文档库 最新最全的文档下载
当前位置:文档库 › 基于固沙效果的玉米芯液化工艺优化及固化机理

基于固沙效果的玉米芯液化工艺优化及固化机理

基于固沙效果的玉米芯液化工艺优化及固化机理
基于固沙效果的玉米芯液化工艺优化及固化机理

【能源化工类】中原油田天然气液化工艺研究

(能源化工行业)中原油田天然气液化工艺研究

中原油田天然气液化工艺研究 杨志毅张孔明王志宇陈英烈王保庆叶勇刘江旭中原石油勘探局457001e-mail:b56z7h7@https://www.wendangku.net/doc/802918628.html,摘要:本篇参考了国内外有关液化天然气(LNG)方面大量的技术资料,结合中原石油勘探局天然气应用技术开发处LNG工厂建设过程中的实践经验,简要介绍了目前国内外LNG产业的发展状况和LNG在国内发展的必要性以及发展前景。其中LNG发展状况部分,引用大量较为详实的统计数据,说明了我国目前LNG发展水平同国外水平间的差距和不足,且介绍了我国天然气资源状况,包括已探明的储量。工艺介绍部分,简要介绍了目前国外已用于工业生产的比较成熟的工艺方案,同时以大量篇幅介绍了中原石油勘探局天然气应用技术开发处,针对自身气源特点,设计出的三套液化工艺的技术性能及经济比较,旨在为大家今后从事LNG产业开发、利用提供壹些有益的帮助。同时本篇仍介绍了中原石油勘探局天然气应用技术开发处正在建设中的LNG工厂的工艺路线及部分参数。引言能源是国民经济的主要支柱,能源的可持续发展也是国民经济可持续发展的必不可少的条件。目前,我国能源结构不理想,对环境污染较大的煤碳在壹次能源结构中占75%,石油和天然气只占20%和2%,尤其是做为清洁燃料的天然气,和在世界能源结构中占21.3%的比例相比,相差10倍仍要多。所以发展清洁燃料,加快我国天然气产业的发展,是充分利用现有资源,改善能源结构,减少环境污染的良好途径。从我国天然气资源的分布情况来见,多分布于中西部地区,而东南沿海发达地区是能源消耗最大的地区,所以要合理利用资源,解决利用同运输间的矛盾,发展LNG产业就成了非常行之有效的途径。液化天然气(LNG)的性质及用途:液化天然气(liquefiednaturalgas)简称LNG,是以甲烷为主要组分的低温、液态混合物,其体积仅为气态时的1/625,具有便于经济可靠运输,储存效率高,生产使用安全,有利于环境保护等特点。LNG用途广泛,不仅自身能够做为能源利用,同时可作为LNG汽车及LCNG汽车的燃料,而且它所携带的低温冷量,能够实施多项综合利用,如冷藏、冷冻、空调、低温研磨等。液化天然气(LNG)产业国内外发展情况:1.国外LNG发展情况:液化天然气是天然气资源应用的壹种重要形式,目前LNG占国际天然气贸易量的25%,1997年已达7580万吨,(折合956亿立方米天然气)。LNG主要产地分布在印度尼西亚、马来西亚、澳大利亚、阿尔及利亚、文莱等地,消费国主要是日本、法国、西班牙、美国、韩国和我国台湾省等。LNG自六十年代开始应用以来,年产量平均以20%的速度持续增加,进入90年代后,由于供需基本平衡,海湾战争等因素影响,LNG每年以6~8%的速度递增,这个速度仍高于同期其它能源的增长速度。2.国内LNG概况在我国,液化天然气在天然气工业中的比重几乎为零,这无法满足我国经济发展中对液化天然气的需求,也和世界上液化天然气的高速度、大规模发展的形势相悖,但值得称道的是,我国的科研人员和从事天然气的工程技术人员为我国液化天然气工业做了许多探索性的工作。目前,有三套全部国产化的小型液化天然气生产装置分别在四川绵阳、吉林油田和长庆油田建成,三套装置采用不同的生产工艺,为我国LNG事业发展起到了很好的示范作用。3.我国天然气资源优势我国年产天然气201多亿Nm3,天然气资源量超过38万亿M3,探明储量只有4.3%,而世界平均为37%,这说明我国天然气工业较落后,同时说明了我们大力发展天然气工业是有资源保证的,是有潜力的。目前几种成熟的天然气液化工艺介绍天然气液化过程根据原理能够分这三种。第壹种是无制冷剂的液化工艺,天然气经过压缩,向外界释放热量,再经膨胀(或节流)使天然气压力和温度下降,使天然气部分液化;第二种是只有壹种制冷剂的液化工艺,这包括氮气致冷循环和混合制冷剂循环,这种方法是通过制冷剂的压缩、冷却、节流过程获得低温,通过换热使天然气液化的工艺;第三种是多种制冷剂的液化工艺,这种工艺选用蒸发温度成梯度的壹组制冷剂如丙烷、乙烷(或乙烯)、甲烷,通过多个制冷系统分别和天然气换热,使天然气温度逐渐降低达到液化的目的,这种方法通常称为阶式混和制冷

天然气液化工艺部分技术方案(MRC)..

天然气液化工艺部分技术方案(MRC) 一、 天然气液化属流程工业,具有深冷、高压,易燃、易爆等特征,在生产中具有极高的危险性,既有比较高的温度(280℃)和压力(50Bar),也有低温(-170℃),这些单元之间紧密相连,中间缓冲地带比较小,对参数的变化要求严格,这对LNG液化装置连续生产自动化提出了很高的要求。 LNG装置的制冷剂配比与产量和收率直接相关,因此LNG生产过程中控制品质占有非常突出的位置。整个生产过程需要很多自动化硬件和配套的软件来实现。以保证生产装置的安全、稳定、高效运行,不仅是提高效益的关键,而且对生产人员、生产设备,以及整个厂区安全都十分重要。 二、工艺过程简述 LNG工艺流程图参见P&ID图 1、原料气压缩单元 来自界区外的天然气经过过滤器除去部分碳氢化合物、水和其它的液体及颗粒。35MPa(G)的原料气进入脱CO2单元。 3、脱水脱酸气单元 原料气进入2台切换的干燥器,在这里原料气所含有的所有水分和CO2被脱除,干燥器出口原料气中水的露点在操作压力下低于-100℃。经过分子筛干燥单元,在这里原料气再经过两个过滤器中的一个进行脱粉尘过滤。 4、液化单元 进入冷箱的天然气在中被冷却至-35℃,在这个温度点冷箱分离罐中,脱除大部分重烃;天然气继续冷却至-70℃,在这个温度点,天然气在冷箱分离器中,脱除全部重烃,出口的天然气中C5+重烃含量降至70ppm以下;甲烷气继续冷却至-155℃,节流后进入冷箱分离罐中分离,液体部分即为液化天然气被送至液化天然气储罐中储存,气相部分返回冷箱复温后用作分子筛干燥单元的再生气。 5、储运单元 来自液化单元的液化天然气进入液化天然气储罐中储存,产量为420m3,储罐容量为4500 m3,储存能力为10天。 6、制冷剂压缩单元 按一定比例配比的制冷剂,经过制冷压缩机增压至1.3MPa(G)后经中间冷

麸曲制备工艺的优化研究

麸曲制备工艺的优化研究 作者:高林峰, 汤庆莉, 吴天祥, GAO Linfeng, TANG Qingli, WU Tianxiang 作者单位:高林峰,汤庆莉,GAO Linfeng,TANG Qingli(贵州大学,化学与化工学院,贵州,贵阳,550003), 吴天祥,WU Tianxiang(贵州大学,生命科学学院,贵州,贵阳,550025) 刊名: 中国酿造 英文刊名:CHINA BREWING 年,卷(期):2010(11) 被引用次数:2次 参考文献(8条) 1.马荣山;于影麸曲酱香型白酒的酿制研究[期刊论文]-中国酿造 2010(01) 2.张娇英;孙学嘉;彭仁清白曲霉一级种培养基的筛选[期刊论文]-佳木斯大学学报(自然科学版) 2005(10) 3.王福荣生物工程分析与检测 2006 4.王福荣酿酒分析与检测 2005 5.房蓓蓓;殷钟意;郭育铭柑桔皮渣综合利用技术研究进展[期刊论文]-重庆工商大学学报(自然科学版) 2008(04) 6.殷钟意;王颖;郑旭煦柑桔皮渣发酵高蛋白饲料菌种筛选与工艺研究 2008(12) 7.张鹏;刘学文金橘利口酒的开发研究[期刊论文]-酿酒科技 2010(02) 8.李艳敏;赵树心不同酒类澄清剂的澄清机理与应用[期刊论文]-中国酿造 2008(01) 本文读者也读过(7条) 1.张占河.孙建平.刘利霞应用酒糟降低麸曲生产成本的报告[期刊论文]-酿酒2007,34(2) 2.边佳娜.高永强.BIAN Jia-na.GAO Yong-qiang黄酒麸曲种曲的制备与活力的测定[期刊论文]-江苏调味副食品2008,25(4) 3.张国春麸曲制备深色饴糖工艺简介[期刊论文]-中国酿造2000(1) 4.葛崇凯.GE Cong-kai麸曲芝麻香型梅兰春酒典型风格研究[期刊论文]-酿酒2008,35(5) 5.向文良.张文学.罗红平利用白曲霉基因工程菌TR12制备优质麸曲的工艺条件研究[期刊论文]-中国酿造2003(6) 6.吴天祥.杨海龙.石贵阳.章克昌酒精浓醪发酵联产乳酸化饲料新工艺[期刊论文]-无锡轻工大学学报2003,22(4) 7.陈岩.吴天祥.CHEN Yan.WU Tianxiang复合诱变红曲霉选育高产壳聚糖菌株及培养基优化[期刊论文]-中国酿造2009(3) 引证文献(2条) 1.胡沂淮.严启梅.戴源.杨建军.姜勇.贾亚伟.沈秀秀酯化红曲YHM-6培养条件的优化[期刊论文]-酿酒科技 2013(10) 2.许士池.吴天祥.李然洪.孙放鸣.彭正东混料方法在酱香麸曲制曲中的应用研究[期刊论文]-酿酒科技 2013(4)本文链接:https://www.wendangku.net/doc/802918628.html,/Periodical_zgnz201011018.aspx

LNG液化工艺的三种流程

LNG液化工艺的三种流程 LNG是通过将常压下气态的天然气冷却至-162℃,使之凝结成液体。天然气液化后可以大大节约储运空间,而且具有热值大、性能高、有利于城市负荷的平衡调节、有利于环境保护,减少城市污染等优点。 由于进口LNG有助于能源消费国实现能源供应多元化、保障能源安全,而出口LNG有助于天然气生产国有效开发天然气资源、增加外汇收入、促进国民经济发展,因而LNG贸易正成为全球能源市场的新热点。为保证能源供应多元化和改善能源消费结构,一些能源消费大国越来越重视LNG的引进,日本、韩国、美国、欧洲都在大规模兴建LNG接收站。我国对LNG产业的发展也越来越重视,LNG项目在我国天然气供应和使用中的作用尤为突出,其地位日益提升。 1 天然气液化流程 液化是LNG生产的核心,目前成熟的天然气液化流程主要有:级联式液化流程、混合制冷剂液化流程、带膨胀机的液化流程。 1.1 级联式液化流程 级联式(又称复迭式、阶式或串级制冷)天然气液化流程,利用冷剂常压下沸点不同,逐级降低制冷温度达到天然气液化的目的。常用的冷剂为水、丙烷、乙烯、甲烷。该液化流程由三级独立的制冷循环组成,制冷剂分别为丙烷、乙烯、甲烷。每个制冷循环中均含有三个换热器。第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量;通过9个换热器的冷却,天然气的温度逐步降低,直至液化如下图所示。 1.2 混合制冷剂液化流程 混合制冷剂液化流程(Mixed-Refrigerant Cycle,MRC)是以C1~C5的碳氢物及N2等五种以上的多组分混合制冷剂为工质,进行逐级的冷凝、蒸发、膨胀,得到不同温度水平的制冷量,逐步冷却和液化天然气。混合制冷剂液化流程分为许多不同型式的制冷循环。

液化天然气(LNG)气化站工艺设计介绍[1]1

液化天然气(LNG)气化站工艺设计介绍 1. 前言 与CNG相比,LNG是最佳的启动、培育和抢占市场的先期资源。LNG 槽车运输方便,成本低廉;不受上游设施建设进度的制约;LNG供应系统安装方便、施工:期短,并能随着供气规模的逐步扩大而扩大,先期投资也较低。最后,当管道天然气到来时,LNG站可作为调峰和备用气源继续使用。 2.气化站工艺介绍 由LNG槽车或集装箱车运送来的液化天然气,在卸车台通过槽车自带的自增压系统(对于槽车运输方式)或通过卸车台的增压器(对于集装箱年运输方式)增压后送入LNG储罐储存,储罐内的LNG通过储罐区的自增压器增压到0.5~0.6Mpa后,进入空温式气化器。在空温式气化器中,LNG经过与空气换热发生相变,出口天然气温度高于环境温度10℃以上,再通过缓冲罐缓冲之后进入掺混装置,与压缩空气进行等压掺混,掺混后的天然气压力在0.4MPa左右,分为两路,一路调压、计量后送入市区老管网,以中一低压两级管网供气,出站压力为0.1MPa:另一路计量后直接以0.4MPa压力送入新建城市外环,以中压单级供气。进入管网前的天然气进行加臭,加臭剂采用四氢噻吩。冬季空浴式气化器出口气体温度达不到5℃时,使用水浴式NG加热器加热,使其出口天然气温度达到5℃~1O℃。 3. 主要设备选型 3. 1 LNG储罐 3.1.1储罐选型 LNG储罐按围护结构的隔热方式分类,大致有以下3种:

a)真中粉末隔热 隔热方式为夹层抽真空,填充粉末(珠光砂),常见于小型LNG储罐。真空粉末绝热储罐由于其生产技术与液氧、液氮等储罐基本一样,因而目前国内生产厂家的制造技术也很成熟,由于其运行维护相对方便、灵活,目前使用较多。国内LNG气化站常用的大多为50m3和100m3圆筒型双金属真空粉末LNG储罐。目前最大可做到200m3,但由于体积较大,运输比较困难,一般较少采用。真空粉末隔热储罐也有制成球形的,但球型罐使用范围通常为为200~1500m3,且球形储罐现场安装难度大。 b)正压堆积隔热 采用绝热材料,夹层通氮气,绝热层通常较厚,广泛应用于大中型LNG储罐和储槽。通常为立式LNG子母式储罐。 c)高真空多层隔热。 采用高真空多层缠绕绝热,多用于槽车。 国内LNG气化站常用的圆筒形双金属真空粉末LNG储罐。考虑到立式罐节省占地,且立式罐LNG静压头大,对自增压器工作有利,因此采用立式双金属真空粉末LNG储罐。 3.1.2储罐台数 储罐台数的选择应综合考虑气源点的个数、气源检修时间、运输周期、用户用气波动情况等困素,本工程LNG来源有可能采用河南中原油田或新疆广汇两个气源,运输周期最远的可达5天,本工程储存天数定为计算月平均日的5天。经计算,一期选用100m3立式储罐4台,二期增加4台。其主要工艺参数如下: 工作压力:0.6MPa, 设计压力:0.77MPa, 工作温度:-162℃,

石油大学 液化天然气技术 第二阶段在线作业

第二阶段在线作业 单选题 (共20道题) 收起 1.( 2.5分)以下正确描述单容罐是: ? A、单容罐就是指单壁罐 ? B、单容罐就是指单容积罐 ? C、单壁罐一定是单容罐 ? D、单容罐的外部不需要围堰 我的答案:C 此题得分:2.5分 2.(2.5分)以下关于全容罐的描述不正确的一项是: ? A、内罐与外罐都能单独容纳所存储的低温液体产品 ? B、在正常工作条件下内罐储存低温液体产品,外罐支撑罐顶 ? C、外罐能够可控的排放因液体泄漏而产生的蒸发气 ? D、全容罐的外部必须设置围堰 我的答案:D 此题得分:2.5分 3.(2.5分)真空粉末绝热储罐内罐体的封头一般采用哪种形式? ? A、椭圆形 ? B、碟形 ? C、球形

? D、以上都可以 我的答案:A 此题得分:2.5分 4.(2.5分)真空粉末绝热储罐的粉末材料通常指: ? A、泡沫玻璃砖 ? B、玻璃纤维丝 ? C、膨胀珍珠岩 ? D、气凝胶 我的答案:C 此题得分:2.5分 5.(2.5分)立式真空粉末绝热LNG储罐通常使用液位计形式是: ? A、差压式 ? B、电容式 ? C、雷达式 ? D、浮子式 我的答案:A 此题得分:2.5分 6.(2.5分)下面关于LNG储罐进液系统的设计哪一项正确? ? A、一般采取上进液方式 ? B、需同时具备上进液和下进液功能 ? C、一般采取下进液方式 ? D、以上都不对

我的答案:B 此题得分:2.5分 7.(2.5分) LNG子母罐内外罐之间的夹层应充哪种气体维持正压? ? A、天然气 ? B、甲烷气 ? C、氮气 ? D、二氧化碳 我的答案:C 此题得分:2.5分 8.(2.5分)当常压LNG储罐容积超过10000m3时,顶部应采用哪种结构? ? A、双拱顶 ? B、吊顶 ? C、浮顶 ? D、以上都可以 我的答案:B 此题得分:2.5分 9.(2.5分)16×104m3全容型LNG储罐的内罐使用的材料为: ? A、Ni9钢 ? B、奥氏体不锈钢 ? C、36Ni钢 ? D、16MnR 我的答案:A 此题得分:2.5分

次氯酸钙生产工艺优化

次氯酸钙生产工艺优化 1消石灰品质 作为制备灰浆的原料,消石灰的品质即石灰石中Ca(OH)2的含量对漂粉精有效氯含量有较大影响。原料氢氧化钙的纯度是漂粉精的有效氯含量的重要影响因素,一般来讲,二者成正比关系。氢氧化钙带 入的杂质主要有也会与氯气反应生成Mg(C1O)2,但Mg(C1O)2不稳定,在加热干燥的过程中极易分解,从而造成有效氯的损失;其他杂质一方面阻碍Ca(C10)2的晶体生长,另一方面在漂粉精中占据一定的含量,这些都使漂粉精的有效氯含量下降。所以在灰浆制备前,先测量消石灰中Ca(OH)2的含量,从而计算需要放入混灰罐中消石灰的质量。 通过实验得到G=3.5008g、V总=50mL,V=12.75m1,M=0.025mo1/L。Ca(OH):含量按下式计算: 按照上述数据计算,Ca(OH):的含量为98.5%。符合实验要求。

1.2氯化反应 在氯化反应过程中,石灰浆中会析出小六角棱形晶体,该晶体会持续成长。随着搅拌的进行。大晶体会被破碎,开始出现针型晶体。在针型晶体出现时加入母液,使反应中的氢氧化钙含量保持为300g/L。最终会生成破板状大针形结晶,待所有的晶体均为大针形结晶时即为氯化反应终点,此时停止通入氯气。依次套用母液进行实验,套用次数不得少于6次。对6批制得的次氯酸钙产品进行有效氯和水分分析,结果如表1和表2所示。由表1和表2中可以得到,在正常的生产条件下,使用钙法工艺分析纯原料,在实验室产品有效氯可达到63.5%,含水量可达到2.5%左右。批量化生产中产中,产品有效氯可达到58.0%,含水量可达到2.4%左右。因为批量生产过程中原料的品质下降,杂质较多,在反应过程中,杂质会引起较多的副反应的发生从而促进己生成的次氯酸钙产品的分解,造成产品的有效率含量比分析纯原料得到的产品的有效氯含量低。而且在批量生产过程中,温度、压力等条件不易及时进行调控,这也是造成产品有效率含量降低的主要原因。 表1钙法工艺生产产品的有效氯含量

天然气液化工艺

天然气液化工艺 工业上,常使用机械制冷使天然气获得液化所必须的低温。典型的液化制冷工艺大致可以分为三种:阶式(Cascade)制冷、混合冷剂制冷、带预冷的混合冷剂制冷。 一、阶式制冷液化工艺 阶式制冷液化工艺也称级联式液化工艺。这是利用常压沸点不同的冷剂逐级降低制冷温度实现天然气液化的。阶式制冷常用的冷剂是丙烷、乙烯和甲烷。图3-5[1]表示了阶式制冷工艺原理。第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量。制冷剂丙烷经压缩机增压,在冷凝器内经水冷变成饱和液体,节流后部分冷剂在蒸发器内蒸发(温度约-40℃),把冷量传给经脱酸、脱水后的天然气,部分冷剂在乙烯冷凝器内蒸发,使增压后的乙烯过热蒸气冷凝为液体或过冷液体,两股丙烷释放冷量后汇合进丙烷压缩机,完成丙烷的一次制冷循环。冷剂乙烯以与丙烷相同的方式工作,压缩机出口的乙烯过热蒸气由丙烷蒸发获取冷量而变为饱和或过冷液体,节流膨胀后在乙烯蒸发器内蒸发(温度约-100℃),使天然气进一步降温。最后一级的冷剂甲烷也以相同方式工作,使天然气温度降至接近-160℃;经节流进一步降温后进入分离器,分离出凝液和残余气。在如此低的温度下,凝液的主要成分为甲烷,成为液化天然气(LNG)。 阶式制冷是20世纪六七十年代用于生产液化天然气的主要工艺方法。若仅用丙烷和乙烯(乙烷)为冷剂构成阶式制冷系统,天然气温度可低达近-100℃,也足以使大量乙烷及重于乙烷的组分凝析成为天然气凝液。 阶式制冷循环的特点是蒸发温度较高的冷剂除将冷量传给工艺气外,还使冷量传给蒸发温度较低的冷剂,使其液化并过冷。分级制冷可减小压缩功耗和冷凝器负荷,在不同的温度等级下为天然气提供冷量,因而阶式制冷的能耗低、气体液化率高(可达90%),但所需设备多、投资多、制冷剂用量多、流程复杂。

氧化亚铜制备及其工艺优化研究

龙源期刊网 https://www.wendangku.net/doc/802918628.html, 氧化亚铜制备及其工艺优化研究 作者:黄钰杰 来源:《中国化工贸易·上旬刊》2018年第01期 摘要:现阶段,氧化亚铜在多个领域中得到广泛的应用,其中包括涂料、玻璃、陶瓷、 农业等方面,具有较强的应用地位。但是,利用现有的技术进行制备存在诸多问题,难以符合当前新型工业标准,因此对此项技术进行优化成为大势所趋。本文将采用电解法以及亚硫酸钠还原硫酸铜的形式,对制备的工艺进行优化研究。 关键词:氧化亚铜;制备方式;工艺优化 由于现阶段使用的氧化亚铜制备技术存在较大的局限性,使得所制备的物质与新型工业标准不相符合,存在适用范围较窄、产业化前景模糊等问题。对于此种状况,实施工艺优化,使氧化亚铜的含量提升、杂质含量降低显得十分必要。本文将采用电解法对氧化亚铜进行制备,以此来促进工业化生产效率的提升。 1 实验内容 1.1实验设备和原料 该实验过程中,主要应用的设备有:J-2电动搅拌器、JQ20001型电子天平、发射电子显 微镜、恒温电阻炉等。主要应用原料为:碳酸钠、硫酸铜、盐酸、氢氧化钠等。 1.2实验方案 1.2.1电解法制备氧化亚铜 利用此种方式进行氧化亚铜的制备时,通常将铜板当做阳极,将铅板当做阴极。在实验过程中所应用的电解液,主要为化学试剂与蒸馏水相融合而成,利用恒温水浴槽对实验温度进行控制,电解的时间通常为3h,将电解过后的样品实施分离,然后利用蒸馏水对其进行过滤和 洗涤,反复多次之后,利用浓度为2%的葡萄糖液体再次清洗,最终将其放置在干燥器当中,6h后将得到表面呈现紫红色的氧化亚铜粉末。在对实验所得的粉末中,Cu含量、氧化亚铜含量等进行检测后,对该工艺进行具体的优化。首先,在样品洗涤方面,将所得粉末利用无水乙醇进行反复的清洗,然后利用浓度为2%葡萄糖液体再次洗涤。在样品干燥方面,经过多次清洗的粉末实施分离之后,将其放置在温度为80℃的干燥箱中晾干。在样品保存方面,将样品 放置与干燥器中进行密封储存。在样品检测方面,对实验获得的氧化亚铜粉末采用电镜扫描的形式进行分析,并且也可以利用X射线衍射的方式进行研究。 1.2.2亚硫酸钠还原硫酸铜

合成工艺的优化

合成工艺的优化 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 转化率是消耗的原料的摩尔数除于原料的初始摩尔数。 选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。 收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。 转化率×选择性= 收率 反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,少量原料依然存在于反应体系中。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。 化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。 只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。 提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。 而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问

题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高

液化天然气贮罐气化站工艺流程和使用说明

浙江长荣能源有限公司 液化天然气(LNG)贮罐气化站供气系统流程说明 一、工艺流程图: 二、槽罐车卸液操作: 1、罐车停稳与连接:液化天然气的专用槽罐车开到装卸区停稳、熄火、拉手刹,用斜木垫固定车轮,防止滑移;先把装卸台上的静电接地线与LN G槽罐车可靠夹接,再用三根软管分别把卸液箱卸液口与槽罐车装卸口可靠连接;并打开卸液箱接口处排气阀,打开槽车顶部充装阀、回气阀,使气体进入软管,再从排气阀放气置换软管内空气,关闭排气阀,检查软管接头处是否密封至不漏气。 2、槽罐与贮罐压力平衡:查看槽罐车内压力和贮罐内的压力,如贮罐内的压力大于槽罐车内压力时,这时打开贮罐顶部充装管道至槽罐车增压器进液管之间的阀门和增压器进液口阀门,使贮罐内的气相与槽罐车内的液相相通,以降低贮罐内的气相压力。当贮罐内与槽罐内的压力相同时,关闭贮罐顶部充装管至槽罐车增压器进液管之间的阀门。 3、槽罐的增压:打开槽罐车与槽罐车增压器进液管之间的阀门,以及槽罐车增压器回气至槽罐车气相管之间的阀门,通过槽罐车增压器增压以提高槽罐车内的气相压力。 4、槽罐卸液:当槽罐罐内压力大于贮罐中压力0.2Mpa左右,可逐渐打开槽罐车出液阀至全开状态。这样槽罐车内的液化天然气通过卸液箱的软管与贮罐上的装卸口连接卸入液化天然气(LNG)贮罐。

三、贮罐的使用操作: 1、贮罐的压力调整至恒压:利用贮罐自带的增压阀、节气回路、增压器把贮罐的压力调整在一定的范围内(一般控制在0.2~0.35MPa),若贮罐内的压力不够,可通过调整增压阀升高设定压力,从而获得足够的供液压力确保正常供气。正常工作时,贮罐增压器的进液阀和出气阀需要打开,以保证贮罐增压器正常工作,确保贮罐的工作压力。 2、供气系统的供气: 、管道和相关设备在首次使用液化天然气时,应使用氮气置换管道和相关设备内的空气,然后用天然气置换管道和相关设备内的氮气,以确保系统中天然气的含量后才能使用液化天然气。正常用气时可根据车间用气量大小确定是开二台空温式气化器还是开一台空温式气化器。打开空温式气化器前后相关阀门以及至车间用气点的阀门,缓慢打开贮罐出液使用阀,液化天然气(LNG)通过空温式气化器吸收空气中的热量,使液态介质气化成气体,同时对气体进行加热升温,使气体接近常温。气化后的天然气再经一级调压阀组调压,把气相压力调至一较低值(一般调至0.09Mpa),然后通过工艺管道进入用气设备前的二级调压阀组,经过二级调压后进入用气设备。 ②、贮罐操作主要是开关出液口阀门及气相使用阀门,一般出液口、气相使用阀门均为双阀,靠近贮罐的一只阀门是常开阀门,另一只是工艺操作阀,这样,一旦工艺操作阀因经常开关而损坏,把近罐的根部阀关闭就可以修理。 ③、贮罐节气操作:在正常用气时,如发现贮罐的压力达到0.6Mpa时,这时可打开贮罐气相使用阀、同时关闭贮罐出液使用阀,让气相代替液相进入空温气化器供气使用;当贮罐压力值下降至正常值0.2Mpa时,再开贮罐出液使用阀,同时关闭气相使用阀;如反复出现贮罐压力达到0.6Mpa时,应报设备产权单位修理或调整设定压力。在使用贮罐气相使用阀时,必须确保贮罐压力不得低于0.15 MPa。以保证生产的正常用气供应。 ④、当生产停产后恢复生产时,应首先确定供气系统和管道内的介质是天然气还是空气。如果介质是空气,则先要用氮气置换供气系统和管道内的空气,再用天然气置换供气系统和管道内的氮气,以确保系统中天然气的含量后才能恢复生产。如果介质是天然气,则可先开贮罐出液口阀旁的贮罐气相使用阀,让贮罐内的气相代替液相进入空温气化器和相关的工艺管道至车间用气设备。等相关设备和管道预冷后再开贮罐出液阀,同时关闭气相使用阀。 四、空温气化器和调压系统的操作: 1、关闭空温气化器出口阀,缓慢打开空温气化器的进液阀,待空温气化器内压力与贮罐内压力相等时,缓慢打开空温气化器出口阀。

中国石油大学《液化天然气技术》在线作业

第一阶段在线作业 单选题(共20道题) 收起 1.( 2.5分)LNG表示的意思是: A、liquid natural gas B、liquefied natural gas C、natural gas liquid D、gas to liquid 我的答案:B 此题得分:2.5分 2.(2.5分)液化天然气的主要组分是: A、乙烷 B、甲烷 C、丙烷 D、丁烷 我的答案:B 此题得分:2.5分 3.(2.5分)甲烷在0.1MPa压力下的沸点约为: A、-83℃ B、-162℃ C、-196℃ D、-100℃ 我的答案:B 此题得分:2.5分 4.(2.5分)LNG与标准状态的相同质量天然气的体积比约为: A、1:120 B、1:300 C、1:620 D、1:1 我的答案:C 此题得分:2.5分 5.(2.5分)关于液化天然气的描述正确的一项: A、一种液态状况下的无色流体 B、主要由丙烷组成 C、无色、无味、无毒但具有腐蚀性液体 D、需要较高储存压力 我的答案:A 此题得分:2.5分 6.(2.5分)天然气远洋贸易的主要方式是: A、管道天然气 B、液化天然气 C、压缩天然气 D、气体水合物 我的答案:B 此题得分:2.5分 7.(2.5分)LNG的主要特征是: A、高压 B、低温 C、可燃 D、气态

我的答案:B 此题得分:2.5分 8.(2.5分)天然气液化前预处理的目的不包括: A、脱除甲烷 B、脱除腐蚀介质 C、脱除低温冻堵组分 D、脱除重烃 我的答案:A 此题得分:2.5分 9.(2.5分)天然气液化前深度脱水普遍使用的方法是: A、冷却 B、吸收 C、分子筛吸附 D、加热 我的答案:C 此题得分:2.5分 10.(2.5分)甲烷的临界温度约为: A、-100℃ B、-83℃ C、-162℃ D、-196℃ 我的答案:B 此题得分:2.5分 11.(2.5分)蒸汽压缩式制冷中,制冷介质的沸点越低则所能达到的制冷温度越: A、低 B、高 C、不变 我的答案:A 此题得分:2.5分 12.(2.5分)以下关于节流过程的描述正确的是: A、等压过程 B、等温膨胀过程 C、等焓膨胀过程 D、等熵膨胀过程 我的答案:C 此题得分:2.5分 13.(2.5分)以下关于等熵膨胀过程的描述错误的是: A、膨胀后气体的温度总是降低的 B、气体的等熵膨胀效应总是大于节流膨胀效应 C、等熵膨胀的温降比节流膨胀要大 D、等熵膨胀过程总是产生冷效应 我的答案:C 此题得分:2.5分 14.(2.5分)以下关于阶式天然气液化工艺的描述不正确的是: A、制冷剂为纯物质,无配比问题 B、各级所用的制冷剂一般为丙烷、乙烯和甲烷 C、阶式液化工艺从根本上解决了大温差传热问题 D、阶式液化工艺亦称级联式、复叠式 我的答案:C 此题得分:2.5分 15.(2.5分)混合制冷剂在汽化过程中,温度变化范围为: A、从泡点逐渐上升到露点

液化天然气的流程和工艺

液化天然气的流程与工艺研究 随着“西气东输”管线的建成,沿线许多城镇将要实现天然气化,为了解决天然气的储气、调峰及偏远小城镇的供气问题, 液化天然气(英文缩写为LNG) 技术将有十分广阔的应用前景[1 ,2 ] 。天然气液化技术涉及传热、传质、相变及超低温冷冻等复杂的工艺及设备。在发达国家LNG 装置的设计与制造已经是一项成熟的技术。 一、天然气在进入长输管线之前,已经进行了分离、脱凝析油、脱硫、脱水等 净化处理。但长输管线中的天然气仍含有二氧化碳、水及重质气态烃和汞,这些化合物在天然气液化之前都要被分离出来,以免在冷却过程中冷凝及产生腐蚀。因此我们需要进行预处理。天然气的预处理包括脱酸和脱水。一般的脱除酸气和脱水方法有吸收法、吸附法、转化法等。 1. 1 吸收法 该种方法又分为化学溶剂吸收和物理溶剂吸收两类。化学溶剂吸收是溶剂在水中同酸性气体作用,生成“络合物”,待温度升高,压力降低,络合物分解,释放出酸性气体组分,溶剂循环回用。常用的溶剂有一乙醇胺(MEA) 和二乙醇胺(DEA) ,以上方法又叫胺法.物理吸收法的实质是溶剂对酸性气体的选择性吸收而不是起反应。一般来说有机溶剂的吸收能力与被吸收气体的分压成正比,较新的方法是由醇胺和环丁砜加水组成的环丁砜法或苏菲诺法。 1. 2 吸附法 吸附法实质上是固体干燥剂脱水。一般采用两个干燥塔切换吸附与再生,处理量

大的可用3 个或4 个塔。固体干燥剂种类很多,例如氯化钙、硅胶、活性炭、分子筛等。其中分子筛法是高效脱水方法,特别是抗酸性分子筛问世后,即使高酸性天然气也可以在不脱酸性气体情况下脱水。所以分子筛是优良的脱水剂。从长输管道来的天然气进行脱除CO2 和水后,进入液化工序。 二、天然气液化系统主要包括天然气的预处理、液化、储存、运输、利用这5 个子系统。一般生产工艺过程是,将含甲烷90 %以上的天然气,经过“三脱”(即脱水、脱烃、脱酸性气体等) 净化处理后,采取先进的膨胀制冷工艺或外部冷源,使甲烷变为- 162 ℃的低温液体。目前天然气液化装置工艺路线主要有3 种类型:阶式制冷工艺、混合制冷工艺和膨胀制冷工艺。 1. 阶式制冷工艺 阶式制冷工艺是一种常规制冷工艺(图1) 。对于天然气液化过程,一般是由丙烷、乙烯和甲烷为制冷剂的3 个制冷循环阶组成,逐级提供天然气液化所需的冷量,制冷温度梯度分别为- 30 ℃、- 90℃及- 150 ℃左右。净化后的原料天然气在3 个制冷循环的冷却器中逐级冷却、冷凝、液化并过冷,经节流降压后获得低温常压液态天然气产品,送至储罐储存。 阶式制冷工艺制冷系统与天然气液化系统相互独立,制冷剂为单一组分,各系统相互影响少,操作稳定,较适合于高压气源(利用气源压力能) 。但由于该工艺制冷机组多,流程长,对制冷剂纯度要求严格,且不适用于含氮量较多的天然气。因此这种液化工艺在天然气液化装置上已较少应用。 2. 混合制冷工艺 混合制冷工艺是六十年代末期由阶式制冷工艺演变而来的,多采用烃类混合物(N2 、C1 、C2 、C3 、C4 、C5) 作为制冷剂,代替阶式制冷工艺中的多个纯组分。其制冷剂组成根据原料气的组成和压力而定,利用多组分混合物中重组分先冷凝、轻组分后冷凝的特性,将其依次冷凝、分离、节流、蒸发得到不同温度级的冷量。又据混合制冷剂是否与原料天然气相

2020年常用的天然气液化流程

常用的天然气液化流程 常用的天然气液化流程 不同液化工艺流程,其制冷方式各不相同。在天然气液化过程中,常用天然气液化流程主要包括级联式:液化流程、混合制冷剂液化流程与带膨胀机的液化流程,它们的制冷方式如下。 一、级联式液化流程 由若干个在不同温度下操作的制冷循环重叠组成,其中的高、中、低温部分分别使用高、中、低温制冷剂。高温部分中制冷剂的蒸发用来使低温部分中的制冷剂冷凝,低温部分制冷剂再蒸发输出冷量,用几个蒸发冷凝器将这几部分联系起来。蒸发冷凝器既是高温部分的蒸发器又是低温部分的冷凝器。对于天然气液化,多采用由丙烷、乙烯和甲烷为制冷剂的三级复叠式制冷循环。 级联式液化流程的优点主要包括: 1、逐级制冷循环所需的能耗最小,也是目前天然气液化循环中效率最高的流程。 2、与混合制冷剂循环相比,换热面积较小; 3、制冷剂为纯物质,无配比问题; 4、各制冷循环系统与天然气液化系统彼此独立,相互影响少、操作稳定、适应性强、技术成熟。 级联式液化流程的缺点: 1、流程复杂、所需压缩机组或设备多,至少要有3台压缩机,初期投资大;

2、附属设备多,必须有生产和储存各种制冷剂的设备,各制冷循环系统不允许相互渗漏,管线及控制系统复杂,管理维修不方便; 3、对制冷剂的纯度要求严格。 根据级联式液化流程的以上特点,该流程无法满足小型撬装式LNG 装置对设备布局要求简单紧凑的要求,因此只适用于大型装置,常用于2X104~5X104m3/d的装置。通过优化设备的配置,级联式液化流程可以与在基本负荷混合制冷剂厂中占主导地位的带预冷的混合制冷 剂循环相媲美。 二、混合制冷剂液化流程 该工艺是20世纪60年代末期,由级联式制冷工艺演变而来的,多采用烃类混合物(N2、C1、C2、C3、C4、C5)作为制冷剂,代替级联式制冷工艺中的多个纯组分,其组成根据原抖气的组成和压力确是,利用多组分混合物中重组分先冷凝、轻组分后冷凝的特性,将其依次冷凝、分离、节流、蒸发得到不同温度级的冷量,又据混合制冷剂是否与原料天然气相混合,分为闭式和开式两种混合制冷工艺。 混合制冷剂液化流程的特点是什么? 以C1~C5的碳氢化合物及N2等五种以上的多组分混合制冷剂为工质,进行逐级的冷凝、蒸发、节流、膨胀得到不同温度水平的制冷量,以实现逐步冷却和LNG的工艺流程称之为混合制冷剂液化流程(Mixed-RefrigerantCycle,MRC),这种流程一般用于液化能力为7443X10~30XI0m/d的装置。 与级联式液化流程相比,MRC的优点是:

液化天然气(LNG)接收站的工艺方案

液化天然气(LNG)接收站的工艺方案分为直接输出式和再冷凝式两种,两种工艺方案的主要区别在于对储罐蒸发气的处理方式不同。直接输出式是利用压缩机将LNG储罐的蒸发气(BOG)压缩增压至低压用户所需压力后与低压气化器出来的气体混合外输,再冷凝式是将储罐内的蒸发气经压缩机增压后,进入再冷凝器,与由LNG储罐泵出的LNG进行冷量交换,使蒸发气在再冷凝器中液化,再经高压泵增压后进入高压气化器气化外输。设计时应根据用户压力需要选择合适的工艺方案。为防止卸载时船舱内因液位下降形成负压,储罐内的蒸发气通过回流臂返回到LNG船舱内,以维持船舱压力平衡。储罐内的LNG蒸发气经蒸发气压缩机压缩后进入再冷凝器再液化,经外输泵加压后气化外输。 2.工艺系统描述 液化天然气(LNG)接收站的工艺系统由六部分组成。这六部分分别是NG卸船、LNG储存、LNG再气化/外输、蒸发气(BOG)处理、防真空补气和火炬放空系统。 (1)LNG卸船工艺系统 LNG卸船工艺系统由卸料臂、蒸发气回流臂、LNG取样器、LNG卸船管线,蒸发气回流管线及LNG 循环保冷管线组成。 LNG运输船进港靠泊码头后,通过安装在码头上的卸料臂,将运输船上的LNG出口管线与岸上的LNG 卸船管线联接起来。由船上储罐内的LNG输送泵,将所载LNG输送到岸上储罐内。随着LNG的泵出,运输船上储罐内的气相空间的压力逐渐下降,为维持气相空间的压力,岸上储罐内的部分蒸发气通过蒸发气回流管线、蒸发气回流臂,返回至船上储罐内补压。为保证卸船作业的安全可靠,LNG卸船管线采用双母管式设计。在卸船作业时,两根卸船母管同时工作,各承担总输量的50%。在非卸船作业期间,必须对卸船管线进行循环保冷。双母管设计使卸船管线构成一个循环线,便于对卸船母管进行循环保冷。从储罐输送泵出口分流出一部分LNG,冷却需保冷的管线,经循环保冷管线返回储罐。 (2)LNG储存工艺系统 LNG储存工艺系统由低温储罐、进出口管线、阀门及控制仪表等设备组成。 LNG低温储罐采用绝热保冷设计,储罐中的LNG处于"平衡"状态。由于外界热量(或其它能量)的导入,如储罐绝热层的漏热量、储罐内LNG潜液泵的散热、压力变化、储罐接口管件及附属设施的漏热量等,会导致少量LNG蒸发气化。 LNG潜液泵安装在储罐底部附近,LNG通过泵井从罐顶排出。 LNG储罐上的所有进出口管线全部通过罐顶,罐壁上没有开口。 (3)LNG再气化/外输工艺系统 LNG再气化/外输工艺系统包括LNG潜液泵、LNG高压外输泵、开架式海水气化器、浸没燃烧式气化器及计量系统。 储罐内的LNG经潜液泵增压进入再冷凝器,使再冷凝器中的蒸发气液化,从再冷凝器中出来的LNG 经高压外输泵增压后进入气化系统气化,计量后输往用户。 (4)蒸发气(BOG)处理系统 蒸发气处理工艺系统包括蒸发气(BOG)压缩机、蒸发气冷却器、压缩机分液罐、再冷凝器以及火炬放空系统。 蒸发气处理系统的设计要保证LNG储罐在一定的操作压力范围内正常工作。LNG储罐的操作压力,取决于储罐内气相空间(即蒸发气)的压力。在不同工作状态下,如储罐在正常外输,或储罐正在接收LNG,或储罐既不外输也不接收LNG,蒸发气量有较大差异。因此,储罐设置压力开关来控制气相空间压力,压力开关的设定分为超压和欠压两组,通过压力开关来启停BOG压缩机,从而达到控制压力的目的。 (5)储罐欠压补气系统 为了防止LNG储罐在运行中发生欠压(真空)事故,工艺系统中配置了防真空补气系统。补气气源一般采用接收站再气化的天然气,由气化器出口管汇处引出。

中石油北京19春《液化天然气技术》第三阶段在线作业

1.( 2.5分) LNG接收站直接输出工艺和再冷凝工艺的主要区别在于: A、BOG处理工艺的不同 B、LNG气化方式不同 C、卸船方式不同 D、LNG储罐类型不同 正确答案: 2.(2.5分)关于LNG卸料臂的描述不正确的是: A、LNG卸料臂是一种装卸装置 B、卸料臂的输送管道部分是由不锈钢制成 C、卸料臂必须绝热 D、卸料臂必须能对LNG船运动快速作出反应 正确答案: 3.(2.5分)关于罐容计算公式Vs=(Vt+n.Q-t.q)/k的描述不正确的是: A、仅适用于LNG接收站调峰的设计 B、Vt指从LNG船所卸的最大容量 C、计算得到罐容值为接收站所需最小罐容 D、k为罐容的安全系数 正确答案: 4.(2.5分)关于罐容计算公式V=V1+V2+V3+V4 的描述不正确的是: A、适用于调峰型LNG接收站的设计 B、V2为最大不可作业期间的备用量,一般按5d的最大输出量考虑 C、V3=年需求量×季调峰系数 D、V4为呆滞存储量 正确答案: 5.(2.5分)非卸船模式下影响蒸发气量的主要因素: A、储罐的漏热 B、大气压变化造成储罐压力变化 C、卸料臂与卸料管线的漏热 D、SCV用气量 正确答案: 6.(2.5分)关于LNG低压泵不正确的是: A、潜液式泵 B、离心式泵 C、安装在LNG储罐顶部 D、安装在LNG储罐内部 正确答案: 7.(2.5分)关于LNG高压泵不正确的是: A、潜液式泵 B、离心式泵 C、安装在LNG储罐外部 D、安装在LNG储罐内部 正确答案: 8.(2.5分)关于开架式气化器不正确的是: A、以海水作热源的气化器 B、用于基本负荷型的大型气化装置 C、传热管是内部具有星形断面,外部有翅片的铝合金管 D、适用于任何温度的海水 正确答案: 9.(2.5分)关于浸没燃烧型气化器不正确的是: A、一种燃烧加热型气化器 B、适合于紧急情况或调峰使用 C、传热效率非常高 D、操作费用比ORV略低

有机合成心得工艺优化

有机合成心得(7)工艺优化方法学 1.合成工艺的优化主要就是反应选择性研究 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再确定其他组分浓度的影响。 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性,搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位置和相对大小。从而可以看出各组分的相对大小及各组分随温度和浓度条件不同的变化。对不同的副反应采取不同的抑制方法。 (1)首先搞清反应过程中那些副产物生成;(2)重点找出含量较多的副产物的结构,

相关文档
相关文档 最新文档