就可以在已展开的等腰梯形面上进行各杆件的几何尺寸计算。

一,计算的已知条件是:

a---下口

b---上口

s---腰长,实长(二次坡长)

H1—塔面高(一次坡长)

二,需要计算的各杆件的几何尺寸可由下列式算出

3、同坡度塔身,腿接口尺寸计算

此节不公适用于酒杯塔,对其它类似的塔也适用。

3.1同坡度塔身,腿,接口尺寸见图4-3

3.2同坡度塔身,腿,接口尺寸计算了

对于同坡度的高塔身和多接腿的接口尺寸心须在几何尺寸计算之前进行校核,以防止因接口尺寸有误面影响整体坡度出现不一致。

同坡度接口尺寸计算可以用H0(垂高),也可以有H1,H2(一次高),当然有时也可以用S1,S2(二次高)。但是,在进塔身,塔腿的断面尺寸计算时,必须用一次高计算出来的坡度系数进行翻面计算断面杆件几何尺寸才算是正确合理的,其他算法的坡度系数都是近似的。不宜采用。

已知a,b,H1,H2计算C接口用式:C=b-(a-b)

或已知a,b,S1,S2,计算C接口用式:

C=b-(a-b)

已知a,c,H1,H2计算b接口用式

b=c+(a-c)

或已知a,c,S1,S2计算b中口用式:

b=c+(a-c)

已知b,c,H1,H2计算a下口用式:a=b+(b-c)

式已知b,c,S1,S2计算a下口用式:a=b+(b-c)

作为翻断面使用的准确的坡度系数K按下式计算

4、铁塔锥顶高斜杆及其力臂的尺寸计算

此节铁塔锥顶高,斜杆及其力臂的尺寸计算适用于任何塔型。

4.1 铁塔锥顶高,斜杆及其力臂的尺寸计算

1、已知条件:

a——大口

H1——一次坡

S1——二次坡

1.需计算的尺寸由下列式进行计算

n相当于C。

5、任意斜杆的尺寸计算

适用于铁塔中任意三角形杆件长度的尺寸计算。

5.1 任意斜杆图见图4-5。

5.2任意斜杆尺寸计算

这种斜杆一般先计算出a角然后确定出C1及S1数值,应用余弦定理进行计算。

将C1、S1、a代入下式第一式便可计算出L值。

或者将上式变形成代入下式第二式中一次计算出L值。第三、第四两式很少使用。

6、羊角式塔头几何尺寸计算。

如把图形倒置就适用于串心铁塔身腿尺寸计算

6.1 羊角塔头几何图见图4-6。

6.2 羊角塔头几何尺寸计算

这种塔头正面和侧面都各是一个坡度,展开后才能进行尺寸计算。本例先的是双回路羊角式塔头双地线支架部分。就其图形倒转过来也可以当作串心塔腿、或塔身计算。

一、计算的依据条件是:

a——外大口

b——小口

a0——内大口

s——外边实长(二次坡)

F——内、外大口差值

H—塔面高

二几何尺寸计算

1、内对角线尺寸

2、补助虚线尺寸3、分段实长尺寸

4、分段实长尺寸

5、斜交分段

6、斜交公段

7、交叉点水平杆8、虚交点长(内)9、虚交点长(外)

10.虚角

L1、L2、dx都可以应用a角和余弦定理计算出来。

7、酒杯塔曲臂正、侧面的展开计算

7.1 酒杯塔曲臂正侧面面的展开图见图4-7。

7.2 酒杯塔曲臂正侧面面的展开计算

1、已知条件:H0、b、c、c0、ΔH、a、H0、H0为H1的垂高

2、展开尺寸计算

(侧上虚口)

(侧下虚口)

8、酒杯型串心塔头水平X值的计算

8.1 酒杯型串心塔头图见图(4-8)。

8.2 酒杯型串心塔头水平X值的计算

1.已知条件:a、b、H、a1、a2、F,

2.精确地计算X值的方程式如下:

9、铁塔身部串心水平X值的计算9.1 铁塔身部串心图见图4-9。

9.2 铁塔身部串心水平 X值计算

身部串心值可以先累计算然后按比例分配。式(4-65)中的A、B、C值可以用式(4-55)(4-56)两式计算。式(4-64)中的 a2,a1可以用式(4-58)、(4-59)计算。但绝不可用式(4-54)和(4-60)式计算。

10、酒杯型塔头上下曲臂内侧面翻面水平切口计

10.1下内侧面下口定位计算

1、下曲臂下内侧面下口翻面水平切口图见4-10

2、下内侧面下口定位计算

N与M为皮碰皮取口,即下内侧面的下口取口位置B,需从外方侧面上取B-B的皮口。

N1为水平切口位置A。

此式用于确定外方侧的下口位置。

10.2 下内侧面上口定位计算

1、酒杯型塔头下曲臂下内侧面上口翻面水平切口图见图4-11。2、酒杯型塔头下曲臂下内侧面上口定位计算

10.3 下曲臂下内侧面翻面交皮上口定位计算

1、下曲臂下内侧面翻面交皮上口定位计算

10.4 上曲臂上内侧面翻面水平下口定位计算

1、酒杯型铁塔上曲臂上内侧面翻面水平下口定位图见图4-132、酒杯型铁塔上曲臂上内侧面翻面水平下口定位计算

10.5 上曲臂上内侧面翻面交皮上、下、口定位计算

1、酒杯型铁塔上曲臂上内侧面翻面交皮上,下口定位图见图4-14。

2、酒杯型铁塔上曲臂上内侧面翻面交皮上、下口定位计算(一)上口定位计算

(二)下口定位计算:是皮碰皮从外方侧取口的方法。

11、酒杯型塔横担几倾听尺寸计算11.1 平行斜交叉杆件尺寸计算

1、酒杯型塔横担平行斜交叉杆件图见图4-15。

2、酒杯型塔横担平行斜交叉杆件尺寸计算

11.2平秆斜交叉杆件尺寸计算

上式也适用于图4-16中 X、Y值的计算。

通信铁塔基础选型与设计初探

内容提示:通过对工程中常见的两种通信铁塔工程实例的分析,详细阐述了针对不同地质情况时,基础选型的一般原则和方法,通过合理选择基础形式,达到了减少投资、便于施工的效果。 延伸阅读:基础选型桩基础独立基础通信铁塔 0 引言 通信铁塔是装设通信天线的一种高耸结构,其特点是结构较高,横截面相对较小,横向荷载(主要是风荷载和地震作用)起主要作用。通信铁塔基础将上部结构的全部荷载安全可靠地传递到地基,并保证结构的整体稳定,是构成通信铁塔结构的重要组成部分。通信铁塔基础选型与上部结构形式、结构布置、外部荷载作用类别、建筑场地以及所在区域的地质条件等有着非常密切的关系。合理的基础选型和设计,对于降低工程造价,缩短工程建设周期,保证结构安全可靠至关重要。 由于风荷载属于随机荷载,风力的大小和方向具有任意性和脉动性,基础受力同样也具有任意性和脉动性的特征,所以基础设计选用荷载取值时,需根据不同的铁塔形式,选用最不利方向的荷载组合标准值进行设计。通信铁塔所采用的空间桁架结构自重相对较轻,而且挂设通信天线的平台竖向荷载也不大,因此三角形或四边形桁架塔塔下基础顶面的拉力或压力呈交变性,拉力值一般可达压力值的以上故桁架塔的基础抗拔计算特别重要,很多时候基础的抗拔设计起主导作用。 根据河北联通近几年来通信基站建设中的常用两种类型铁塔的基础设计,笔者针对四角塔和三管塔简要分析如何进行铁塔基础的选型与设计。 1 四边形角钢塔的基础选型与设计 四边形角钢塔简称四角塔,是近几年常见的通信塔形式。铁塔跟开一般约为铁塔高度的1/7,基础形式通常采用钢筋混凝土独立基础、灌注桩基础,计算基础所选用的荷载组合,一般取上部结构传至塔脚下最不利的第二方向(即45°角方向),在正常使用极限状态荷载效应的标准组合荷载,有下压力,上拔力和水平剪力,基础形式需依据基站所在位置的岩土工程勘察报告和周围建筑物情况,场地平整情况等综合选定。 1.1 钢筋混凝土独立基础

除臭设备设计计算书

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 2.5×2.0× 3.0m 2000m3/h Q=2000m3/h V=处理能力Q/(滤床接触面积m2)/S=2000/ (2.5×2)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 2#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力Q/(滤床接触面积m2)/S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa

3#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m(两台) 20000m3/h Q=20000m3/h V=处理能力Q/2(滤床接触面积m2)/S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻220Pa/m×填料高度 1.7m=374Pa 设备风阻<600Pa 4#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m(两台) 18000m3/h Q=18000m3/h V=处理能力Q/2(滤床接触面积m2)/S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设有观察窗等,其具体计算如下:

铁塔结构设计计算细则(2006)(稿)

铁塔结构设计计算细则(角钢/钢管塔) 审核: 校核: 编写:金晓华 广东省电力设计研究院送变电室 2006.9

一、设计依据 1.《110kV~500kV架空送电线路设计技术规程》(DL/T5092-1999) 2.《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2002) 3.“设计条件及塔头间隙图”(广东省电力设计研究院)(附件1) 二、荷载 1.导、地线荷载见广东省电力设计研究院提供“铁塔外负荷计算书(附件2)”: 2.设计工况应包括正常运行(包括最小垂直荷载和最大水平荷载组合;直线塔最小垂直档距取0.5倍水平档距;转角塔要考虑正、负垂直档距)、断线、安装的最不利组合情况,转角塔及结构布材不对称的塔应计算反向风工况,所有塔应计算基础作用力工况。 为便于校对,应进行设计工况归并,可参考“铁塔设计工况”(附件3),并应详细列出每种荷载工况组合,而不是单纯指出第几种到第几种为事故或安装等工况。 3.参考国网典型设计,新规划的直线塔规定了计算高度,铁塔外负荷是对应这个计算高度值的。杆塔风荷载调整系数βz以及线条荷载对地距离均应按该计算高度(呼高)取值。对本塔高于该计算呼高的,应采用由我院电气专业开的缩小使用条件的铁塔外负荷来验算,原则上不增大共用段原主材构件规格,如个别共用段主材构件规格差别不大的情况下,则选用较大规格主材,而不修改档距从而修改计算荷载再重新计算,但应得到结构室内部确认。 4.引用国网典型设计,作以下特殊规定: 1).500kV直线塔考虑施工锚固工况,部分使用条件大的220kV直线塔也考虑施工锚固工况;500kV和220kV直线塔都考虑2倍起吊安装荷载,但应按4:6比例分配到前后的荷载点上。 2).为降低塔材指标,新规划的直线塔分平地和山地二类,其中平地直线塔考虑1~2种使用条件的塔型,按平腿设计,导线断线张力取一相Tm的15%(500kV)和20%(220kV 及以下);山地直线塔考虑3~4种使用条件的塔型,按长短腿设计,导线断线张力对500kV 电压等级取15%(第1种使用条件的塔)、20%(第2种)及25%(第3、4种),对220kV及以下电压等级取20%(第1种)及25%(除第1种外)。在塔的结构设计计算说明书的工程概况中列出断线张力百分数。 3).山区耐张塔的荷载组合应考虑两侧正档下压、两侧负档上拔、一侧正档另一侧负档扭转的所有正常、断线、安装工况的组合;平地耐张塔(当塔型规划有时),不考虑上拔情况。所有转角塔计算工况均应叠加跳线串荷载。

铁塔结构设计计算细则

铁塔结构设计计算细则 (角钢/钢管塔) 审核: 校核: 编写:金晓华 广东省电力设计研究院送变电室 2006.9

一、 设计依据 1.《110kV~500kV架空送电线路设计技术规程》(DL/T5092-1999) 2.《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2002) 3.“设计条件及塔头间隙图”(广东省电力设计研究院)(附件1) 二、荷载 1.导、地线荷载见 广东省电力设计研究院提供“铁塔外负荷计算书(附件2)”: 2.设计工况应包括正常运行(包括最小垂直荷载和最大水平荷载组合;直线塔最小垂直档距取0.5倍水平档距;转角塔要考虑正、负垂直档距)、断线、安装的最不利组合情况,转角塔及结构布材不对称的塔应计算反向风工况,所有塔应计算基础作用力工况。 为便于校对,应进行设计工况归并,可参考 “铁塔设计工况”(附件3),并应详细列出每种荷载工况组合,而不是单纯指出第几种到第几种为事故或安装等工况。 3.参考国网典型设计,新规划的直线塔规定了计算高度,铁塔外负荷是对应这个计算高度值的。杆塔风荷载调整系数βz以及线条荷载对地距离均应按该计算高度(呼高)取值。对本塔高于该计算呼高的,应采用由我院电气专业开的缩小使用条件的铁塔外负荷来验算,原则上不增大共用段原主材构件规格,如个别共用段主材构件规格差别不大的情况下,则选用较大规格主材,而不修改档距从而修改计算荷载再重新计算,但应得到结构室内部确认。 4.引用国网典型设计,作以下特殊规定: 1).500kV直线塔考虑施工锚固工况,部分使用条件大的220kV直线塔也考虑施工锚固工况;500kV和220kV直线塔都考虑2倍起吊安装荷载,但应按4:6比例分配到前后的荷载点上。 2).为降低塔材指标,新规划的直线塔分平地和山地二类,其中平地直线塔考虑1~2种使用条件的塔型,按平腿设计,导线断线张力取一相Tm的15%(500kV)和20%(220kV 及以下);山地直线塔考虑3~4种使用条件的塔型,按长短腿设计,导线断线张力对500kV 电压等级取15%(第1种使用条件的塔)、20%(第2种)及25%(第3、4种),对220kV及以下电压等级取20%(第1种)及25%(除第1种外)。在塔的结构设计计算说明书的工程概 况中列出断线张力百分数。 3).山区耐张塔的荷载组合应考虑两侧正档下压、两侧负档上拔、一侧正档另一侧负档扭转的所有正常、断线、安装工况的组合;平地耐张塔(当塔型规划有时),不考虑上拔情况。所有转角塔计算工况均应叠加跳线串荷载。

铁塔设计方案图样知识分享

铁塔制作要求 1、铁塔设计设计要求 设备安装铁塔为前端监控设备的运行提供必要的保障,为了使设备正常运行,在基础建设上本着牢固可靠、坚固耐用的原则,铁塔设计遵循《高耸结构设计规范》GB135-90,满足设备安装的要求。 铁塔抗风性能要加强,据了解,该地区最大历史风力记录为18级强台风,14级台风每年都有不少于10次,故此,需要特别注意安装铁塔的抗风要求,加强铁塔、基础的抗风制作级别,确保安装铁塔以及设备的安全。 由于设备安装点地处海岛,常年台风季节多,伴随雷电多发天气也多,需要加强铁塔的接地级别要求,本协议要求铁塔的整体接地阻值不大于1欧姆。 2、铁塔设计考虑的因素: 1)铁塔的设计原则是“安全,适用,经济,美观”。由于海域监控系统地处海边,为了系统 建设后与整体环境协调,铁塔的设计在满足安装、安全性的条件下,追求线条流畅,与周边环境和谐,铁塔颜色可根据环境色调搭配; 2)铁塔设计、施工、验收依据 《建筑结构可靠度设计统一标准》GB50068-2001 《建筑结构荷载规范》GB50009-2001 《钢结构设计规范》GB50017-2003 《钢结构工程施工工程质量验收规范》GB50205-2001 《建筑抗震设计规范》GB50135-2006 《钢塔桅结构设计规程》GBJ1-84 《建筑钢结构焊接技术规程》JGJ81-2002 《移动通信工程钢塔桅结构设计规范》YD/T5131-2005 3)基本抗风、结构安全等级及设计使用年限:抗风级别18级,铁塔抗震为不低于9级,铁塔设计使用寿命不低于10年。 4)铁塔负载要求:铁塔要求负载不小于200公斤,该铁塔负载不包括钢结构主材、螺栓、节点板、避雷针等永久载荷和风荷载、地震作用、雪荷载、裹冰荷载、人员上塔安装检修等

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在 2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ= h C K V Q η = (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273 *4.22641η+ (7) 在喷淋塔操作温度 10050 752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

架空输电线路铁塔结构设计要点分析

架空输电线路铁塔结构设计要点分析 发表时间:2018-01-26T16:02:43.180Z 来源:《防护工程》2017年第27期作者:牟松芳 [导读] 本文围绕架空输电线路铁塔结构设计为研究对象,分析了架空输电线路铁塔结构设计的基本思路。 贵州电力设计研究院贵州省贵阳市 550002 摘要:本文围绕架空输电线路铁塔结构设计为研究对象,分析了架空输电线路铁塔结构设计的基本思路,并围绕具体的工程案例,对该工程项目中的铁塔结构设计思路做深入研究,希望能对相关人员工作有所帮助。 关键词:架空输电线路;铁塔结构;结构设计 前言:电力系统在当前社会生产中发挥着重要作用,为人们的工作与生活提供了稳定的能源。架空输电线路是电力系统的基础设施,在电力系统中占据着重要位置。因此在当前情况下,需要深入分析架空输电线路设计的要点,明确架空输电线路结构设计思路,为整个电力的顺利输送奠定良好基础。本文将以此为背景,对架空输电线路铁塔结构设计的相关内容做深入分析。 1.工程项目简介 雅中-江西±800kV特高压直流输电工程线路工程包8(施秉县剑河县界-新寨村(黔湘省界)标段线路,该包段西起施秉县剑河县界,东至天柱县竹林乡新寨村(黔湘省界),整个工程项目涉及3个县,在当地电力系统建设中占据着重要位置。 2.工程项目架空输电线路铁塔结构设计的基本思路 2.1杆塔塔型选择 本次工程在杆塔塔型选择中,充分收集国内外超高压、特高压直流输电项目塔型的基本资料后,基本确定了两种塔型,即拉线塔与自立塔两种(具体见图1)。 两种塔型各具有不同的优点,其中拉线塔的单基指标轻,对原材料的需求量少,并且工程造价低,因此能够得到多数工程项目的认可。同时与自立塔相比,拉线塔的技术更加成熟,曾经被广泛的应用在±500kV直流输电线路工程中。但是很多工程项目的实践经验证实[1],这种塔型在后期管理中存在一定的问题,尤其是拉线防松问题表现的更加明显。同时,拉线塔对建筑工程项目的地理环境提出了一定的要求,只能在地势较为平坦的地区建设。在本次工程项目中,多为山地,地形崎岖。因此本次工程技术人员在综合考虑各种因素后,认为自立塔虽然存在造价高的问题,但是对地形的适应能力强,因此能被应用到本次工程项目中,进而成为本次工程中的杆塔塔型。 a.拉线塔 b.自立塔 图 1 杆塔塔型 2.2塔头轮廓优化 在本次工程设计中,塔头轮廓的优化的基本思路包括以下几点: 2.2.1悬垂塔塔头 在悬垂塔塔头设计中,技术人员根据既往的工程项目经验,分别推出了以下几种悬垂塔塔头结构型式,具体资料见表1。 上述悬垂塔塔头结构型式中,方案一所介绍的塔头结构为常规的塔头布置方式,这种结构的塔头简练,并且具有清晰的传力性能,导地线荷载能分别从导线横担、地线横担上传送到塔身上。方案二是方案一的改进型,能够进一步改善地线支架高度,并且在工程造价方面也具有优势,因此被广泛的应用在±500kV直流输电项目中,技术条件成熟。方案三是常用直流羊角塔的型式,较干字型塔外形上显得更轻巧,传力上导地线荷载在靠近塔身附近共同由导线横担传力,由此避免了构造要求增加的塔重;并且,塔重也较干字塔轻。方案四结合了前几种塔头结构的优点,并且还具有塔重轻、外形优美的特点。 在对上述四种方案进行分析后,技术人员最终决定采用方案四的结构。 2.2.2塔头深部的优化 在确定使用方案四之后,技术人员根据本次工程项目的具体情况,提出了塔头结构优化的基本思路。在优化过程中技术人员认为,为了保证上下主材能匹配工程项目的要求,在规划过程中应该设置相应的坡度;但是在头部塔身规划过程中,除了要分析头部主材与横担主材后,还应该充分考虑整个塔头身部。因此提出了两种方案,具体资料见表2。 上述结构中,方案1具有以下特点:①是横担与塔身相连接的角钢为垂直角钢断面进行火曲,方便加工;②是V串塔身挂点处支撑角钢不需要开合角,避免了角钢扭曲强度降低;③是选材比较协调;④是间隙在塔身上的最危险点处(变坡处)留有了充足的裕度。方案2的特点为:①是横担与塔身相连接的角钢需斜向角钢断面进行火曲,对于较大角钢不容易控制好加工精度;②是V串塔身挂点处支撑角钢需要开

电力铁塔结构设计要点分析及应用

电力铁塔结构设计要点分析及应用 【摘要】电力铁塔作为输电线路的重要组成部分,其设计质量关系着输电线路乃至整个电网的安全稳定运行以及电网未来的发展。鉴于此,本文结合某500kV输电线路铁塔结构设计,根据工程实际,深入探讨了铁塔结构设计的要点,以提高电力铁塔设计质量,保证输电线路的安全可靠性、经济合理性。 【关键词】电力铁塔;设计要点;工程应用 1.工程概况 某500KV输电线路直线塔为酒杯型塔5B-ZBC4,经济呼称高取33m,耐张塔也选择酒杯型塔5B-ZBC4,呼称高取27m,耐张段总长6000m,高差350m,经过第七气象区,采用四分裂导线,选择导线型号为LGJ240/30。覆冰厚度为b=10mm。地线采用镀锌钢绞线,结构形式、直径11mm、抗拉强度1270MPa、A级锌层的钢绞线。 2.塔型的选择以及杆塔的定位 2.1塔型的选择 500KV输电线路直线塔选择酒杯型塔5B-ZBC4,经济呼称高取33m,耐张塔也选择酒杯型塔5B-ZBC4,呼称高取27m;线路通过人口稀少的非居民区,导线对地安全距离d=11m;施工裕度取δ=1.0m;采用XP-16型绝缘子组成的双联绝缘子串,直线塔每单联绝缘子片数取25片,则每组片数为50片,耐张塔按规定比直线塔每联多2片。悬垂绝缘子串总长为3.875m,耐张绝缘子串的绝缘子串总长为4.185m。 2.2杆塔定位高度 经计算,直线型杆塔定位高度为17.125m,耐张型杆塔的定位高度为15m。 3.铁塔结构设计 本设计取第二基直线塔设计,其水平档距为l■=506.5m,垂直档距为l■=474m。 3.1荷载计算 直线塔金具质量为417.6kg,FR-2型防震锤单个 2.7kg,两个 5.4kg,FYH240-30护线条1.44kg,金具及绝缘子总质量为424.44kg。单相导线自重为17.1353kN,三相导线自重为51.406kN。单地线自重为2792.5kN,双地线自重为5.585kN。塔身风荷载:将杆塔分为8段,其中塔身分4段,塔头分4段。风荷

输电线路铁塔结构设计分析

输电线路铁塔结构设计分析 发表时间:2018-06-20T10:36:38.627Z 来源:《电力设备》2018年第4期作者:魏航 [导读] 摘要:本文通过查阅大量文献及工作经验总结,探讨了输电线路铁塔结构原理和选型基本原则,总结了输电线路铁塔结构优化设计分析,希望对输电线路铁塔结构设计研究有所帮助。 (广西广晟电力设计有限公司南宁市 530000) 摘要:本文通过查阅大量文献及工作经验总结,探讨了输电线路铁塔结构原理和选型基本原则,总结了输电线路铁塔结构优化设计分析,希望对输电线路铁塔结构设计研究有所帮助。 关键词:输电线路;铁塔结构;设计 1 输电线路铁塔结构原理和选型基本原则 输电线路铁塔又叫电力铁塔,按照一般形状来分可以分为:酒杯型、上字型、干字型、桶型和猫头型五种。按照用途来划分的话就是:耐张塔、转角塔、换位塔等,结构特点均属于空间桁架结构。使用材料一般为Q235和Q345两种,杆件由单根等边角钢或者组合角钢组成。杆件之间是靠着螺栓受剪力而连接的,而整个塔就是由角钢、连接钢板和螺栓组成的。对于个别的部件如塔角等就是由几块钢板焊接成一个组合件的,不同的铁塔型式在造价、施工等方面的要求也是不同的,铁塔工程建造的费用大概是整个工程的百分之三十或者百分之四十。对于新建工程如果投资允许的话可以选用一到两种直线水泥杆,跨越、耐张和转角尽量使用角铁塔,这样的话材料就简单清晰、方便施工使线路安全水平得到提高。对于沿规划路建设的路线要采用占地少的铁塔,但是对大的转角塔由于结构上的原因很容易造成铁塔杆顶挠度变形,所以施工费用也会比角铁塔的费用贵一倍。直线塔就采用铁塔,而转角塔就用角铁塔方案会更加合理,这样就可以满足环境、投资和安全的一些要求。在我国的线路整改里面,老线路一直是热门话题,我国的电路的设计以及运转的情况一般情况都开始于上个世纪九十年代,很难满足如今的需求,但又不能进行一次性的整改,一般的情况下我们会采取维修部分整改的模式,像是在比较高的铁塔支架增设减轻压力的设施等等,这样大大的减少了事故的发生,与此同时做到了线路的更改在不知不觉中进行,不会影响正常的工作的运转。 输电线路铁塔作为输电线路中重要的组成部分,其耗费量在整个线路工程中比重是很大的。工期大概占整体工期的一半,运输量占整个工程的百分之六十。费用占整体费用的百分之三十五,由此可见输电线路铁塔结构设计的选型和施工优劣直接影响着线路工程的建设。当前基础型式只能采取浅埋式是因为地质的特殊性和埋深具有一定的局限性的因素,所以通过加大基础地板尺寸以及增加基础自重来满足上拔稳定是一个安全经济的做法之一。直线塔在埋的时候保持在2米左右,但是承力塔在埋时候深度应该控制在3~4米,从而可以减少地下水对施工产生的影响,一般情况下,由于每项工程的具体的情况其基塔的设计也会不同,主要的原因是受力情况不同。针对于特有的地质情况进行针对性的设计,从质量与经济双重入手,不断的解决遇到的问题。在我们进行架线要进行以下几点的考虑:第一,地质情况,水文,这些在我们进行架线是要考虑,是否会出现坍塌、泥石流等自然灾害,以及怎么去防治;第二,对于深林等作物的考虑,我们是知道的在架线的过程可能会穿越森林等情况,以及一些基础设施怎么进行建设都是我们进行考虑的,只有这些都布置的很好的情况,我们的工作才会被高效率的完成;第三,经济条件的考虑,一定设计的过程把经济方面进行综合考虑;第四,质量方面的考虑,一切的工作就是为了有优质产品,所以不容忽视。把这几方面进行综合的比较,遇到了问题具体的分析,一定会取得很好地效果,对工程的设计与施工非常的有意义。 2 输电线路铁塔结构优化设计分析 2.1拉线V型塔优化设计 这种塔杆在实际的使用中能够体现出结构上的优势,因为其结构的布置相对比较合理立柱主要是承受相应的压力,而拉线主要是承担对应的拉力。在钢绞线的选择上也能够体现抽非常好的力学特征,当然这和材料本身的特性也有着一定的影,这种塔杆形式的刚度和强度都非常的大,同时结构本身也非常的稳定,考虑到塔杆经常在室外作业,所以这种塔杆在设计的时候着重加强了其抗风的能力,在生产的过程中还不需要很多的钢材,所以就降低了对钢铁能源的消耗。但是需要注意的是其立柱是一种比较细长的杆件,所以其在运行的过程中会产生二阶效应,需要很大的空间来支持,所以其在使用的过程中也会阻碍农业的生产,同时其赔偿的费用也非常高,这种塔杆设计形式在我国的一些地势相对比较平坦,而且也没有大量农田分布的地区比较适用,拉线V型塔塔头主要有线支架和导线横担两部分,这两部分就转矩了整个结构40%的重量,地线支架只占了4%,所以在进行优化设计的过程中主要是以导线横杆作为最主要的优化部分,横单杆件内力最为重要的影响因素就是横担本身的杆件结构形式,所以在优化的过程中一定要在中横担的立面高度和主材节间的选择等因素上行考量。当然,在设计的过程中也可以将这些影响因素当成是设计的变量,按照设计的要求对其进行适当的优化,从而实现优化前的既定目标。 2.2 ZB1-MV酒杯型塔优化设计 目前,国内500kV超高压输电线路单回路自立式直线铁塔一般选用酒杯型和猫头型铁塔较多,三相导线均采用悬垂串挂线。在相同设计条件下,猫头型铁塔比酒杯型铁塔的塔头尺寸和线路走廊宽度较小,线路走廊赔偿费用低,可减少线路电晕损失和电能损失;但因整体高度较高,耐雷性能差,铁塔基础作用力大,单基耗钢量高;酒杯型铁塔导线呈水平排列,与猫头型铁塔相比,可减小铁塔整体高度,铁塔整体刚度大、挠度变形小,单基耗钢量低;但线间水平距离宽。自立式铁塔的优化,过去一般着重于塔身结构。但标准呼称高下的自立式铁塔,塔头重量占整塔重量的40%~50%。塔头结构优化不可忽视。众所周知,悬垂绝缘子串摇摆角是控制酒杯型塔头尺寸的主要因素。边导线横担比采用悬垂串的横担还长,对塔本身而言,综合效果并不显著;而中相采用V型串,两边相仍为悬垂串,俗称M型布置,只增加一串绝缘子,为此,将其立面设计成对称三角形拱形结构,跨矢比在1/4~1/5之间,与普通钢屋架相同,刚度较大;起拱后,虽将增加拱脚推力,但由于V型串挂点与拱脚共点,两串拉力产生的水平力始终指向横担中心,可抵消部分拱脚推力。 2.3铁塔与基础同时优化设计 这种设计方式主要以铁塔建设中使用的钢材数量最小为基本的目标,所以在设计的过程中一定要先计算出塔身最好的坡度,这样可以有效的提高铁塔的经济性,在对其进行优化设计的过程中一定要将其和基础的设计有机的结合,一般来说将塔件的倾斜程度控制在主材开合脚允许的范围内,不然不仅会影响塔杆的稳定性,同时还会严重影响到钢材的使用量。 3.结语 合理布置塔身斜材形式及横隔面的间隔。优化铁塔塔身的坡度,在塔重相差不大的前提下,尽量取小坡度,以减小征地范围,有利于

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量% 工况满负荷烟气量 285000m3/h 引风机量 1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。 氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4

Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高 在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小。因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。一般情况下氧化镁的脱硫效率可达到95-98%以上,而石灰石/石膏法的脱硫效率仅达到90-95%左右。

铁塔技术规范书

铁塔建设技术要求 一、前期工作 各铁塔厂家需提前熟悉建设单位的通信铁塔设计要求、拟采用的铁塔形式、制作安装技术要求及相关费用的标准。 二、拟用铁塔类型及使用范围 1、角钢自立塔:建议塔高不大于60m(20~60米); 2、(三角、四角)钢管塔:塔高不大于100m; 3、单管塔:用于平地地区且交通运输便利,建议塔高不大于50m; 4、地面拉线塔:用于场地较大,建议塔高不大于35m。 5、轻型边际站自立塔:建议轻型边际站自立塔塔高不大于25m; 6、屋面立杆:适用于屋面梁板为现浇的结构。 三、现场勘察要求 各类型铁塔需根据通信工艺要求到现场勘察,结合现场环境确定铁塔位置、铁塔形式及铁塔高度,并由正规地质勘察单位出正式地质勘察报告。 四、各类型铁塔工艺及技术要求 铁塔设计及制作总体原则:满足通信天线及馈线安装要求,便于操作维护;符合国家相关规范,保证结构安全,抗风、抗震、防锈、防雷;优化设计,合理选型,便于制作安装,缩短工期,降低工程投资。设计应按正式铁塔施工图出图,并由正规设计院加盖设计专用章。 (一)角钢自立塔 1、变形限制 1(1)在当地各种气候条件下,应保证铁塔30年内不产生影响通信使用的变形;塔身平面内的弯曲挠度<0.45度,塔身水平面内的弯曲挠度<0.45度。

(2)塔体侧向水平最大变形≤H/1000,H为塔体高度。 2、铁塔设计使用周期按50年考虑。 3、负荷要求 (1)满足云南省风荷载(50年一遇)要求。建议根据云南省内基本风压分布和山高要求,按山高20m、山高50m进行标准设计,对山高超过50m的铁塔进行单独设计。 (2)当塔建在地面上时,要求塔体及基础按照《建筑抗震设计规范》 GB50011-2002所确定当地抗震设防烈度设计;当塔建在楼顶时,塔体抗震设防烈度除按规范确定外,尚应不低于塔下楼房的抗震设防烈度。 (3)塔体上天线平台采用二层外平台形式,二层平台的间距为 5.0m,平台直径为3.5~5.0m,第一平台离塔顶为2米。 (4)二层平台上共安装定向天线12付,每付天线重量为12Kg,几何尺寸为2570/255/105mm(长/宽/厚)。 (5)天线支架伸出平台长度应保证天线抱杆分布圆直径不小于 6.0m(可移动式支架),抱杆为Φ70mm,长为3m。 (6)每付天线按照安装一根馈线考虑,直径Φ30mm,其单位重量为 1.0kg/m,每条馈线长度按天线挂高加10m计算。 (7)铁塔平台上的活荷载不宜小于250kg/m2。 2(8)其他负荷(雪、裹冰等)要求按当地最大负荷设计。 (9)铁塔负荷应适当考虑今后扩容的需要(以建设单位要求为准)。 4、安全及防范措施 (1)塔体应考虑防雷措施,机房和铁塔共用一个接地系统,接地电阻小于5欧姆。

除臭设备设计计算书

除臭设备设计计算 书 1

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数 招标要求 计算过程 序 号 太仓市港城组团污水处理厂改扩建工程设备采购、安装 项目 1 2 设备尺寸 处理能力 2.5×2.0×3.0m m3/h Q= m3/h V=处理能力 Q/(滤床接触面积 m2)/S= / (2.5×2)/3600=0.1111m/s 3 空塔流速 <0.2 m/s 臭气停留 时间 4 5 ≥12s S=填料高度 H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻 220Pa/m×填料高度 1.6m=352Pa 设备风阻 <600Pa 2#生物除臭系统 参数 序 招标要求 计算过程 号 太仓市港城组团污水处理厂改扩建工程设备采购、安装 项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力 Q/(滤床接触面积 m2) /S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速 <0.2 m/s 臭气停留 时间 4 5 ≥12s S=填料高度 H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻 220Pa/m×填料高度 1.6m=352Pa 设备风阻 <600Pa

3#生物除臭系统 参数 招标要求 计算过程 序 号 太仓市港城组团污水处理厂改扩建工程设备采购、安装 项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m (两 台) 0m3/h Q= 0m3/h V=处理能力 Q/2(滤床接触面积 m2) /S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速 <0.2 m/s 臭气停留 时间 4 5 ≥12s S=填料高度 H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻 220Pa/m×填料高度 1.7m=374Pa 设备风阻 <600Pa 4#生物除臭系统 参数 序 招标要求 计算过程 号 太仓市港城组团污水处理厂改扩建工程设备采购、安装 项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m (两 台) 18000m3/h Q=18000m3/h V=处理能力 Q/2(滤床接触面积 m2) /S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速 <0.2 m/s 臭气停留 时间 4 5 ≥12s S=填料高度 H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻 220Pa/m×填料高度 1.6m=352Pa 设备风阻 <600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设

同塔多回高压输电铁塔结构设计及应用分析 黄培旭

同塔多回高压输电铁塔结构设计及应用分析黄培旭 发表时间:2019-09-19T09:06:57.007Z 来源:《电力设备》2019年第8期作者:黄培旭[导读] 摘要:同塔多回路在国外应用较普遍,尤其是在经济发达且人口密集的日本和欧洲部分国家应用较多。 (揭阳市明利电力发展有限公司广东揭阳 522000)摘要:同塔多回路在国外应用较普遍,尤其是在经济发达且人口密集的日本和欧洲部分国家应用较多。这些国家由于土地资源紧缺、线路走廊的投资占工程总投资的比重较大,技术又相对比较成熟,因此同塔多回路的应用相对广泛。而我国的铁塔结构安全设计还在不断完善中,因其是多回路高压输电线路的主要承受力的设施,同时,高压电的输出率增加和暴风雪等恶劣天气的来临,对于电塔的承受力的 要求也严格了起来,因此在电塔的结构设计必须满足能承受高压且安全等特点,但我国这方面的经验还不足,因此如何进行合理的电塔结构设计及科学应用是需要探讨的重点。 关键词:同塔多回;高压输电;铁塔;结构设计;应用 1同塔多回路技术经济指标 1.1铁塔钢材成本费用 例如图1,经过比较可以知道,同塔双回路的塔基要比同塔4回路的要重,耐张力也比同塔4回的架空输电的线路重。 图1 分析原因主要是铁塔高度的增加导致风压产生的弯矩、扭矩增加,从而影响铁塔重量的增加。为了满足设计要求,铁塔主材需采用双拼甚至4拼角钢或钢管材料,从而增加了铁塔的重量。并且其加工难度和加工费用高于常规线路,这也增加了一部分费用。 1.2铁塔基础材料成本费用 高压多回路的电力铁塔基础的材料有水泥及钢筋,因为要进行多回路线路的架设,电力铁塔自身的重量和高压电力的承受力要求都必须有所提高,导致所需建设的材料也要增加,一般来说基础工程量比两个双回架空输电线路还要多。 1.3电气材料成本费用 当然,进行电力线路建设时,还要考虑其中的电气材料成本费用。电气材料有通信线和导线等。同塔4回架空输电线路与2个同塔双回架空输电线路相比,其导线、通信线的耗量相同,节约2根地线,但绝缘子增加了一部分。综合考虑,两者的电气费用大致相同。 1.4施工费用 施工费用与工程项目建设息息相关的,直到关乎最后的完工质量,因此在进行电塔的输电线路建设工作时,要合理利用资金,节约投资成本。影响施工费用的主要因素包括施工人员、施工难度以及施工工期。实施同塔4回架空输电线路的架设,对工人技术要求较高,施工难度较大,工期较长,相应施工费用也略高。 1.5征地费用 输电线路的施工过程中,其征地费用也要考虑在内。征地费用主要是指电力线路走廊通道的覆盖面积,在实际应用中,两条同塔双回输电线路和同塔4回输电线路相比较而言,还是同塔4回的征地费用花费较少,大概节省1/2。因此征地费用上的成本是可以节省的。 2铁塔设计研究 2.1铁塔荷载 各塔型的使用条件均满足《塔型规划及技术条件》的要求。铁塔计算的荷载组合按如下原则确定。 2.2正常运行情况 基本风速、无冰、未断线;设计覆冰、相应风速及气温、未断线;最低气温、无冰、无风、未断线(适用于终端和转角塔)。 2.3断线 输电线路断线的情况一般分为以下两种:一种是悬垂型杆塔断线,温度为-5℃,有冰状态,无风影响计算,在同一档内,断任意一导线,地线不断,同样断任意一地线,导线未断。而另一种为耐张型杆塔断线,温度也是-5℃,有冰状态,无风计算下,同档内,断任意一地线,单导线也断任意一根。因此不同的杆塔,断线的情况是不同的。 2.4不均匀冰荷载情况 (1)悬垂型杆塔按未断线、-5℃、有不均匀冰、10m/s风计算,两侧覆冰不同,同时不小于:①导线的纵向不平衡张力取导线最大使用张力的10%;②地线的纵向不平衡张力取地线最大使用张力的20%。 (2)耐张型杆塔按未断线、-5℃、有不均匀冰、10m/s风计算,两侧覆冰不同,同时不小于:①导线的纵向不平衡张力取导线最大使用张力的30%;②地线的纵向不平衡张力取地线最大使用张力的40%。各类杆塔均应考虑所有导、地线同时同向有不均匀覆冰的不平衡张力,使杆塔承受最大的弯矩。

输电线路铁塔的选型设计与结构优化研究

输电线路铁塔的选型设计与结构优化研究 发表时间:2018-06-19T16:51:11.023Z 来源:《基层建设》2018年第12期作者:张猛 [导读] 摘要:随着电网规模的不断扩大,架设高压或超高压输电线路已经成为电力系统发展的必然趋势。 中国能源建设集团陕西省电力设计院有限公司 710054 摘要:随着电网规模的不断扩大,架设高压或超高压输电线路已经成为电力系统发展的必然趋势。输电铁塔是输电系统的重要组成部分之一,其基础情况直接决定着铁塔的施工质量。但是输电线路铁塔基础常常会受到外界因素的影响,所以对于输电线路铁塔基础来说,不管是在选型还是在设计以及施工方面都要按照所在地的实际情况选择合适的方案,保证基础可以承载输电线路的载荷,从而确保电力传输的安全性和稳定性。基于此本文分析了输电线路铁塔的选型设计与结构优化。 关键词:输电线路;铁塔;选型设计;结构优化 1、输电线路铁塔结构设计的现状 在我国高压输电线路的建设中,输电线路铁塔的设计与施工占据重要的地位,其一般由地线支架、导线横担、上、下曲臂或塔头立柱及塔身、塔腿或塔脚及拉线等部件组成。通过铰接组成一个整体。当电压等级、气象条件、导地线荷载、呼称高及塔头电气间隙圆确定之后,影响铁塔杆件内力、选材和铁塔耗量指标的主要因数是如何优化铁塔各部件的合理几何尺寸和杆件结构布置形式。使结构杆件长度最短、面积最小,同时满足强度和稳定要求,达到塔材设计重量最轻的目的。 输电线路铁塔按其形状一般分为:酒杯型、猫头型、上字型、干字型和桶型五种,按用途分有:耐张塔、直线塔、转角塔、换位塔(更换导线相位位置塔)、终端塔和跨越塔等,它们的结构特点是各种塔型均属空间桁架结构,杆件主要由单根等边角钢或组合角钢组成,材料一般使用Q235(A3F)和Q345(16Mn)两种,杆件间连接采用粗制螺栓,靠螺栓受剪力连接,整个塔由角钢、连接钢板和螺栓组成,个别部件如塔脚等由几块钢板焊接成一个组合件,因此热镀锌防腐、运输和施工架设极为方便。对于呼高在60m以下的输电线路铁塔,在的其中一根主材上设置脚钉,以方便施工作业人员登塔作业。 2、输电线路铁塔的选型设计 2.1、单回路铁塔结构的选择 一般在单回路的线路中,主要有三角形排列方式,水平排列方式的塔架形式。三角形排列方式的铁塔塔杆一般比较适合在覆冰厚度较高的中、重冰区线路,且其自身由于两侧垂直作用力平衡弯曲变形较小,但是如果当导线发生不均匀的覆冰的情况时有发生线间闪络事故的风险。而采用水平排列的塔架形式时由于均采用双地线的设置,就能够确保电力线路系统的防雷性能,所以一般在多雷地区架设线路时应多考虑采用水平排列形式的铁塔形式,但是水平排列的塔架形式一般来说占用的线路走廊相对更宽,如果小截面导线采用水平排列形式塔架实际上会导致钢材消耗的浪费。所以一般特高压、多雷地区才建议采用水平排列的形式,而一般输电线路铁塔采用三角形式能够更好地提升工程的经济性。两种形式都有着维修便捷和维护工作投入小的优势。 2.2、双回路铁塔结构的选择 在双回路线路施工中常采用鼓型、倒伞形和蝴蝶型这三种不同的排列形式,而每种排列形式的铁塔有着不同的优势劣势。通常情况下鼓型塔架因为上横担短就能够有足够空间来把避雷线架设的稍低,从而有效节省铁塔的用钢量,但其在施工中由于中横担长的影响增加了施工架线的难度。倒伞形的塔架对于中横担导线有着十分良好的防雷保护效能,并且对于架线施工而言相比鼓型塔架更加便捷,但是由于上导线横担较长并且要确保防雷保护的效能,因此在设计时一般防雷线的支架相对高大,也就增加了铁塔的耗钢量。蝴蝶型塔架在其它条件相同的情况下由于塔高低耗材低,所以经济性良好,一般也在线路跨越大的情况下选用;但是该种塔架形式由于架设导线的施工较为复杂且占用走廊宽,选用也有局限性。 3、输电线路铁塔结构优化 3.1、强化输电线路铁塔基础 根据架空输电线路杆塔基础材质的不同,可以将杆塔基础分为:钢管杆、水泥杆以及直立式铁塔三种不同的类型。一半分为原状土基础和非原状土基础。具体根据现场地质情况、环保要求、综合造价等因素基于使用全寿命周期综合考虑设计。在进行铁塔基础的设计工作时,最重要的就是要确保铁塔的整体安全,这就需要对铁塔基础的整体受力性能进行全面的分析。对于新设立的铁塔基础,其受力计算的基本前提是铁塔基础位置处地基基础的承载力符合设计的要求。若对于淤泥质土和淤泥的铁塔地基基础,要结合地基的实际情况,重新进行铁塔基础的设计工作。要想做好架空输电线路铁塔基础的优化设计工作,要将铁塔实际施工的条件、杆塔形式以及线路沿线的地质条件对铁塔稳定性所造成的影响进行充分的分析研究,对于不符合基础要求的因素,要采取有效的改进措施,进而最大程度的减小不利因素所造成的影响,在最大程度上确保架空输电线路铁塔结构的基础稳定性和位移允许性。 3.2、优化输电线路基础路径和塔型搭配 架空输电线路铁塔的线路走廊宽度主要是由风偏、安全距离以及塔头尺寸这三个因素的影响。其中,铁塔的安全距离较为固定,一般不会发生较大的变化,因此,为了有效地控制架空输电线路走廊的宽度就要对风偏和塔头采取有效地控制措施。依据铁塔实际的施工经验,采取固定挂点的直线式杆塔和固定跳线的耐杆塔,就可以对导线风偏和塔头尺寸进行有效的控制。 3.3、输电线路铁塔结构内容优化 3.3.1、铁塔塔身横断面样式分析 一般来说,高压输电线路所用的直线型铁塔的塔身横断面样式,有长方形(即矩形)和正方形。直线型铁塔的水平荷载(即垂直于线路方向,平行于横担方向)大于其顺线路方向的纵向荷载,故此情况下的铁塔塔身横断面为长方形的样式是正确的。但其抗纵向荷载能力较差,而方塔抗纵向荷载能力强。因一般500kV电压等级的线路为主网电源点输出线路,其安全性、稳定性要求较高,故一般采用正方形横断面的铁塔塔身。 3.3.2、铁塔塔身坡度优化 对有相同斜材形式的铁塔身部而言,能够对其主材和斜材产生直接作用的是塔身坡度的变化。坡度是由塔身高度、塔身瓶口宽度和塔脚根开这三个独立的变量确定的,即为(塔脚根开-塔身瓶口宽度)/塔身高度。当塔头形式和呼高确定后,塔身就是一定值,这时塔身坡度就由塔身瓶口宽度和塔脚根开来确定。塔脚根开与塔身瓶口宽度的差值越大,塔身坡度越大;塔脚根开与瓶口宽度的差值越小,相应的

相关文档