文档库 最新最全的文档下载
当前位置:文档库 › 核磁共振

核磁共振

核磁共振
核磁共振

实验报告

题目核磁共振学院

班级

姓名

学号

日期: 2013 年 10 月 29 日

核磁共振

【摘要】实现核磁共振的内因是原子具有自旋角动量和磁矩。自旋量子数等于零的核,其角动量和磁矩均为零。通常用NMR代表核磁共振,可采用两种不同的射频技术:稳态法和瞬态法。而仅当质子数和中子数两者或其一为奇数的原子核

才有核自旋。在共振吸收时采用恒定直流磁场B

Z 和垂直于B

Z

方向的频率为υ的

射磁场B

1

,当射频的量子能量hv与塞曼能级分裂△E相等,则发生能级键的核自旋粒子分别发生受激跃迁和发射跃迁。实验中,我们采用扫场法来观察核磁共振现象。

【关键词】核磁共振自旋扫场法塞曼能级磁矩共振吸收

【引言】自旋是微观物理学正最重要的概念之一。泡利于1924年提出核自旋假设,1930年为埃斯特曼在实验上证实。这一原子核基态的重要特征表明原子核不是一个质点而有电荷分布,还有自旋角动量和磁矩。1939 年美国物理学家拉比(I.I.Rabi)用他创立的分子束共振法实现了核磁共振,精确测定了一些原子核的磁矩,获得了 1944 年度的诺贝尔物理学奖。但分子束技术要把样品高

温蒸发后才能做实验,这就破坏了凝聚物质的宏观结构,其应用范围自然受到限制。1945年至 1946 年珀塞尔(E.M.Purcell)小组和布洛赫(F.Bloch)小组分别在石蜡和水中观测到稳态核磁共振信号,从而在宏观的凝聚物质中取得成功。为此,珀塞尔和布洛特荣获 1952 年诺贝尔物理学奖。此后,核磁共振技术迅速发展,还渗透到生物、医学、计量等学科领域以及众多生产技术部门,成为分析测试中不可缺少的实验手段,是测定原子的核磁矩和研究核结构的直接准确的方法,也是精确测量磁场的方法之一。

【正文】

一、实验原理 1.基本知识

实现核磁共振的内因是原子具有自旋角动量和磁矩。自旋量子数等于零的核,其角动量和磁矩均为零。

通常用NMR 代表核磁共振。NMR 实验方法可采用两种不同的射频技术:一是稳态法(连续波法),用连续的弱射频场作用于原子核系统,观测 NMR 波谱;二是瞬态法(脉冲波法),用脉冲的强射频场作用于原子核系统,观测核磁矩弛豫过程的自由感应现象。

当质子数和中子数两者或其一为奇数的原子核才有核自旋,其磁矩与核自旋角动量成正比, p g N ??=μμ。当核自旋系统处于恒定直流磁场B Z 中,由于核自旋系统和B Z 之间的相互作用,核能级发生塞曼能级分裂。对于氢核I=1/2原能级仅分裂成上下两个能级E 1和E 2。上下两能级的粒子数分别为N 1和N 2。热平衡时自旋粒子数随能量增加按指数规律下降,故N 1>N 2。磁场为B Z 时,上下两能级间能极差与g H 与B Z 成正比。Z N N B g E E E ??=?=-μ21若在垂直于B Z 方向加一个频率为υ的射磁场B 1,当射频的量子能量hv 与塞曼能级分裂△E 相等,满足hv B g E Z N N =??=?μ时,即发生能级间的核自旋粒子由E 1到E 2的受激跃迁,和由E 2到E 1的发射跃迁。此时两种相反方向的跃迁几率相等且与B 2成正比。但由于N 1>N 2,故对为数众多的自旋系统(自旋粒子数1014-1015以上),低能级核磁矩可吸收射频能量而跃迁到高能级,这就是共振吸收。在本实验中我们将v 固定,通过调节磁场B Z 满足跃迁条件即扫场法。

共振吸收会破坏能级粒子数的热平衡分布而趋向饱和。核自旋系统通过自旋和晶 格之间的相互作用(纵向过程),及自旋的相互作用(横向过程)逐步由非平衡态恢

复到平衡态的过程,称为弛豫过程。

二、实验仪器

实验装置由永久磁铁、射频边限振荡器、探头、样品、频率计、示波器、特斯拉计等组成。

实验仪器主要由恒定磁场,射频发射与信号接收系统和扫场系统三部分组

过强而饱和,并且由于扫场成。实验时要注意把振荡器调到边限状态,以免B

1

速度不够缓慢,以致磁化强度 M 未能紧跟磁场的变化,共振吸收信号的最大值略滞后于共振点,且在共振区后出现摆动尾波。

提供实验需要的稳定而均匀的磁场 Bz。只有样品所在的空间范围磁场很均匀,谱仪才会有较好的分辨率。恒定磁场由永久磁铁提供,不但系统简单,磁场的稳定性也特别好,只是可调范围比电磁铁小。

三、实验内容

1.阅读实验仪器说明书,按照说明书提示连接线路。

2.磁场强度B Z =0.4907T

3.计算氢核共振频率

h B g v Z N N /??=μ

g N =5.585,μN =5.0508*10-27T -1,h=6.627*10-34J ?S

4.将Cuso 4样品放入振荡线圈,调节样品在磁场中位于最佳位置,在v 附近,调节共振频率,并反复调节边限电流于20μA 左右,扫场电压1V 左右,直至示波器中观察到共振峰,记录下共振频率V H 。

5.调整样品在磁场中的位置,重复第四步骤。

6.依次测量并记录Fecl 3, 甘油,H 2O 和KMno 4的共振峰和共振频率。

7.用HF 样品,调整共振频率,首先测量H 的共振频率并且获得清晰的共振峰后改变共振频率获得F 的清晰共振峰,获得v H ,v F 。

8.计算g H 、g F

9.分析实验结果,并讨论误差。

四、仪器调试

(一)熟悉各仪器的性能并用相关线连接

实验中,FD —CNMR —I 型核磁共振仪主要应用五部分:磁铁、磁场扫描电源、边限振荡器(其上装有探头、探头内装样品)、频率计和示波器。

(1)首先将探头旋进边限振荡器后面指定位置,并将测量样品插入探头内; (2)将磁场扫描电源上“扫描输出”的两个输出端接磁铁面板中的一组接线柱(磁铁面板上共有四组,是等同的,实验中可任选一组),并经磁场扫描电源机箱后面板上的接线头与边限振荡器后面板上的接头用相关线连接;

(3)将边限振荡器的“共振信号”输出用Q9线接示波器“CH1通道”或者“CH2通道”,“频率输出”用Q9线线接频率计的A 通道(频率计的通道选择:A 通道,

N

B hv

g μ?=

2

即1HZ —100MHZ;FUNCTION 选择:FA;GATETIME 选择:1S);

(4)移动边限震荡器将探头连同样品放入磁场中,并调节边限振荡器机箱低部四个调节螺丝,使探头放置的位置保证使内部线圈产生的射频磁场方向与稳恒磁场方向垂直;

(5)打开磁场扫描电源、边线振荡器、频率计和示波器的电源,准备后面的仪器调试。

(二)核磁共振信号的调节

FD —CNMR —I 型核磁共振仪配备了六种样品:1—溶硫酸铜的水、2—溶三氯化铁的水、3—氟化氢、4一丙三醇、5—纯水、6一溶高锰酸钾的水。实验中,因为1样品的共振信号比较明显,所以开始时应该用1样品,熟悉了实验操作之后,再选用其他样品调节。

(1)将磁场扫描电源的“扫描输出”旋钮顺时针调节至接近最大(旋至最大后,再往回旋半圈,因为最大时电位器电阻为零,输出短路,因而对仪器有一定的损伤),这样可以加大捕捉信号的范围;

(2)调节边限振荡器的频率“粗调”电位器,将频率调节至磁铁标志的H共振频率附近,然后旋动频率调节“细调”旋钮,在此附近捕捉信号,当满足共振条件0B ?=γω时,可以观察到明显的共振信号。调节旋钮时要尽量慢,因为共振范围非常小,很容易跳过。

注:因为磁铁的磁感应强度随温度的变化而变化(成反比关系),所以应在标志频率附近MHZ 1±的范围内进行信号的捕捉!

(3)调出大致共振信号后,降低扫描幅度,调节频率“细调”至信号等宽,同时调节样品在磁铁中的空间位置以得到微波最多的共振信号。

五、实验数据及分析

1.三氯化铁的共振频率和g因子测定

g因子

共振频率

(MHZ)

20.6748 5.528

实验误差分析:

1.由于实验中所用的电磁铁产生的磁场不是完全均匀的,通常中心部分比较均匀,可以满足实验要求,而在电磁铁边缘磁场不均匀度大,无法测量共振信号,因此当样品安放在不同的位置时,其测量共振频率会有所不同。

2.略微调动频率,其共振图像差别不大,因此在共振频率确定时,会有误差产生。

3.对其水样品是未能满足稳定条件的,因为扫场速度不够缓慢,以致磁化强度M 未能紧跟磁场变化,共振吸收信号的最大值略滞后于共振点,且在共振区后面出现摆动尾波。

4.实验要求对每一个样品都需调整样品在磁场中的位置并测量3次及以上,我们的对样品数据只测量了一次,因此可能存在较大的实验误差。

2.氯化铁的共振频率和g因子测定

g因子

共振频

(MHZ)

20.6733 5.474

3.氟化氢的共振频率和g因子测定

3.1氟化氢的氢核共振频率和g因子测定

共振频率

g因子

(MHZ)

20.6722 5.474

3.2氟化氢的氟核共振频率和g因子测定

共振频率

g因子

(MHZ)

19.4493 5.2005

实验误差分析:

1.由于氟化氢的氟核磁共振的测量是在氢核磁共振的基础上的,因此先前在氢核磁共振测量的误差会对其造成影响,同时对氢共振图的清晰度对其共振图的出现有较大的影响

4.甘油的共振频率和g因子测定

g因子

共振频率

(MHZ)

20.6736 5.5278

5.水的共振频率和g因子测定

共振频率

g因子

(MHZ)

20.6728 5.5276

6.高锰酸钾的共振频率和g因子测定

g因子

共振频率

(MHZ)

20.6738 5.5279

综合以上实验数据可得

=5.5098

氢核的共振频率f=20.6734MHZ,g

H

=5.2005

氟核的共振频率f=19.4493MHZ,g

F

五、实验思考

1.并不是所有的原子核系统均可产生核磁共振现象,仅当质子数和中子数两者或其一为奇数的原子核才有核自旋。

2.观察共振吸收信号时,要提供两种磁场。B

Z

为恒定直流磁场,主要使得原子核

发生塞曼能级分裂,B

1

为射频场其方向与恒定直流磁场垂直使发生能级间核自旋

粒子由E

1到E

2

的受激跃迁,和由E

2

到E

1

的发射跃迁。

3.实验中因加入少量的顺磁离子,同时要注意把振荡器调到边限状态从而避免饱和现象出现。

4.核磁共振时因为有一定的弛豫时间因此其信号会有一定宽度。

5.对其水样品是未能满足稳定条件的,因为扫场速度不够缓慢,以致磁化强度M 未能紧跟磁场变化,共振吸收信号的最大值略滞后于共振点,且在共振区后面出现摆动尾波。

六、实验总结

在本次实验中,我们了解产生核磁共振的内因是原子具有自旋角动量和磁矩,并且通过对样品外加恒定直流场使核能级发生塞曼能级分裂,垂直于恒定直

流场方向的射频场使发生能级间核自旋粒子由E

1到E

2

的受激跃迁,和由E

2

到E

1

的发射跃迁。通过扫场法,获得共振图和共振频率。而最为值得注意的是对样品位置的摆放以及频率的调节。由于实验中仅可将中心磁场看成是均匀的,样品摆放位置因准确,避免有较大的实验误差,而在寻找共振频率的过程中,因先粗调,寻找波峰所处的大致位置,在进行微调获得准确的共振频率。

【参考资料】

1.朱俊,郭原,尚鹤龄,陈忠勇《核磁共振的实验误差研究》,云南师范大学学报 2009.3

2.彭跃华,金泽渊,王亚妮《光磁共振中朗德g因子的测定方法[J]》,长沙电

力学院学院,2006.12

3.蔡秀峰,刘淑珍,张炳恒;《塞曼效应实验方法的改进[J]》;大学物理;2005.02

4.杨世湘;;提高《核磁共振》实验的几项措施[J];辽宁大学学报(自然科学版);1981.02

磁共振(MRI)检查注意事项

磁共振(MRI)检查注意事项 一、磁共振检查的禁忌症 1.带有心脏起搏器及人工瓣膜的病人; 2.带有神经刺激器(如膈肌刺激器)的病人; 3.术后体内置有动脉瘤止血夹的病人; 4.带有心脏人工瓣膜和人工耳蜗的病人; 5.疑有铁磁性植入者,如枪炮伤后存留及眼内铁磁性金属异物的病人; 6.体内有微量输液泵的病人,如胰岛素或化疗药物微量输液泵等; 7.手术后体内用金属钉缝合切口者及置有大块金属植入物如人工股骨头、人工关节、金属假肢、胸椎矫形钢板等; 8.患有幽闭恐惧症的病人; 9.体内有各种内支架者,如血管内支架、胆道、胃肠道支架、泌尿道等支架; 10.危重病人、昏迷躁动、有不自主运动或精神病不能保持静止不动者; 11.妊娠三个月以内的早孕患者; 二、填写MRI申请单的注意事项 1.详细标明检查部位。对称器官必须标清左右;胸、腹部检查必

须标明具体器官或检查目的;头颈部检查,如欲观察细小结构,如垂体、内耳等,必须明确标出; 2.认真填写病人信息及病史。详细的病人信息及病史对影像技术人员的扫描方案的确立有很大的帮助。门诊患者详细填写患者信息和病史,为日后随访提供了很大的方便; 3.对扫描范围和扫描序列有特殊要求,可以说明。如脊柱检查,可以根据查体情况说明要检查哪几个椎体。如果其它检查怀疑某处有病变,应详细说明,以使MRI操作员扫描时重点观察。对MRI较为熟悉的医生,可以根据自己的习惯要求扫哪个方位、哪个序列。MRA、MRCP、功能成像等特殊检查,因检查时间长,且可能另收费,临床医生如果需要,必须特殊标明。 三、关于增强检查。 一般情况下,是否进行增强检查应咨询MRI医生或技术人员,或在观察平扫图像后决定。有时MRI医生要求病人增强,病人来征求临床医生意见,临床医生应积极配合MRI医生的工作,说明增强检查的必要性。一般而言,肿瘤性病变直接平扫加增强。 四、对病人的检查前交代 1.说明此检查的意义和必要性,以及有可能出现阴性结果,以减少病人和MRI医生的不必要纠纷。 2.如患者手中有既往影像检查资料,应嘱咐病人进行MRI检查时

MRI检查前准备

MRI检查前准备及注意事项 一、适应证与禁忌证 1.适应证:适用于人体大部分解剖部位和器官疾病的检查,应根据临床需要以及MRI在各解剖部位的应用特点选择。 2.禁忌证: (1)体内装有心脏起搏器,除外起搏器为新型MRI兼容性产品的情况; (2)体内植入电子耳蜗、磁性金属药物灌注泵、神经刺激器等电子装置; (3)妊娠3个月内; (4)眼眶内有磁性金属异物。 3.有下列情况者,需在做好风险评估、成像效果预估的前提下,权衡利弊后慎重考虑是否行MRI检查。 (1)体内有弱磁性置入物(如心脏金属瓣膜、血管金属支架、血管夹、螺旋圈、滤器、封堵物等),一般建议在相关术后6~8周再进行检查,且最好采用以下场强设备; (2)体内有金属弹片、金属人工关节、假肢、假体、固定钢板等时,视金属置入物距扫描区域(磁场中心)的距离,在确保人身安全的前提下慎重选择,且建议采用以下场强设备; (3)体内有骨关节固定钢钉、骨螺丝、固定假牙、避孕环等时,考虑产生的金属伪影是否影响检查目标; (4)可短时去除生命监护设备(磁性金属类、电子类)的危重患者;

(5)癫痫发作、神经刺激症、幽闭恐怖症患者; (6)高热患者; (7)妊娠3个月及以上; (8)体内有金属或电子装置植入物者,建议参照产品说明书上的MRI安全提示。 二、MRI对比剂使用注意事项 1.核对受检者基本信息及增强检查申请单要求,确认增强检查为必需检查。 2.评估对比剂使用禁忌证及风险,受检者签署对比剂使用风险及注意事项知情同意书。 3.按药品使用说明书正确使用对比剂。 4. 增强检查结束后,受检者需留观15~30min,无不良反应方可离开。病情许可时,受检者应多饮水以利对比剂排泄。 5.孕妇一般不宜使用对比剂,除非已决定终止妊娠或权衡病情依据需要而定。 6.尽量避免大量、重复使用钆对比剂,尤其对于肾功能不全患者,以减少发生迟发反应及肾源性系统纤维化的可能。 7.虽然钆对比剂不良反应发生率较低,但仍需慎重做好预防及处理措施。 三、检查前准备 1.核对申请单,确认受检者信息、检查部位、目的和方案。 2.确认有无MRI检查禁忌证。

磁共振谱仪

永磁磁共振系统讲座 第三讲 磁共振谱仪 邹润垒包尚联 邹润垒先生,MRI系统工程师;包尚联先生,教授、博士生导师, 北京大学医学物理和工程北京市重点实验室主任,北京大学肿瘤物 理诊疗技术研究中心主任。 一前言 从第一讲中我们得知,MRI是继CT以后,医学放射领域又一次具有革命性的科学成果,它为医生和基础研究人员提供了又一个能够测量人体解剖、生理和心理信息的有效工具。MRI主要由磁体、谱仪、计算机三大部分组成。而MRI谱仪技术则是这一系统的另一关键部件。MRI谱仪包括数字射频发射部分和数字射频接收部分。其特点是接收到的射频信号经放大后直接进行高分辨高速A/D数字化转换。其它处理如正交混频(正、余弦)、检波、滤波等都在高速信号处理器控制下由硬件用数字处理完成。数字化信号在谱仪中处理信号的多少是衡量谱仪的一个重要指标,因为数字信号容易控制,又能减少干扰。由于MRI要求有较高的数字分辨率和实时采集速度,其所用的内存数据都在16比特以上。为了保证速度,所有的专门运算都由硬件完成。 二发射链和接收链 谱仪在MRI系统中的作用是控制射频(RF)发射器和接收器的发射和接收RF信号,执行脉冲序列,产生MRI信号并采集图像数据。谱仪可分为发射链和接收链。 发射链的作用是提供足够强度的共振激发B1场,向人体发送具有特定RF脉冲波形、脉宽、功率和重复周期的脉冲,这个脉冲波通过RF线圈,把能量耦合到样品的自旋核中去。发射链包括频率合成器、正交调制器、衰减器、RF功放推动机、发射机、RF开关,最终到RF发射线圈。具体说频率合成器是一个高度稳定的频率可调的标准信号源,可提供激发某层面的中心频率为ω0的RF信号。调制器可输出一定的带宽对应一定层厚的RF信号(ω0±Δω)。RF信号中心频率ω0和带宽Δω满足要求后,逐级放大,最后经末级功放(发射机)放大到足够功率后,匹配耦合馈入RF发射线圈,产生B1场脉冲(90o或180o或任意θ角)。 接收链的作用是接收MR信号,并把它数字化后送入计算机处理。接收链包括RF接收线圈、RF 低噪声前置放大器、RF放大器、衰减器、正交解调器(也叫正交相敏检波器),低通滤波器、音频放大器和模数转换器等。具体说,RF场B1激发之后,磁化强度M⊥在RF线圈中感应出MR信号调制的RF回波信号(其频率为拉莫频率ω0),这信号并载有空间编码信息。由于接收到的信号只有微伏量级,要把RF线圈的MR信号数字化,首先要对信号进行放大。在信号接收链中,首先使用的低噪声前置放

磁共振检查适应症

磁共振检查的适应症 颅脑MR 检查 先天性颅脑发育异常。 1、 脑积水。 2、 脑萎缩。 3、 卒中及脑缺氧:脑梗塞和脑出血等4、 脑血管疾病。 5、 颅内肿瘤和囊肿。 6、 颅脑外伤。 7、 颅内感染和其他炎性病变。 8、 脑白质病。 9、 ? 4眼及眶区MR 检查 眼眶前病变。 1、 肌圆锥内、外病变。 2、 眼外肌病变。 3、 视神经及其鞘病变。 4、 眼球病变。 5、 ? 亠鼻部MR 检查 鼻咽部良性、恶性病变。 1、 2、喉部良性、恶性病变。 四:口腔、颌面部MRI 检查 五:胸部MR 检查

1、肺脏。 2、纵膈及肺门。 3、胸膜与胸壁。 4、乳腺。 5、心脏、大血管。 六:肝脏、胆系胰腺、脾脏MR检查 1、肝脏、胆系、胰腺、脾脏的原发性或转移性肿瘤,以及肝海绵状 血管瘤。 2、肝寄生虫病。 3、弥漫性肝病。 4、肝、胆、脾、胰腺先天性发育异常。 5、胆道梗阻; 6、肝脓肿。 7、肝局限性结节增生和肝炎性假瘤。 8、手术、放疗。化疗及其它治疗效果的随访和观察。 9、胰腺炎及其并发症。 七:盆腔MR检查 1、膀胱、输尿管、前列腺、精囊腺、子宫、卵巢及其附件的病变。 2、骨盆及盆腔脏脏的损伤。 八:肾脏MR检查 九:肾上腺MR检查

十:腹膜腔及腹膜后间隙MR检查 」:脊柱MR检查 1、椎管内肿瘤。 2、脊髓病变。 3、脊柱及脊髓外伤性病变。 4、脊柱及脊髓先天性病变。 5、椎间盘突出。 6、椎管狭窄。 十二:骨关节和肌肉MR检查 十三:胃肠道MR检查 【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】

磁共振的临床应用价值

磁共振的临床应用价值 1、MRI比较于CT的优势 MRI利用人体中最多的氢质子在磁场中产生的共振效应,通过计算机处理后得到的图像。根据图像的性质不同,一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。而CT是依赖于组织的X线衰减(CT值)。这是它们图像上的基本不同。所以,MRI相对于CT的优势非常明显: 1、MRI有很高的组织对比分辨率:MRI成像主要是考察组织的含水量的多少以及所含水的特性不同。也就是说,含水量不同,MRI图像上就可以明显区分开来,即使含水量一样,由于所含水的特性(比如弛豫特性、流动特性、扩散特性等等)不同,在MRI的图像上,最终表现出来的信号会完全不同。所以MRI的图像在所有的影像学图像中,是最接近于人体实际解剖结构的,甚至可以说和解剖书上的示图完全一样,非常直观。在考察软组织病变,特别是占位性病变比如脑膜瘤,胶质瘤,垂体腺瘤等等时,MRI的优势巨大。MRI图像上病变边缘会较CT 清晰锐利得多,完全可以确定占位性病变的边界,对临床手术及切除后复诊起到极其重要的指导意义。 2、MRI有多种参数的选择与变化从而有可能对各种病变的性质加以判断。CT只能通过CT值的变化来进行诊断,参数只有CT值一个。MRI的参数有几十种之多,经常用到的就有十几种。根据参数选择的不同,MRI的图像就会完全不同。一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。临床上最常用到的是T1加权像(又称解剖像)和T2加权像(又称病理像)。举例来说,脂肪在T1加权像和T2加权像上均为高信号,肌肉、肝脏、胰腺等组织器官在T1加权像上为中等信号,而在T2加权像上则为较低信号,肺组织,大血管,钙化等在上述图像上均为一般均匀低信号,而肾、脾等组织器官在T1加权像上为较低信号,在质子像和T2加权像上均为较高信号。通过选择不同的参数,得到几种不同信号表现的图像,MRI可以将每种组织器官及病变完全区分开来,而不同的组织的CT值有可能完全一样,这时CT的局限性就暴露出来了。 3、MRI没有放射线的损害,MRI使用的是无线电波进行检测,频率也不高,以0.35T为例,频率仅为14.9MHz,并且持续时间很短。MRI只产生非常微量的热效应,人体几乎感觉不到。相对于CT所使用的射线,MRI无疑是一种环保的,

核磁共振波谱仪

附件: 核磁共振波谱仪简介及样品要求 一、应用领域: 由于核磁共振技术具有深入物质内部,而不破坏样品的特点,已成为人们探索物质微观世界奥秘所必不可少的重要手段,广泛应用于有机化学、物理学、医学、分子生物学、石油化工、食品等领域。 根据本校所购买仪器的硬件参数可进行以下应用: 1、有机化合物分子结构的测定和有机反应历程研究。 2、互变异构现象和动态过程的研究 3、定量分析和分子量测定 二、核磁共振波谱仪硬件参数: 型号:A V ANCE III HD 400 MHz 产地及厂家:瑞士布鲁克 液体探头: 灵敏度: 1H灵敏度≥480:1(0.1% EB) 13C灵敏度≥200:1(ASTM) 31P灵敏度≥150:1(TPP) 15N灵敏度≥25:1 (90% formamide) 19F灵敏度≥500:1 (TFT)) 脉冲宽度: 1H pulse width ≤10 μs (0.1% EB sample) 19F pulse width ≤18 μs (TFT sample) 13C pulse width ≤10 μs (ASTM sample) 31P pulse width ≤8 μs (TPP sample) 15N pulse width ≤21 μs (90% formamide sample) 线形: 13C spinning lineshape ≤ 0.2/2/4Hz (50%/0.55%/0.11%, ASTM) 1H non-spinning lineshape ≤ 0.8/7/14Hz (50%/0.55%/0.11%, 1% CHCl ) 3固体探头:

MRI核磁共振成像与CT成像的联系区别

MRI核磁共振成像与CT成像的联系区别 一、定义 MR(MagneticResnane lamge)中文译为核磁共振成像。它是一种生物磁自旋成像技术。工作原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在射频脉冲停止后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接收器收录,经电子计算机处理获得图像,这就叫核磁共振成像。 CT(Computed Tomography)中文译为断层扫描。由于X线球管和探测器是环绕人体某一部位旋转,所以只能做人体横断面的扫描成像。工作原理:人体各种组织(包括正常和异常组织)对X 线的吸收不等。CT即利用这一特性,将人体某一选定层面分成许多立方体小块,这些立方体小块称为体素。X线通过人体测得每一体素的密度或灰度,即为CT图像上的基本单位,称为像素。它们排列成行列方阵,形成图像矩阵。分析CT图像, 一方面是观察解剖结构,另一方面是了解密度改变。后者可通过测定CT值而知,亦可与周围组织的密度对比观察。人体内肿瘤组织因部位、代谢、生长及伴随情况不同,其密度变化各异。CT对组织的密度分辨率较高,且为横断面扫描,提高了肿瘤诊断的准确率。 二、区别

1、成像面。CT成像为横断面,而MRI可做横断、矢状、冠状和任意切面的成像。 2、分辨率。CT比MRI的空间分辨率高,但只能辨别有密度差的组织,对软组织分辨力不高。MRI对软组织则有较好的分辨力,如肌肉、脂肪、软骨、筋膜等。 3、各自特点。MRI固然被认为分子水平上的成像有许多优点,但在氢质子缺乏或含量很少的组织如致密的骨骼、钙化、含气的肺部等,皆无法成像。由于MRI成像时间较长,昏迷、躁动病人不能获得清晰的图像,体内有金属异物的患者不能进入磁场,此为禁忌症。所以MRI与CT相互不能取代,二者相辅相成。 三、肺部影像检查举例 对于肺部的影像学检查,CT和MRI诊断价值基本相似,但各有特点。如MRI在明确肺部肿瘤与血管之间关系上要明显优于CT,但在发现肺部小病灶(<5mm)方面则不如CT敏感。此外对于诊断支气管扩张、肺结核、小量气胸等疾病,CT可作为常规检查。而对于肺栓塞患者,其MRI诊断价值高于CT.对于肺部检查到底是CT好还是MRI好,不能一概而论,应根据具体病情及所需要了解的情况进行选择。

400M核磁共振谱仪

上海工程技术大学教育研究 3/2007 400M 核磁共振谱仪 Nuclear Magnetic Resonance Spectrometer 国别:瑞 士 设备价格:21.6万美元联系人:任新峰 购置日期:2006年6月设备所在地:实训楼3423联系电话: 67791221 设备简介: 核磁共振是指原子核在静磁场中的作用下对固定频率的射频电磁波进行吸收的现象。核磁共振广泛应用于化学、生物、医学等领域。核磁共振的方法与技术作为分析物质的手段,由于其可深入物质内部而不破坏样品,并具有迅速、准确、分辨率高等优点而得以迅速发展和广泛应用,已经从物理学渗透到化学、生物、地质、医疗以及材料等学科,在科研和生产中发挥了巨大作用。核磁共振(Nuclear M agnetic Resonance,NMR)技术在过去的六、七十年的过程中得到了非常快速 的发展。特别是在有机化学、生物化学等领域是一个非常有力的工具。技术参数: 电源:220V(10%,50Hz)操作室温度:15~30 操作持续时间:连续操作相对湿度:<85% 控温设置范围:-150~350 控温精度:0.1 / 1H 灵敏度: 220!1(0.1%EB)13C 灵敏度: 160!1(ASTM)15N 灵敏度: 20!1(90%form amide) ? 61?

31P灵敏度:135!1(T PP) 变温范围:-150~150 Z-梯度场强度:50g/cm 分辨率:#0.45Hz(3%CHCL) 应用范围: 核磁共振波谱仪是化学、化工、制药、食品、生命科学、生物工程等领域中进行化合物的结构测定所不可缺少的大型分析仪器,用于化学化工学科教学、科研和研究生培养工作。核磁共振波谱仪是四大光谱分析仪器之一,也是一种权威的结构鉴定手段的首选仪器。 (上接第60页) 应用范围: 高效液相色谱仪是化学、化工、制药、食品、生命科学、生物工程等领域中进行化合物的定性和定量分析所不可缺少的分析仪器。主要可用于精细化工产品成分的定性和定量分析,精细有机合成、催化及反应工程、高分子材料化学、纳米材料的物理与化学特性、功能与生物材料等的研究,是用于化学化工学科教学、科研和研究生培养工作的重要测试仪器之一。 ? 62?

核磁共振研究综述

核磁共振技术的综述 一.核磁共振技术的概念 核磁共振是处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。经过70多年的不断发展,核磁共振技术目前巳被广泛地应用于生命科学,药物分析,石油或水资源勘测,以及医学成像等多个科学领域。核磁共振技术可以提供分子的化学结构和分子动力学的信息,已成为分子结构解析以及物质理化性质表征的常规技术手段。 二、核磁共振技术的基本原理 核磁共振的基本原理是:原子核有自旋运动,在恒定的磁场中,自旋的原子核将绕外加磁场作回旋转动,叫进动(precession)。进动有一定的频率,它与所加磁场的强度成正比。如在此基础上再加一个固定频率的电磁波,并调节外加磁场的强度,使进动频率与电磁波频率相同。这时原子核进动与电磁波产生共振,叫核磁共振。核磁共振时,原子核吸收电磁波的能量,记录下的吸收曲线就是核磁共振谱(NMR-spectrum)。由于不同分子中原子核的化学环境不同,将会有不同的共振频率,产生不同的共振谱。记录这种波谱即可判断该原子在分子中所处的位置及相对数目,用以进行定量分析及分子量的测定,并对有机化合物进行结构分析。 三.核磁共振技术的应用 人们在发现核磁共振现象之后很快就产生了实际用途,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到13C谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。 3.1核磁共振可分为:固体核磁共振、液体核磁共振以及核磁共振成像。 1.固体核磁共振应用的范围:不溶性的高分子材料、膜蛋白、刚性的金属以及非金属材料。固相核磁(除固体物理用固体核磁外)使用普及率不高。 2、液体核磁共振应用范围(目前是主要的):有机化合物,天然产物,生物大分子。溶液高分辨核磁共振在化学中主要应用:1)基本化学结构的确定、立体构型和构象的确定;2)化学反应机理研究、化学反应速度测定;3)化学、物理变化过程的跟踪;4)化学平衡的研究及平衡常数的测定;5)溶液中分子的相互作用及分子运动的研究(氢键相互作用、分子链的缠结、胶束的结构等);6)混合物的快速成分分析(LC-NMR, DOSY)。液体核磁共振在生物大分子在溶液中的主要应用主要有以下几个方面:1)测定生物大分子在溶液中的三维结构:是目前为止唯一能够准确测定生物大分子在溶液中的三维结构的方法;2)蛋白质与核酸的相互作用:分子生物学、分子遗传学、基因调控、药物设计等领域中都要涉及的重大问题;3)蛋白质卷曲和折叠研究:研究卷曲和折叠的动力学过程;4)药物设计:研究激素-受体复合物;酶与底物的复合物;功能蛋白与靶分子复合物,特别是关于结合点的结构信息。 3、核磁共振成像技术主要是临床诊断的成像、研究动植物形态的微成像、功能成像和分子成像。

磁共振检查能吃饭吗

全国体检预约平台 全国体检预约平台 磁共振检查能吃饭吗? 现代人热衷于磁共振检查,为了检查结果的准确性,医生总会叮嘱检查者各种注意事项。那么,磁共振检查能吃饭吗?这是不少人关心的话题。 做腹部肝、胆、胰、脾、肾等检查时,请于检查前4小时禁食;并需要您检查过程中保持呼吸平稳,切忌咳嗽或进行吞咽动作。以下就是核磁共振成像检查注意事项: 1.核磁共振检查由于检查时间相对较长,每日检查人数有限,为核磁共振成像。避免您长时间等待,需要医生开单预约,按预约时间前去检查。 2.检查前请取下一切含金属的物品,如金属手表、眼镜、项链、义齿、义眼、钮扣、皮带、助听器等;否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示,并可能造成个人财物不必要的损失及磁共振机的损伤。 3.如果您装有心脏超搏器、人工心脏金属瓣膜、血管金属夹、眼球内金属异物、体内有铁质异物、胰岛素泵、神经刺激器,以及妊娠三个月以内,不能做此检查,以免发生意外。 4. 昏迷、危重及不能配合的患者不能进行核磁共振检查。 5.做盆腔部位检查时,需要膀胱充盈,请检查前不要解小便。 6.做腹部肝、胆、胰、脾、肾等检查时,请于检查前4小时禁食;并需要您检查过程中保持呼吸平稳,切忌咳嗽或进行吞咽动作。 7.头颅及神经系统检查时,不需要特殊准备。 8.核磁共振检查对饮食、药物没有特别要求。 9.完成一次磁共振检查需要半小时左右,检查过程中,您会听到机器发出的嗡嗡声,此时请尽量静卧,平衡呼吸,身体勿做任何移动,以免影响图像质量。 10.磁共振扫描过程中请身体(皮肤)不要直接触磁体内壁及各种导线,防止皮肤灼伤。 大家在做磁共振前一定要有思想准备,不要急躁,害怕,要听从医生的指导,耐心配合。 本文来源:深圳入职体检https://www.wendangku.net/doc/863158024.html,/0755/cl/t40

磁共振检查的适应症及临床应用价值

磁共振检查的适应症 及临床应用价值 磁共振成像(Magnetic Resonance Imaging, MRI)是一种安全可靠的高科技检查设备,无X线辐射,对人体无危害。MRI图像非常精细、清晰、逼真。不用对比剂即可清楚显示心脏、血管和体内腔道,可进行任意方位断层扫描,定位精确。MRI临床适应症广泛,是颅脑、脊髓、骨与关节软骨、滑膜、韧带等部位病变的首选检查方法。 一、颅脑MRI检查 (一)适应症 1、先天性颅脑发育异常:包括器官源性畸形和组织源性畸形,MRI可确诊。 2、脑积水。 3、脑萎缩。 4、卒中及脑缺氧:脑梗塞和脑出血等。 5、脑血管疾病:高磁场的MR通过血管成像(MRA)技术显示。 6、颅内肿瘤和囊肿。 7、颅脑外伤。 8、颅内感染和其他炎性病变。 9、脑白质病。 (二)临床应用价值 1、MRI对颅脑疾病诊断的重要性,在一定程度上已超过螺旋CT。目前,螺旋CT和MRI对脑部疾病的诊断作用仍互为补充。 2、MRI之所以优于CT,是因为MRI软组织对比度高,能

准确地分辨脑皮质(灰质)、髓质(白质)和神经核团,尤其是脑髓质疾病、肿瘤、水肿等诊断的敏感度更高。 3、MRI能进行任意方位断层扫描,定位准确。 4、MRI无骨性伪影的干扰,是诊断垂体、颅神经、脑干、小脑等部位病变的首选影像检查方法。 5、应用对比剂可以鉴别肿瘤和水肿。 6、头颅外伤的诊断MRI不及螺旋CT敏感。MRI难以发现新鲜出血,不能显示外伤性蛛网膜下腔出血;MRI检查时间长,容易产生运动伪影;带有监护仪的急症、危重病人不能做MRI检查。 (三)注意要点 1、MRI对钙化与颅骨病变的诊断能力较差。 2、急诊、重危病人,监护仪和急救装置不能带入磁共振机房,限制了MRI在上述病人中的应用。 3、体内有金属植入物或金属异物者慎用。 4、安装有心脏起搏器的病人,禁忌做MRI检查。 二、眼及眶区MRI检查 (一)适应症 1、眼眶前病变。 2、肌圆锥外病变。 3、肌圆锥内病变。 4、眼外肌病变。 5、视神经及其鞘病变。 6、眼球病变:主要是球内肿瘤。 (二)临床应用价值 1、MRI检查,无X辐射损害、无痛苦,尤其适合于小儿眼疾的多次随访检查。 2、软组织对比度好,眼眶解剖显示清晰;可任意方位倾斜扫描成像,视神经病变较其他影像学检查方法显示更准确。 3、皮样囊肿、黑色素瘤、血管畸形等眼眶疾患,具有特

超导核磁共振谱仪的原理及应用指导书

超导核磁共振谱仪的原理及应用实验指导书 贵州大学精细化工研究开发中心(绿色农药与生物工程重点实验室) 1、实验类型及学时数 a)实验类型:设计性实验(研究性实验) b)学时数:10学时 2、实验目的和意义 核磁共振是1946年由美国斯坦福大学布洛赫(F.Block)和哈佛大学珀赛尔(,两人因此获得1952年诺贝尔物理学奖。50多年来,核磁共振已形成为一门有完整理论的新学科。 在各种各样的化学分析仪器中,核磁共振谱仪被公认为是一种非常重要的研究和测试工具,它的许多功能是其它手段无法代替的。 核磁共振谱仪可以给出小到原子核在分子中的精确位置及其周边环境的微小变化,大到整个人体的断层成像等具有丰富内涵的信息。被广泛用于工业、农业、化学、生物、医药、地球科学和环境科学等领域。 通过学习核磁共振波谱仪的构成、使用方法及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识);培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 3、实验原理 (1)基本原理 自旋不为零的粒子,如电子和质子,具有自旋磁矩。如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为 ΔE = γhB 0 (1) 其中:γ为旋磁比,h为约化普朗可常数,B0为稳恒外磁场。 如果此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

MRI中T1和T2的含义与区分

MRI名词解释 T1加权像、T2加权像为磁共振检查中报告中常提到的术语,很多非专业人士不明白是什么意思,要想认识何为T1加权像、T2加权像,请先了解几个基本概念: 1、磁共振(mageticresonanceMR);在恒定磁场中的核子,在相应的射频脉冲激发后,其电磁能量的吸收和释放,称为磁共振。 2、TR(repetition time):又称重复时间。MRI的信号很弱,为提高MR 的信噪比,要求重复使用同一种脉冲序列,这个重复激发的间隔时间即称TR。 3、TE(echo delay time):又称回波时间,即射频脉冲放射后到采集回波信号之间的时间。 4、序列(sequence):指检查中使用的脉冲程序-组合。常用的有自旋回波(SE),快速自旋回波(FSE),梯度回波(GE),翻转恢复序列IR),平面回波序列(EP)。 5、加权像(weight image.WI):为了评判被检测组织的各种参数,通过调节重复时间TR。回波时间TE,可以得到突出某种组织特征参数的图像,此图像称为加权像。 6、流空效应(flowingvoid effect):心血管内的血液由于流动迅速,使发射MR信号的氢质子离开接受范围,而测不到MR信号。 7、MR血管成像:有两种血管成像的模式,一是时间飞越法time Offlight即TOF法;二是相位对比法phase contrast即PC法。前者通过血流的质子群与静止组织之间的纵向矢量变化来成像,后者通过相

位对比变化而区别周围静止组织,突出重建血管图像。目前以TOP 法临床应用较广泛。 8、MR水成像:根据TW2图像,可以抑制其它的组织,只显示静止的水份,这一技术可作脑室成像、胆道成像、尿路成像等。 9、弛豫:在射频脉冲的激发下,人体组织内氢质子吸收能量处于激发状态。射频脉冲终止后,处于激发状态的氢质子恢复其原始状态,这个过程称为弛豫。? 了解了以上概念后,描述磁共振成像过程大致如下: 人体组织中的原子核(含基数质子或中子,一般指氢质子)在强磁场中磁化,梯度场给予空间定位后,射频脉冲激励特定进动频率的氢质子产生共振,接受激励的氢质子驰豫过程中释放能量,即磁共振信号,计算机将MR信号收集起来,按强度转换成黑白灰阶,按位置组成二维或三维的形态,最终组成MR图像。 总之,磁共振成像是利用原子核在磁场内共振产生的信号经重建成像的成像技术。 B. T1和T2解释 了解了以上基本概念后我们就可以进一步了解何为?T1加权成像、T2加权成像了。 所谓的加权就是“突出”的意思 T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别 T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。 在任何序列图像上,信号采集时刻横向的磁化矢量越大,MR信号越

磁共振成像的基本原理和概念

磁共振成像的基本原理和概念 第一节磁共振成像仪的基本硬件 医用MRI仪通常由主磁体、梯度线圈、脉冲线圈、计算机系统及其他辅助设备等五部分构成。 一、主磁体 主磁体是MRI仪最基本的构件,是产生磁场的装置。根据磁场产生的方式可将主磁体分为永磁型和电磁型。永磁型主磁体实际上就是大块磁铁,磁场持续存在,目前绝大多数低场强开放式MRI仪采用永磁型主磁体。电磁型主磁体是利用导线绕成的线圈,通电后即产生磁场,根据导线材料不同又可将电磁型主磁体分为常导磁体和超导磁体。常导磁体的线圈导线采用普通导电性材料,需要持续通电,目前已经逐渐淘汰;超导磁体的线圈导线采用超导材料制成,置于液氦的超低温环境中,导线内的电阻抗几乎消失,一旦通电后在无需继续供电情况下导线内的电流一直存在,并产生稳定的磁场,目前中高场强的MRI仪均采用超导磁体。主磁体最重要的技术指标包括场强、磁场均匀度及主磁体的长度。 主磁场的场强可采用高斯(Gauss,G)或特斯拉(Tesla,T)来表示,特斯拉是目前磁场强度的法定单位。距离5安培电流通过的直导线1cm处检测到的磁场强度被定义为1高斯。特斯拉与高斯的换算关系为:1 T = 10000 G。在过去的20年中,临床应用型MRI仪主磁体的场强已由0.2 T以下提高到1.5 T以上,1999年以来,3.0 T的超高场强MRI仪通过FDA 认证进入临床应用阶段。目前一般把0.5 T以下的MRI仪称为低场机,0.5 T到1.0 T之间的称为中场机,1.0 T到2.0之间的称为高场机(1.5 T为代表),大于2.0 T的称为超高场机(3.0 T为代表)。 高场强MRI仪的主要优势表现为:(1)主磁场场强高提高质子的磁化率,增加图像的信噪比;(2)在保证信噪比的前提下,可缩短MRI信号采集时间;(3)增加化学位移使磁共振频谱(magnetic resonance spectroscopy,MRS)对代谢产物的分辨力得到提高;(4)增加化学位移使脂肪饱和技术更加容易实现;(5)磁敏感效应增强,从而增加血氧饱和度依赖(BOLD)效应,使脑功能成像的信号变化更为明显。 当然MRI仪场强增高也带来以下问题:(1)设备生产成本增加,价格提高。(2)噪音增加,虽然采用静音技术降低噪音,但是进一步增加了成本。(3)因为射频特殊吸收率(specific absorption ratio,SAR)与主磁场场强的平方成正比,高场强下射频脉冲的能量在人体内累积明显增大,SAR值问题在3.0 T的超高场强机上表现得尤为突出。(4)各种伪影增加,运动伪影、化学位移伪影及磁化率伪影等在3.0 T超高场机上更为明显。由于上述问题的存在,3.0 T的MRI仪在临床应用还有一定限制,尽管其在中枢神经系统具有优势,但是在体部应用还不太成熟,因此,目前以1.5 T的高场机最为成熟和实用。 MRI对主磁场均匀度的要求很高,原因在于:(1)高均匀度的场强有助于提高图像信噪比,(2)场强均匀是保证MR信号空间定位准确性的前提,(3)场强均匀可减少伪影(特别是磁化率伪影),(4)高度均匀度磁场有利于进行大视野扫描,尤其肩关节等偏中心部位的MRI检查,(5)只有高度均匀度磁场才能充分利用脂肪饱和技术进行脂肪抑制扫描,(6)高度均匀度磁场才能有效区分MRS的不同代谢产物。现代MRI仪的主动及被动匀场技术进步很快,使磁场均匀度有了很大提高。 为保证主磁场均匀度,以往MRI仪多采用2m以上的长磁体,近几年伴随磁体技术的进步,各厂家都推出磁体长度为1.4m~1.7m的高场强(1.5T)短磁体,使病人更为舒适,尤其适用于幽闭恐惧症的患者。 随介入MR的发展,开放式MRI仪也取得很大进步,其场强已从原来的0.2T左右上升到0.5T以上,目前开放式MRI仪的最高场强已达1.0T。图像质量明显提高,扫描速度更快,已经几乎可以做到实时成像,使MR“透视”成为现实。开放式MR扫描仪与DSA的一体

MRI也就是核磁共振成像

MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。 磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。 磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。

磁共振成像概述

磁共振成像概述 磁共振成像( Magnetic Resonance Imaging )是利用人体内氢原子核在强磁场内共振产生影像的一种医学检查和诊断的方法。 ?MRI是什么? –——无线电波成像 ?MRI的特点? –——是软组织分辨率最高的影像检查手段 ?MRI的适应症? –——可适用全身检查 ?功能MRI是什么? –——可提供活体的结构、代谢信息 磁共振信号=无线电波 依据质子拉莫尔频率,其波长位于短波或超短波。 如:0.5T 拉莫尔频率为21.3MHz, 波长为14.08m(短波) 1.5T 拉莫尔频率为63.9MHz, 波长为4.69m(超短波) 磁共振成像的定义: 磁共振成像(magnetic resonance imaging,MRI)是利用射频(radio frequency,RF)电磁波对置于磁场中的含有自旋不为零的原子核的物质进行激发,发生核磁共振(nuclear magnetic resonance,NMR),用感应线圈采集磁共振信号,按一定数学方法进行处理而建立的一种数字图像。 核磁共振的含义:

核—磁共振现象涉及原子核(特别是氢原子核) 磁—磁共振过程发生在强大静磁场的巨大磁体内在静磁场上叠加射频场按时做激励诱发共振叠加梯度磁场进行空间标记并控制成像 共振—借助宏观世界自然现象解释微观世界的物理学原理(如音叉振动),核子间能量吸收与释放可产生共振(磁场中) 共振现象的三个基本条件 (1) 必须有一个主动振动的频率 (2)主动振动频率与被动振动的物体固有频率必须相同 (3) 主动振动物体具有一定强度并与被振动物体保持一定距离 磁共振具备三种磁场才能完成:即静磁场,梯度磁场,射频脉冲磁场。磁共振现象: 处于恒定磁场中的氢原子核,在特定频率(拉摩尔Larmor )的射频脉冲( RF ) 影响下交替吸收、释放能量的过程。 什么是核磁共振现象? 位于静磁场中的人体组织受到射频场的作用产生磁共振信号并利用梯度场进行空间编码实现对信号的定位,通过计算机的重建处理,从而得到图像。 1.人体磁共振的基本成像过程:人体未进入静磁场,体内氢质子群 磁矩自然无规律排列; 2. 进入静磁场,所有自旋的氢质子重新排列定向,磁矩指向N 或S 极; 3. 通过射频线圈与静磁场垂直方向施加射频脉冲,受检部位氢质子

核磁共振成像医学检测

核磁共振---其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 CT成像与核磁共振区别 CT成像是在X射线的基础上运用计算机技术,使平面重叠的X像可以清晰一个平面一个平面的扫描.磁共振是原子核在强磁场中共振所得到的信号,然后经过图象重建得到的,它可以在人体的各个平面成像.说白了,它的成像和扫描部位质子的多少有关.他们的区别主要是原理,设备,其成像特点,检查技术,图象的分析与诊断,及他们在临床的应用. CT的基本原理一、CT成像过程:X线成像是利用人体对X线的选择性吸收原理,当X线透过人体后在荧光屏上或胶片上形成组织和器官的图像,CT的成像也与之相仿。 CT扫描的过程是由高度准直的X线束环绕人体某一检查部位作360度的横断面扫描的过程。检查床平移时,X线从不同方向照射病人,穿过人体的X线束因有部分光子被人体吸收而发生衰减,未被吸收的光子穿透人体再经后准直由探测器接收。探测器接受了穿过人体以后的强弱不同的X线,转换为自信号由数据采集系统(data acquisition system,DAS)进行采集。大量接收到模拟信号信息通过模数(A/D)转换器转换为数字信号输入电子计算机进行处理运算。经过初步处理的成为采集的原始数据(raw data),原始数据经过卷曲、滤过处理,其后称为滤过后的原始数据(6lteredrawdata)。由数模(D/A)转换器通过不同的灰阶在显示屏上显像从而获得该部位横断面的解剖结构图象,即CT横断面图象。 因此,CT检查得到的是反应人体组织结构分布的数字影象,从根本上克服了常规X线检查图像前后重叠的缺陷,使医学影像诊断学检查有了质的飞跃。 二、CT成像的基本原理 通常,探测器所接受到的射线信号的强弱,取决于该部位的人体截面内组织的密度。密度高的组织,例如骨骼吸收X线较多,探测器接收到的信号较弱;密度较低的组织,例如脂肪、空腔脏器等吸收X线较少,探测器获得的信号较强。这种不同组织对X线吸收值不同的性质可用组织的吸收系数μ来表示,所以探测器所接收到的信号强弱所反映的是人体组织不同的μ值。而CT正是利用X线穿透人体后的衰减特性作为其诊断疾病的依据。 X线穿透人体后的衰减遵守指数衰减规律I=I0e-μd。 式中:I为通过人体吸收后衰减的X线强度;I0为入射X线强度;μ为接收X线照射组织的线性吸收系数;d为受检部位人体组织的厚度。 通过电子计算机运算列出人体组织受检层面的吸收系数,并将之分布在合成图象的栅状阵列即矩阵的方格(阵元)内。矩阵上每个阵元相当于重建图象上的一个图象点,称为像素(pixel)。CT的成像过程就是求出每个像素的衰减系数的过程。如果像素越小、探测器数目越多,计算机所测出的衰减系数就越多、越精确,重建出的图象也就越清晰。目前,CT机的矩阵多为256×256,512×512,其乘积即为每个矩阵所包含的像素数 核磁共振成像 人脑纵切面的核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像、磁振造影(Magnetic Resonance Imaging,简称MRI),是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的

600MHz核磁共振波谱仪带参数为必须满足参数

600MHz核磁共振波谱仪(带*参数为必须满足参数) *1.600M超导磁体和防震装置, 液氦保持时间:≥150天;液氦消耗量:≤16ml/h *2. 射频发射系统, 射频通道数:3个及以上,各通道具有的功能:观察、脉冲及去偶。第二通道X多核功放最大输出功率:≥500W。氘数字锁场、梯度场系统及温控单元包括自动/手动匀场系统,包括精确的氘梯度自动匀场。 *3. 梯度场最大电流:≥10安培;高精度变温控制单元,控温范围:-120o C—+150 o C,精度:≤±0.1 o C,液氮致冷低温附件,低温极限可达-120 o C。具有磁共振热电偶自动控温功能。 *4. 探头:1H/19F-(15N-109Ag)5mm, 1H-{BB} 5mm Z向梯度的多核宽频正向超低温观察探头, 检测核:1H,19F及共振频率在15N-31P之间的核; 1H灵敏度≥2700:1(0.1%EB),13C灵敏度≥1600:1(10%EB),31P灵敏度≥1000:1(TPP),15N灵敏度≥170:1 (90% Formamide), 19F灵敏度≥2500:1 (TFT),90度脉冲宽度1H≤12us, 19F≤15us, 13C≤10us,31P≤12us,15N≤15us,探头变温范围:0 o C—+80 o C; 梯度强度≥60高斯/CM。探头全自动调谐和匹配附件:配备能调所有观测核的全自动调谐和匹配附件。1H/19F-(15N-109Ag)5mm Z梯度场多核二合一探头。检测核:1H和19F,以及共振频率在15N-109Ag之间的所有核.灵敏度:1H≥900:1(0.1%EB),13C≥330:1(ASTM),31P≥250:1(TPP),15N≥45:1( 90% Formamide in DMSO-D6),19F (1H去耦)≥950:1(TFT);90°脉宽:1H≤10μs(0.1%EB),13C≤12μs(ASTM),31P≤12μs (0.0485% TPP),15N≤18μs(90% Formamide),19F ≤12μs(TFT);探头变温范围:-120 o C—+150 o C, Z梯度场强度≥50GS/CM *5. 探头具备观测1H去偶后的19F图谱和1H&19F相关谱图功能 *计算机工作站:配置应以安装当月的主流配置为准,并保证该仪器的所有软件都能在计算机上正常安装运行。CPU主频: intel 四核3.6GHz处理器, 内存:≥4GB, 硬盘:≥1000G B, 运行平台:Windows 操作系统, 高速激光打印机.进口无油无水空压机1台, 进口涡旋空气压缩机1台,带干燥器和过滤器和储气罐。6KV A/1小时UPS电源,高温陶瓷转子5个。 *NMR软件: 1D,2D,3D NMR数据采集,控制及处理软件; 一维1H谱辅助分析软件一套; 自动测试谱仪性能:包括自动运行标准样品的梯度匀场、校准脉冲宽度、测试灵敏度; 60位自动进样器1套,带相同数量转子 技术服务:仪器安装完成后中标厂家的安装调试人员应在现场就仪器的使用及维护对用户进行现场培训。免培训费,差旅食宿自理。保修3年(自设备验收合格之日起计算)

相关文档