文档库 最新最全的文档下载
当前位置:文档库 › 大气压介质阻挡放电等离子体在生物灭菌中的应用研究 毕业论文

大气压介质阻挡放电等离子体在生物灭菌中的应用研究 毕业论文

大气压介质阻挡放电等离子体在生物灭菌中的

应用研究

Atmospheric pressure dielectric barrier discharge plasmas on

inactivation applications

作者姓名:

学科、专业:等离子体物理

学号: 11102021

指导教师:

完成日期: 2014年5月

大连理工大学

Dalian University of Technology

大气压介质阻挡放电等离子体在生物灭菌中的应用研究

论文作者签名:

指导教师签名:

论文评阅人1:

评阅人2:

评阅人3:

评阅人4:

评阅人5:

答辩委员会主席:

委员1:

委员2:

委员3:

委员4:

答辩日期:

Atmospheric pressure dielectric barrier discharge plasmas on

inactivation applications

Author’s Signature:

Supervisor’s signature:

Reviewers:

Examining Committee Chairman:

Examining Committee Members:

Date of oral defense:

大连理工大学学位论文独创性声明

作者郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究工作所取得的成果。尽我所知,除文中已经注明引用内容和致谢的地方外,本论文不包含其他个人或集体已经发表的研究成果,也不包含其他已申请学位或其他用途使用过的成果。与我一同工作的同志对本研究所做的贡献均已在论文中做了明确的说明并表示了谢意。

若有不实之处,本人愿意承担相关法律责任。

学位论文题目:大气介质阻挡放电等离子体在生物灭菌中的应用研究

作者签名:日期:年月日

摘要

大气压低温等离子体技术具有低能耗、高效率、气体温度接近室温、无需复杂的真空系统等优点,可应用于薄膜沉积、材料表面改性、杀菌消毒、环境净化、食品安全等多个领域。近年来,大气压低温等离子体在生物医学方面的应用研究不断掀起热潮。本文通过交流电源和脉冲电源驱动,利用共面介质阻挡放电和阵列式微结构介质阻挡放电,在大气压条件下产生大面积低温均匀等离子体,并对白色念珠菌、大肠杆菌进行杀菌消毒处理。同时利用射流放电实现了动物和植物病害的应用研究。主要结果如下:

1.利用介质阻挡放电在共面平行交替排列的高压电极与地电极的介质板表面上放置的

塑封袋内成功地实现了大面积均匀放电等离子体。在不同的等离子体参数处理条件下对白色念珠菌的失活效率进行了研究,研究结果表明:在峰值电压9 kV、频率11 kHz条件下,经过等离子体处理5 min后,99%He与1%O2混合条件下白色念珠菌失活效率高达99%。在该研究中电荷的的轰击与放电过程中活性氧原子的含量对白色念珠菌失活效率起主要作用。

2.利用交流介质阻挡放电在石英体凹槽内(高压电极和地电极等间距放置在石英体内,

高压电极和地电极非共面平行交替排列)成功地实现了大体积空间多槽式均匀放电等离子体。通过同步触发ICCD成像技术,对9 kHz和不同峰值电压下的凹槽内等离子体形成过程进行了研究,放电电荷在介质层表面积累形成的反馈通道有助于形成稳定的大面积空气均匀放电。利用该等离子体在3 min内可有效的失活筷子表面粘附的大肠杆菌和白色念珠菌,失活效率高达99.999%。

3.微结构毛细管分别作为高压电极与地电极平行交替排列,白色念珠菌放置在微结构

毛细管表面上,利用脉冲电源驱动成功地在微结构毛细管表面形成了大面积空气均匀放电等离子体。研究结果表明:在峰值电压30 kV和频率150 Hz情况下,在微结构毛细管表面上方白色念珠菌的失活效率随着距微结构毛细管表面不同高度处(即对白色念珠菌处理深度)呈现出三个阶段的下降趋势:平缓下降、急剧下降、有一定陡度的平缓下降。

4.在一端为盲孔的光纤内嵌入铜丝并形成阵列式微结构作为高压电极放置在一石英腔

内,板电极作为地电极。白色念珠菌放置在阵列式微结构高压电极下方的地电极表面上,石英腔内的放电气体由石英腔吹向地电极,在高压电极与地电极之间形成了大气压大面积阵列式微结构交流介质阻挡刷状均匀放电等离子体。在不同放电参数下,对刷状放电等离子体的均匀性和白色念珠菌的失活效率进行了研究。研究结果表明:在放电峰值电压、放电频率和放电间距相同条件下,在He和O2混合气体中,

当O2含量超过4%或者放电间距超过4 mm时,放电则由均匀放电转变为丝状放电。

白色念珠菌的失活效率结果表明:在99%He与1%O2混合气体放电处理180 s、放电间隙3 mm时白色念珠菌失活效率高达99%,而且白色念珠菌的失活效率在与地电极表面平行方向没有明显的差异。

5.利用大气压射流放电等离子体对动物(柞蚕微粒子)和植物(番茄褐孢霉)病害开

展了应用研究。在峰值电压6 kV,频率9 kHz,99%氦气与1%氧气混合气放电下,产生1 cm射流均匀放电低温等离子体,通过染色、活体感染等手段对柞蚕微粒子病害进行了失活研究。研究结果表明:该射流等离子体在5 min内可对柞蚕微粒子病害有效杀除,在该过程中电荷与活性氧在微粒子病害失活过程中起主导作用;在峰值电压6 kV,频率9 kHz条件下,利用99%Ar与1%O2混合气体射流放电对番茄褐孢霉的失活效率进行研究,研究结果表明:放电电荷在细胞表面积累形成静电张力破坏了细胞的完整性而导致褐孢霉失活。此外,利用99.5%Ar与0.5%O2混合气体在水溶液中产生射流放电等离子体活化水,研究结果表明:该等离子体活化水对白色念珠菌具有较好的杀菌效果。

关键词:等离子体杀菌;真菌死亡;介质阻挡放电;发射光谱;大气压

Atmospheric pressure dielectric barrier discharge plasmas on

inactivation applications

Abstract

Atmospheric pressure cold plasma has been widely studied for film deposition, surface modification, bacterial inactivation, environment purification and food safety due to their potential properties. Because of its unique advantages such as low power consumption, high energy efficiency and low gas temperature without complicated vacuum system, the atmospheric pressure non-equilibrium plasma has attracted much interest in the biomedical applications in recent years. In this paper, both AC power supply and nanosecond pulse power supply are employed to generate atmospheric pressure uniform discharge on the Candida albicans cells and Escherichia coli cells inactivation applications by using coplanar surface discharge device and array microstructural discharge device. Both animal diseases and plant diseases are successfully controlled by using atmospheric pressure cold plasma jet. The main investigation contents are described as follow:

1.By using coplanar surface dielectric barrier discharge, a visually almost uniform plasma

in the sealed plastic bag is successfully obtained. The electrode arrangement is consisting of alternant high voltage electrodes and ground electrodes embedded in a specially designed quartz plate. The inactivation efficiency of Candida albicans is investigated under various conditions. The results showed that at the applied voltage of 9 kV with the frequency of 11 kHz, the He plasma containing about 1% O2was able to entirely kill resistant Candida albicans with a treatment time of 5 min. Measurements indicate that plasma-induced species such as O radicals and charged species play a major role in the inactivation process.

2.With the evenly spaced arrangement of alternant high voltage electrodes and ground

electrodes embedded in a multiple-groove quartz plate, a visible large-area uniform discharge was achieved in the multiple-groove at atmospheric pressure. The plasma propagation mechanism was carefully studied by using intensified charge coupled device (ICCD) imaging under various applied voltage. The results indicated that dielectric surface-charge accumulation may be associated with the forming of the uniform discharge. Moreover, the visible uniform multiple-groove discharge plasma was found to be very efficient in the inavtivation of Candida albicans and Escherichia coli on the chopsticks. The inactivation efficiency could reach as high as 99.999%.

3. A microstructure coplanar surface dielectric barrier discharge device composed of

well-aligned and microns-thick hollow quartz fibers with alternant high voltage electrodes and ground electrodes embedded in is used to generate homogeneous cold plasmas by using a pulse high-voltage source with the repetition frequency of 150 Hz at atmospheric pressure. The results indicated that the inactivation efficiency of the Candida albicans as

a function of the processing depth from surface plasma was divided into three stages: first

gently falling trend, second sharply falling trend, third certain gradient gentle falling trend.

4.The microns-thick hollow quartz fibers with copper wires embedded in forming a kind of

well-aligned microstructure was fixed in a quartz chamber as high voltage electrode.

Plate electrode covered with quartz barrier was connected to the ground. Working gas was flowing from the quartz to the ground electrode. Candida albicans samples are fixed below the well-aligned microstructural high voltage electrode and on the surface of the ground electrode. An atmospheric pressure homogeneous brush-shaped cold plasma was successfully achieved between high voltage electrode and ground electrode. The uniformity of the brush-shape plasma and the inactivation efficiency were discussed under various conditions. Measurements showed that when the applied voltage and frequency were under the same conditions, either the concentration of O2was over 4%(discharge gap 3 mm), or the discharge gap was over 4 mm(working gas He), the uniformity of the brush-shaped discharge may break into filament state. For fungi cell inactivation application, the efficiency can reach as high as 99% with the treatment time of 180 s by using 99%He/1%O2 discharge. And the inactivation efficiency kept still along its transverse direction.

5.An atmospheric pressure cold plasma jet was used for the control of animal (Nosema

bombycis) and plant (tomato fulvum) disease. At the applied voltage of 6 kV with the frequency of 9 kHz, a 1 cm long homogeneous cold plasma jet can be generated by using 99%He/1%O2 discharge. The inactivation researches of Tussah Pebrine disease resulting from Nosema bombycis (NB) spores was investigated. Both Giemsa dyeing measurement and tussah breeding experiment show that the atmospheric pressure He plasma jet containing 1% O2 kills all the NB spores within an exposure time of 5 min. Measurements indicated that plasma-created reactive particles such as O and accompanied charged species can play an important role in the inactivation processing. At the same applied voltage and frequency conditions, the plasma jet was employed for tomato fulvum inactivation by using 99%Ar/1%O2discharge. Measurements indicated that the electrostatic force from the charge accumulation on the outer surface of the cell membrane caused the rupture of the outer membrane of cells and lead the tomato fulvum

to death. Plasma activated water was generated by using 99.5%Ar/0.5%O2discharge under water. And it was found to be effective on fungi cell inactivation. Therefore, this Atmospheric pressure cold plasma jet can provide a novel biotechnological approach to the control of agricultural diseases.

Key Words:Plasma inactivation, Fungi death, Dielectric barrier discharge, Optical emission spectra, Atmospheric pressure

目录

1 绪论 (21)

1.1 引言 (21)

1.2 大气压低温等离子体灭菌技术 (22)

1.2.1 大气压低温等离子体基本概念 (22)

1.2.2 大气压低温等离子体的产生方法 (23)

1.2.3 大气压低温等离子体的灭菌机制 (26)

1.3等离子体杀菌技术的研究现状和存在的难点 (27)

1.3.1 等离子体杀菌技术的研究现状 (27)

1.3.2 等离子体杀菌技术存在的难点 (29)

1.4 本论文选题目的及主要研究思路 (30)

2 有害病菌的培养及检测方法 (31)

2.1 引言 (31)

2.2 白色念珠菌 (32)

2.2.1 白色念珠菌培养基配置及培养方法 (32)

2.2.2 白色念珠菌实验样品制备 (33)

2.3 大肠杆菌 (33)

2.3.1 大肠杆菌培养基配置及培养方法 (34)

2.3.2 大肠杆菌实验样品制备 (34)

2.4 有害病菌失活检测方法 (35)

2.4.1 平板菌落计数法 (35)

2.4.2光学显微镜染色镜检 (35)

2.4.3扫描电子显微镜 (35)

2.4.4能谱分析仪 (36)

2.4.5紫外-可见吸收光谱法 (38)

3大气压共面介质阻挡放电等离子的生物医学研究 (40)

3.1自封袋内大面积低温等离子体共面介质阻挡放电 (40)

3.1.1不同He、O2比例下放电等离子体的杀菌效率及对比照片 (42)

3.1.2不同He、O2比例下放电等离子体的发射光谱诊断 (44)

3.1.3等离子体直接处理与间接处理的杀菌效率对比 (46)

3.1.4放电频率与峰值电压对等离子体放电功率的影响 (47)

3.2大气压多槽式介质阻挡放电等离子体 (48)

3.2.1大气压多槽式介质阻挡放电放电形成机理研究 (50)

3.2.2放电峰值电压对大气压多槽形式沿面放电功率的影响 (54)

3.2.3峰值电压对大气压多槽式介质阻挡放电气体温度的影响 (55)

3.2.4峰值电压对大肠杆菌和白色念珠菌失活效率的影响 (57)

3.3双极性纳秒脉冲驱动大气压微结构共面介质阻挡放电 (60)

3.3.1峰值电压对沿面放电等离子体转动温度和表面温度的影响 (62)

3.3.2不同峰值电压下等离子体放电的杀菌效率及对比照片 (63)

3.3.3不同峰值电压下等离子体放电的杀菌效率随处理深度的变化 (64)

3.3.4白色念珠菌染色镜检 (65)

3.3.5断面放电强度ICCD分析及放电照片 (67)

3.3.6白色念珠菌紫外吸收光谱 (67)

3.4小结 (68)

4 大面积阵列式微结构介质阻挡放电 (69)

4.1大面积阵列式微结构刷状介质阻挡放电 (69)

4.1.1峰值电压对大气压阵列式微结构刷状放电等离子体伏安特性的影响

(71)

4.1.2He、O2比例对大气压阵列式微结构刷状放电等离子体伏安特性的影

响 (72)

4.1.3放电间隙对大气压阵列式微结构刷状放电等离子均匀性的影响 (74)

4.1.4峰值电压对大气压阵列式微结构刷状放电等离子功率的影响 (75)

4.1.5大气压等离子体刷发射光谱诊断及放电振动转动温度拟合 (76)

4.1.6大气压阵列式微结构刷状放电等离子体杀菌效率横向均匀性 (77)

4.2小结 (80)

5 大气压低温等离子体射流对动植物病害防控 (81)

5.1大气压低温等离子体射流对柞蚕微粒子病的防控 (81)

5.1.1柞蚕微粒子 (81)

5.1.2柞蚕微粒子的感染途径 (82)

5.1.3柞蚕微粒子的检测方法及防御手段 (82)

5.1.4大气压低温射流等离子体 (83)

5.1.5放电峰值电压的ICCD特性分析 (85)

5.1.6大气压射流等离子体光谱诊断及振动转动温度拟合 (87)

5.1.7大气压射流等离子体对柞蚕微粒子的杀除及吉姆斯染色镜检 (88)

5.1.8柞蚕微粒子SEM和EDS分析 (88)

5.1.9大气压射流等离子体处理柞蚕微粒子实时监控 (90)

5.1.10等离子体处理后微粒子侵染活体及体液镜检 (91)

5.2大气压低温射流等离子体对番茄褐苞酶病害的防控研究 (93)

5.2.1峰值电压和频率对番茄褐苞酶杀菌效率的影响 (93)

5.2.2放电对番茄褐苞酶表面形貌影响 (94)

5.3大气压低温射流等离子体活化水杀菌研究 (95)

5.3.1放电对水溶液pH值的影响 (96)

5.3.2等离子体活化水对白色念珠菌失活效率的研究 (98)

5.4小结 (99)

6结论与展望 (100)

6.1结论 (100)

6.2创新点摘要 (102)

6.3展望 (103)

参考文献 (103)

致谢.......................................................................................... 错误!未定义书签。作者简介.......................................................................................... 错误!未定义书签。

TABLE OF CONTENTS

1 Introduction (21)

1.1 Introduction (21)

1.2 Atmospheric pressure cold plasma sterilization technology (22)

1.2.1 Basic concepts of atmospheric pressure cold plasma (22)

1.2.2 Generations of atmospheric pressure cold plasma (23)

1.2.3 Sterilization mechanism Atmospheric pressure cold plasma (26)

1.3 Research status and existing difficulties of plasma sterilization technology (27)

1.3.1 Research status of plasma sterilization technology (27)

1.3.2 Existing difficulties of plasma sterilization technology (29)

1.4 The purpose of selected topic and the main research train (30)

2 The cultivation of harmful bacteria and testing methods (31)

2.1 Introduction (31)

2.2 Candida albicans (32)

2.2.1 Candida albicans medium configuration and culture methods (32)

2.2.2 Candida albicans test sample preparation (33)

2.3 Escherichia Coli (33)

2.3.1 Escherichia Coli medium configuration and culture methods (34)

2.3.2 Escherichia Coli test sample preparation (34)

2.4 Harmful bacteria inactivation test methods (35)

2.4.1 Plate counting method (35)

2.4.2Optical microscope staining microscopy (35)

2.4.3Scanning electron microscope (35)

2.4.4Energy dispersive spectrometer (36)

2.4.5Ultraviolet-visible absorptionspectromtry (38)

3 Atmospheric pressure coplanar DBD plasma in biomedical application (40)

3.1Coplanar DBD cold plasma discharge in sealed bags (40)

3.1.1Inactivation efficiency and photos under various helium and oxygen

ratio discharge condition (42)

3.1.2Emission spectrum diagnosis under various helium and oxygen ratio

discharge condition (44)

3.1.3Comparison of inactivation efficiency under direct plasma treatment and

indirect plasma treatment (46)

3.1.4Discharge frequency and voltage on the influence of plasma discharge

power 47

3.2Atmospheric pressure multy-groove coplanar DBD plasma (48)

3.2.1Atmospheric pressure multy-groove coplanar DBD mechanism (50)

3.2.2Discharge voltage on the influence of atmospheric pressure multy-

groove coplanar plasma discharge power (54)

3.2.3Discharge voltage on the influence of atmospheric pressure multy-

groove coplanar DBD plasma temperature (55)

3.2.4Discharge voltage on the influence of inacivation efficiency of Candida

albicans and Escherichia Coli (57)

3.4Bipolar nanosecond pulse driven atmospheric pressure microstructure coplanar

DBD (60)

3.4.1Discharge voltage on the influence of vibrational temperature rotational

temperature and surface of the discharge plasma (62)

3.4.2Discharge voltage on the influence of inactivation efficiency and

comparison of the treated images (63)

3.4.3Discharge voltage on the influence of inactivation efficiency as the

function of the treatment depth (64)

3.4.4Candida albicans staining microscopy (65)

3.4.5Cross-section discharge intensity of ICCD analysis and discharge

images 67

3.4.6Candida albicans ultraviolet absorption spectrum (67)

3.5Conculsion (68)

4 Large area array micro-structure DBD (69)

4.1Large area array brush-shaped DBD (69)

4.1.1Discharge voltage on the influence of volt-ampere characteristics of

atmospheric pressure brush-shaped DBD plasma (71)

4.1.2V olt-ampere characteristics of atmospheric pressure brush-shaped DBD

plasma under various helium and oxygen ratio (72)

4.1.3Discharge gaps on the influence of uniformity of atmospheric pressure

brush-shaped DBD plasma (74)

4.1.4Discharge voltage on the influence of atmospheric pressure brush-

shaped plasma discharge power (75)

4.1.5Emission spectrum diagnosis and vibrational temperature rotational

temperature of atmospheric pressure brush-shaped DBD plasma (76)

4.1.6Inactivation efficiency uniformity on transverse direction of atmospheric

pressure brush-shaped DBD plasma (77)

4.2Conculsion (80)

5 Atmospheric pressure plasma jet on the control of plant and animal disease (81)

5.1Atmospheric pressure plasma jet on the control of silkworm disease (81)

5.1.1Nosema bombycis (81)

5.1.2Infection of tussah Nosema bombycis (82)

5.1.3Detection method and defense of tussah Nosema bombycis (82)

5.1.4Atmospheric pressure cold plasma jet (83)

5.1.5ICCD characteristics analysis under various discharge voltage (85)

5.1.6Vibrational temperature and rotational temperature of atmospheric

pressure plasma jet (87)

5.1.7Inactivation research and James staining microscopy of tussah Nosema

bombycis by using atmospheric pressure plasma jet (88)

5.1.8SEM and EDS analysis of tussah Nosema bombycis (88)

5.1.9Real-time monitoring of tussah Nosema bombycis inactivation

processing 90

5.1.10Breeding research and Microscopic examination of the body fluids (91)

5.2Atmospheric pressure plasma jet on the control of cladosporium flulvum (93)

5.2.1Discharge frequency and voltage on the influence of inactivation

efficiency of cladosporium flulvum (93)

5.2.2Discharge treatment on the influence of surface appearance of

cladosporium flulvum (94)

5.3Inactivation research by using atmospheric pressure plasma jet activated water

(95)

5.3.1Discharge treatment on the influence of pH value (96)

5.3.2Candida albicans inactivation efficiency by using plasma activated

water 98

5.4Conculsion (99)

6Conclusion and Outlook (100)

6.1Conclusion (100)

6.2Outlook (103)

Reference (103)

Thanks .............................................................................................. 错误!未定义书签。About The Author ............................................................................ 错误!未定义书签。

相关文档