文档库 最新最全的文档下载
当前位置:文档库 › 矿石中自然铜的测定

矿石中自然铜的测定

矿石中自然铜的测定

书山有路勤为径,学海无涯苦作舟

矿石中自然铜的测定

自然铜形成于各种地质过程中的还原条件下,常见于氧化铜矿石中。自然铜

的形成主要与辉铜矿的氧化有关,是硫化铜转变为氧化铜的中间产物,所以自然

铜常呈细粒存在于赤铜矿中;其次,自然铜的形成还与CuSO4 与Fe2O3 的相互

作用有关,因此,自然铜又常存在于褐铁矿中。热液成因的自然铜呈细分散关

态与沸石、方解石等在一起。伴生矿物主要是次生硫化铜和赤铜矿。一、方

法概述乙二胺-HgCl2 法试样先用乙二胺溶液浸取氧化铜矿物,在乙二胺溶液

中加入少许2,3-二巯基丙烷磺酸钠可降低自然铜的浸取率。在规定条件下,

自然铜仅溶解1.6%,而所有氧化铜矿物溶解近完全。分离氧化铜后,以含盐酸羟

胺的HgCl2 乙醇溶液浸取自然铜。加盐酸羟胺是为了破坏自然铜表面上的2,

3-二巯基丙烷磺酸钠膜。此时,自然铜溶解完全,硫化铜的浸取率在2%以下。KCN-水合肼法自然铜在KCN 溶液中由于下述反应则被浸取,2Cu+8CN- +2H2O=2Cu(CN)43-+H2+2OH-2Cu+8CN-+O+H2O=2Cu(CN)42-+2OH- 由反应式可知,增加碱度和引入还原剂,可阻止反应发生。为此,用KCN-水合肼溶液

浸取氧化铜和次生硫化铜,这两类矿物的溶解不受还原剂存在与否的影响。浸取

化铜和次生硫化铜后,可用氨水-(NH4)2CO3 或FeCl3 溶液浸取自然铜。

AgNO3 法当试样中不含次生硫化铜时,可用10-20g/LAgNO3 溶液在0℃时浸

取自然铜,,所有氧化铜不干扰测定。二、分析步骤乙二胺-HgCl2 法测定称

取0.5000g-2.0000g 试样置于锥形瓶中,加入50mL3%乙二胺、0.125g2,3-二巯基丙烷磺酸钠、1.5g NH4Cl、2g 无水Na2SO3,振荡30min,过滤,洗涤,滤液弃去或测定自由氧化铜。残渣中加入50mL 30g/L 盐酸羟胺-20g/L HgCl2-乙醇溶液,

振荡30min,过滤,洗涤,滤液加热蒸发至30-40mL,稍冷加入15-20mL 硝混

酸,继续加热破坏有机物,并冒烟至干,测定铜。KCN-水合肼法测定称取

GBT煤中全水分的测定方法

211—2007 煤中全水分的测定方法 GB/T 211-2007 代替GB/T 211-1996 1 范围 本标准规定了测定煤中全水分的试剂、仪器设备、操作步骤、结果计算及精密度。 在氮气流中干燥的方式(方法A1和方法B1)适用于所有煤种;在空气流中干燥的方式(方法A2和方法B2)适用于烟煤和无烟煤;微波干燥法(方法C)适用于烟煤和褐煤。 以方法A1作为仲裁方法。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 474 煤样的制备方法 GB/T 煤碳机械化采样第2部分:煤样的制备(GB/T ,ISO 13909-4:2001,NEQ)

211—2007 GB/T 212 煤的工业分析方法(GB/T 212-2001,eqv ISO 11722:1999,eqv ISO 1171:1997,eqv ISO 562:1998) 3 方法提要 3.1 方法A(两步法) 3.1.1 方法A1:在氮气流中干燥 一定量的粒度<13mm的煤样,在温度不高于40℃的环境下干燥到质量恒定,再将煤样破碎到粒度<3mm,于(105~110)℃下,在氮气流中干燥到质量恒定。根据煤样两步干燥后的质量损失计算出全水分。 3.1.2 方法A2:在空气流中干燥 一定量的粒度<13mm的煤样,在温度不高于40℃的环境下干燥到质量恒定,再将煤样破碎到粒度<3mm,于(105~110)℃下,在空气流中干燥到质量恒定。根据煤样两步干燥后的质量损失计算出全水分。 3.2 方法B(一步法) 3.2.1 方法B1:在氮气流中干燥 称取一定量的粒度<6mm的煤样,于(105~110)℃下,在氮气流中干燥到质量恒定。根据煤样干燥后的质量损失计算出全水分。 3.2.2 方法B2:在空气流中干燥 称取一定量的粒度<13mm(或<6mm)的煤样,于(105~110)℃下,在空气流中干燥到质量恒定。根据煤样干燥后的质量损失计算出全水分。 3.3 方法C(微波干燥法)

煤的工业分析方法

煤的工业分析方法 GB/T212-2008 代替GB/T 212-2001,GB/T 15334-1994,GB/T 18856.7-2002 1 范围 ) GB/T 18856.1 水煤浆试验方法第1部分:采样 3 水分的测定 本章规定了煤的三种水分测定方法。其中方法A适用于所有煤种,方法B仅适用于烟煤和无烟煤,微波干燥法(见附录A)适用于褐煤和烟煤水分的快速测定。

在仲裁分析中遇到有用一般分析试验煤样水分进行校正以及基的换算时,应用方法A 测定一般分析试验煤样的水分。 3.1 方法A(通氮干燥法) 3.1.1 方法提要 单位为毫米

φ 图1 玻璃称量瓶 3.1.3.3 干燥器:内装变色硅胶或粒状无水氯化钙。 3.1.3.4 干燥塔:容量250mL,内装干燥剂。 3.1.3.5 流量计:量程为(100~1000)mL/min。 3.1.3.6 分析天平:感量0.1mg。 3.1.4 试验步骤 3.1. 4.1 在预先干燥和已称量过的称量瓶内称取粒度小于0.2mm的一般分析试验煤样(1±0.1)g,称准至0.0002g,平摊在称量瓶中。 3.1. 4.2 打开称量瓶盖,放入预先通入干燥氮气并已加热到(105~110)℃的干燥箱(3.1.3.1)中。烟煤干燥1.5h,褐煤和无烟煤干燥2 h。在称量瓶放入干燥箱前10min 开始通氮气,氮气流量以每小时换气15次为准。 3.1. 4.3 从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温(约20min)后称量。

3.1. 4.4 进行检查性干燥,每次30min,直到连续两次干燥煤样质量的减少不超过0.0010g 或质量增加时为止。在后一种情况下,采用质量增加前一次的质量为计算依据。当水分在 2.00%以下时,不必进行检查性干燥。 3.2 方法B(空气干燥法) 1±0.1)g,称准至0.0002g,平摊在称量瓶中。 3.2.3.2 打开称量瓶盖,放入预先鼓风并已加热到(105~110)℃的干燥箱(3.2.2.1)中。在一直鼓风的条件下,烟煤干燥1h,无烟煤干燥1.5 h。 注:预先鼓风是为了使温度均匀。可将装有煤样的称量瓶放入干燥箱前(3~5)min就

试题 第二讲 食品中灰分、维生素的检验

姓名成绩 食品分析测试题(三) 一、填空题(每空1分,共27分) 1.牛奶中的总灰分在牛奶中的含量是恒定的,一般在 0.68%~0.74%之间,平均值非常接近0.70%。若掺水, 灰分降低。 2.食品安全国家标准(GB 5009.4—2010)规定了食品中 灰分的测定方法,该方法适用于除淀粉及其衍生物之外的食品中灰分含量的测定。 3.食品中灰分的测定,一般选择灰化温度在 500~550 ℃之间,在马弗炉中灼烧2~5小时。之后,等温度降到_200_℃左右,方可取出,放入干燥器中。冷却30分钟后,称量。 4.维生素可以根据它们的溶解性分为两大类。维生素A、 D、E属于_脂_溶性维生素,均__不溶__(易溶/不溶)于 水,___易溶___(易溶/不溶)于有机溶剂。维生素C和B族维生素属于_水_溶性维生素,均___易溶___(易溶/不溶)于水,不溶(易溶/不溶)于有机溶剂。 5.脂溶性维生素中,维生素A和维生素D对酸不稳定, 维生素 E 对酸稳定。 6.酒精中如果含有醛类,通常用__银镜__反应来检查。 7.维生素B1又叫硫胺素或抗神经炎素;维生素B2

又叫核黄素。这两种维生素均属于水溶性维生素。 8.维生素C又叫做抗坏血酸。自然界中存在两种形式 的维生素C,分别是:还原型抗坏血酸和脱氢型抗坏血酸。 9.紫外分光光度法测定维生素A,只适用于透明鱼油、 维生素A浓缩产物等纯度较高的试样。 10.三氯化锑腐蚀性强,不能沾在手上,三氯化锑遇水生 成白色沉淀.因此用过的仪器要先用稀盐酸浸泡后再清洗。 二、不定项选择题(每题2分,共20分) 1.测定食品中的灰分时,一般控制灼烧后灰分为____。 (C) A. 0~10mg B. 5~100mg C. 10~100mg D. 100mg以上 2.在人体内,脂溶性维生素主要储存于____中。( B ) A. 肌肉 B. 肝脏 C. 血液 D. 肠胃 3.水溶性维生素在____介质中稳定。( A ) A. 酸性 B. 碱性 C. 中性和偏碱性 D. 中性和偏酸性 4.维生素A在氯仿溶液中与三氯化锑试剂作用,产生不 稳定的蓝色物质,比色法测定时,必须在____秒内完成测定。(B) A. 2 B. 6 C. 10 D. 20

煤样水分的测定

煤样水分的测定 一、内水的测定 1 测定原理:空气干燥法 称取一定量的空气干燥煤样,置于105~110℃干燥箱中,在空气流中干燥到质量恒定。然后根据煤样的质量损失计算出水分的质量分数。 2 仪器、设备: 干燥箱:带有自动控温装置,内装有鼓风机,并能保持温度在105~110℃范围内; 干燥器:内装变色硅胶; 玻璃称量瓶:直径40mm ,高25mm ,并带有严密的磨口盖; 分析天平:感量。 3测定步骤: 在预先干燥并恒重过(精确至的称量瓶中称取粒度小于 mm 以下的空气干燥煤样(1±)g ,精确至,平摊在称量瓶中。打开称量瓶盖,放入预先鼓风(预先鼓风是为了使温度均匀。将称好装有煤样的称量瓶放入干燥箱前 3~5min 就开始鼓风)并已加热到105~110℃的干燥箱中。在一直鼓风的条件下,烟煤干燥1h ,无烟煤干燥1~.从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温(约20min) 后,称量。然后进行检查性干燥,每次30min ,直到连续两次干燥煤样的质量减少不超过 .或质量增加时为止。在后一种情况下,采用质量增加前一次的质量为计算依据。水分在%以下时,不必进行检查性干燥。 4 结果计算: 空气干燥煤样的水分按下式计算: Mad == m m 1 × 100 式中: Mad ——空气干燥煤样的水分含量,%; m1——煤样干燥后失去的质量,g ;

m——煤样的质量,g。 5水分测定的精密度: 水分测定的重复性如下表规定。 附: 仪器分析(内水测定简易操作步骤) 1准备好水/灰分坩埚,试验样品,样勺,检查控制线路和电源线路是否坚固好。 2打开电源,启动计算机。 3双击《SDTGA5000a》软件 4单击《设置》中的《参数设置》,水分方法[自定义水]单击《保存》 5单击〈〈实验〉〉中的〈〈称样〉〉;称量项目[水分],测试方法[自定义水],试样个数[],新编号;单击〈〈开始〉〉,按提示操作(放入坩埚,加入试样),点击〈〈确认〉〉。该试验一般需用时30min。 6实验结束后,系统进入“恒温”状态。 7退出〈〈SDTGA5000a〉〉软件,关闭计算机。 二. 外水的测定 1 测定原理:空气干燥法 称取一定量的空气干燥煤样,置于70~80℃干燥箱中,在空气流中干燥到质量恒定。然后根据煤样的质量损失计算出水分的质量分数。 2 仪器、设备: 干燥箱:带有自动控温装置,内装有鼓风机,并能保持温度在105~110℃范围内; 干燥器:内装变色硅胶; 浅盘:有镀锌薄铁板或铝板等耐腐蚀又耐热的材料制成;其面积能以大约cm2煤样的比例容

煤中全水的测定方法.

煤中全水分的测定方法 标准号:GB/T211-2007。代替GB/T211-1996《煤中全水分的测定方法》。2008-06-01实行。 水是煤炭的组成部分,煤中水分含量与其变质程度有一定的关系。煤中含水量过多,会增加加工利用的难度,同时也会给运输、贮存带来不利的影响;煤中含水量高,其发热量就降低,因为煤在燃烧过程中,水分蒸发要消耗相当热量。全水分还是商品煤的定量指标,如:洗精煤的计量指标定在7.0 %。 图 1 煤中水分存在状态的分类 例如:硫酸钙(CaSO4·H2O)、高岭土(Al2O3·2SiO2·2H2O)中 的水。 煤中的游离水又分为外在水分和内在水分。 全水分

燥状态时所失去的水。 煤中水分的测定主要是指全水分的测定和空气干燥基水分的测定,这两种测定的原理和操作基本相同。煤中全水分的测定包括内在水分和外在水分的测定。 1范围 △规定测定煤中全水分的试剂、仪器设备、实验步骤、结果计算及精密度等。 △在氮气流中干燥的方式(方法A1和方法B1)适用于所有煤种; △在空气流中干燥的方式(方法A2和方法B2)适用于烟煤和无烟煤;△微波干燥法(方法C)适用于烟煤和褐煤。 △方法A1为仲裁方法。 2规范性引用文件 GB/T474 煤样的制备方法 GB/T19494.2 煤炭机械化采样第二部分:煤样的制备 GB/T212 煤的工业分析方法

3 方法分类 图 2 煤中全水分测定方法分类 4 试剂 △氮气:99.9%,含氧量<0.01%。(氮气为实验室常用惰性气体,主要作 用——防止样品氧化。若干燥时通入含氧量>0.01%的氮气,会使煤样在失去水分同时,氧化加剧,导致全水分测定值偏低。) △无水氯化钙:化学纯,粒状。(白色,易吸水,常用干燥剂,密封贮存) △变色硅胶:工业用品。(常用干燥剂) 5 仪器设备 △空气干燥箱:带有自动控温和鼓风装置,能控温在(30~40)℃和 (105~110)℃范围内,有气体进、出口,有足够的换气量,如每小时可换气5次以上。 △通氮干燥箱:带自动控温装置,能控温在(105~110)℃范围内,可容 纳适量的称量瓶,且具有较小的自由空间,有氮气进、出口,每小时可换气15次以上。 方法A1(在氮气流中干燥) 方法A2(在空气流中干燥) 方法C(微波干燥法)

煤炭化验设备化验水分的方法

https://www.wendangku.net/doc/893474342.html, 根据GB/T213-2008《煤的水份测定方法》的要求,为大家简介叙述煤炭化验设备化验煤炭水分的方法: 1做水分前先把鼓风干燥箱升温至105度(国标的标准温度),恒温等待实验。 2全水又叫外水用字母(mar)表示。我们做全水时称取粒度小于6mm的空气煤样1g,称准到0.0001g放入干燥箱里进行烘干。两个半小时以后取出,在空气中自然冷却,大约5-10min 后放入天平进行称量。 3全水份=减少的重量比上空气煤样*100% 4分析水也叫内水用字母(mad)表示。我们做分析水时取小于0.2mm的煤样1g,称准到0.0001g。放入105度恒温的干燥箱里。烘干2.5个小时,取出后放在空气中自然冷却,5-10min 放入天平称量。 5分析水=减少的重量比上空气煤样*100% 这种方法目前我国大部分地区最常用的做水分的方法,精度高,不过时间过长,不适合大批量做样。有我们全自动水分测定仪10-20min可连续测量9个样品,有需要的朋友可以参考一下。 根据GB/T213-2008《煤的水份测定方法》的要求,为大家简介叙述煤炭化验设备化验煤炭水分的方法: 1做水分前先把鼓风干燥箱升温至105度(国标的标准温度),恒温等待实验。 2全水又叫外水用字母(mar)表示。我们做全水时称取粒度小于6mm的空气煤样1g,称准到0.0001g放入干燥箱里进行烘干。两个半小时以后取出,在空气中自然冷却,大约5-10min 后放入天平进行称量。 3全水份=减少的重量比上空气煤样*100% 4分析水也叫内水用字母(mad)表示。我们做分析水时取小于0.2mm的煤样1g,称准到0.0001g。放入105度恒温的干燥箱里。烘干2.5个小时,取出后放在空气中自然冷却,5-10min 放入天平称量。 5分析水=减少的重量比上空气煤样*100% 这种方法目前我国大部分地区最常用的做水分的方法,精度高,不过时间过长,不适合大批量做样。有我们全自动水分测定仪10-20min可连续测量9个样品,有需要的朋友可以参考一下。 1题目:煤中全水分的测定GB/T 211 –1996 方法B(空气干燥法) 2目的:测定煤的空气干燥基水分 3煤炭化验设备: 3.1 电热恒温鼓风干燥箱 3.2 玻璃称量皿:直径70mm,高35--40mm,并带有严密的磨口盖。 3.3 干燥器:内装变色硅胶。 3.4 电子天平:JF1004型感量0.0001g。 3.5 托盘: 4试剂和材料: 变色硅胶:工业用品。 5煤中全水分的测定实验步骤: 5.1 预先将干燥箱鼓风并加热到105~110℃。 5.2 称量预先干燥过的称量皿,精确到0.2mg,记录称量皿的质量。

煤的硬度测定方法

煤炭硬度分类、分级及测定 煤的硬度测定方法 作为与煤打交道的单位,化验设备、分析仪器是必备,破碎机、制样设备特别关注煤的硬度。硬度指标常常是比较关注的一个指标。它对于设计制造破碎和粉碎设备,煤的可磨性;煤的可碎性的大小有着决定性的作用。鹤壁市冶金机械仪器设备公司是专业设计生产破碎机和粉碎机以及量热仪、定硫仪、水分测定仪、灰份测定仪,破碎硬度高的锤刀式破碎机,化验设备。煤质分析仪器的企业。长期关注煤的硬度测定和变化。煤的硬度是指煤能低抗外来机械作用的能力。根据煤的硬度值大小可了解机械和截齿的磨损情况及破碎、成型加工的难易程度。硬度测定的方法很多,划痕硬度(摩氏硬度)、弹性回跳硬度(肖氏硬度)、压痕硬度(显微硬度)及耐磨硬度(也称可磨性)。 煤的划痕硬度,它是用一套标准矿物的摩氏硬度计来刻划煤的标本而获得的相对硬度,多东摩氏硬度的1-4度之间.煤的硬度主要取决于它的煤化程度.通常,中等煤化度的焦煤类的硬度最低,由焦煤向瘦煤、贫煤和无烟煤过渡时,硬度逐渐增高,到年老无烟煤向半石墨、石墨过渡时,硬度又急剧降低,从焦煤向肥煤、1/3焦煤、气煤、长焰煤过渡时,煤的硬度又逐渐有所增高,但到年轻长焰煤至褐煤阶段,煤的硬度又显著降低。煤的硬度与显微组分有关系。同一煤的硬度以惰质组分最大,壳质组分和腐泥组分的硬度最小。镜质组居中。矿物组分不同,煤的硬度也不同,如黄铁矿的硬度较高,而泥质页岩的硬度就较低。由于煤的划痕硬度的精确度不高,因而一般多用煤的显微硬度(压痕硬度)。 煤的显微硬度是指煤对坚硬物体压入的对抗能力。其方法原理是将顶角相对面夹角136℃的正四棱锥体金刚石压头,以选定的试验力下压入试样表面,保持一定的时间达稳定态后,卸除试验力,测量压痕两对角d1和d2的长度。根据试验力和两个角线长度的平均值,求得维氏显微硬度值。 磨粉机械中各类矿物硬度标准划分: 硬度:由于是破坏性检定,所以对未研磨之原石或不贵重之矿石才可以使用。硬度的尺度有两类,一类是绝对硬度,另一类是莫氏硬度(一种相对硬度)。 莫氏硬度:以常见的十种矿物来作为标准用相互的刮擦以区分孰硬孰软,习惯上矿物学或宝石学上都是用莫氏硬度。 莫氏硬度分十级。滑石、石膏、方解石、萤石、磷灰石、正长石、石英、黄玉、刚玉、金刚石。 磨粉机设备破碎物料强度中经常提到的矿石莫氏硬度是一种相对硬度,1824年由德国矿物学家莫斯(Frederich Mohs)首先提出。应用划痕法将棱锥形金刚钻针刻划所试矿物的表面而发生划痕,用测得的划痕的深度分十级来表示硬度,习惯上矿物学或宝石学上都是用莫氏硬

煤中全水分的测定方法

煤中全水分的测定方法 2008-06-08 00:12 煤中全水分的测定方法 Determination of total moisture in coal 国家标准局1984-08-07 发布1985-05-01 实施 本标准适用于褐煤、烟煤和无烟煤的商品煤样、生产煤样和煤层煤样的全水分测定。全水分是指煤样在采取时所含水分的总量。 本标准规定测定煤中全水分的三种方法,其中方法A 仅适用于烟煤和无烟煤,并作为测定烟煤和无烟煤全水分的仲裁方法。而方法B 和C 适用于褐煤、烟煤和无烟煤,并以方法B 作为测定褐煤全水分的仲裁方法。 方法要点:煤样在105~110℃或145±5℃的干燥箱中干燥至恒重,以煤样的失重计算水分的百分含量。 1 仪器设备 1.1 干燥箱:内附鼓风机,并带有自动调温装置,温度能保持在105~110℃或145±5℃范围内。 1.2 浅盘:由镀锌薄铁板或铝板等耐腐蚀又耐热的材料制成,其面积能以大约每平方厘米0.8g煤样的比例容纳500g 煤样。而且盘的重量应小于500g。 1.3 托盘天平:感量为1g 和5g 各一台。 1.4 干燥器:内装干燥剂(变色硅胶或未潮解的块状无水氯化钙)。 1.5 玻璃称量瓶:直径为70mm,高为35~40mm,并带有严密的磨口盖。 1.6 分析天平:感量为1mg。 2 煤样的制备

2.1 按照GB 474—83《煤样的制备方法》中第 3.9 条缩制煤样。 2.2 方法A 和B 采用最大粒度不超过13mm,煤样量约2kg。方法C 采用最大粒度不超过6mm,煤样量不应少于300g①。 2.3 在测定全水分之前,首先应检查装有煤样的容器的密封情况,然后将其表面擦拭干净,用托盘天平(1.3)称重②,并与容器上标签所注明的重量进行核对。如果称出的煤样毛重(即煤样与容器的总重量)小于标签上所注的毛重(不超过1%),并且能确定煤样在运送过程中没有损失时,应将减轻的重量作为煤样在运送过程中的水分损失量。并计算出该量对煤样净重(标签上煤样毛重减去容器的重量)的百分数(W1),在计算煤样全水分时,应加入这项损失,并将容器中的煤样充分地混合。 注:①GB474—83《煤样的制备方法》中3.9.3 全水分煤样粒度小于 3mm,煤样量100g 的规定改为本条的规定。 ②当煤样与容器的总重量不超过1kg 时,应采用感量为1g 的托盘天平进行称重。 3 测定步骤 3.1 方法A 用已知重量的干燥、清洁的浅盘(1.2)称取煤样500g(称准到1g),并将盘中的煤样均匀地摊平。将装有煤样的浅盘放入预先鼓风注并加热到105~110℃的干燥箱(1.1)中,在不断鼓风的条件下烟煤干燥2~2.5h,无烟煤干燥3~3.5h。再从干燥箱中取出浅盘,趁热称重。然后进行检查性的试验,每次试验30min,直到煤样的减量不超过1g 或者重量有所增加时为止。在后一情况下,应采用增重前的一次重量作为计算依据。 注:将称好煤样的盘子放入干燥箱之前3~5min 开始鼓风。 3.2 方法B 用已知重量的干燥、清洁的浅盘(1.2)称取煤样500g(称准到1g),并将盘中的煤样均匀地摊平。

煤炭含水量的测量

煤炭含水量的测量 鹤壁仪器公司-马跃骋 煤炭含水量的测量,是衡量煤炭质量和评价煤质好坏标准的重要指标。 煤炭水分测量,常用水分测定仪。水分测定仪可以出测量分析水和全水含量。仪器有智能型和微机型。它严格按国标[GB/T211-1996]的有关要求自动完成水分的测定过程,它还可用于测定其它非金属物质的水分含量。性能特点如下: 1、采用最新型控制电路,集成度高。仪器高度智能化、自动化、性能更加稳定可靠。 2、采用大屏幕LCD液晶显示器。测定数据、状态指示、中文菜单操作提示,清晰直观。 3、采用原装进口电子天平,称量稳定、快速、可靠。 4、称重有误时,自动重新称量,仪器自动判定有无容器,自动判定有无样品。 5、内置快速、恒重两种测定程序,微波、红外两种烘干方式。烘干时间、烘干方式、由测定程序用户任意设定。微波烘干方式效率高、时间短。对于焦炭、易燃、金属含量较高的煤种适合于红外烘干方式。 6、程序自动修正热平衡引起的称重误差。 7、具有掉电保护功能。内置日历时钟,设定参数、测定数据不因掉电而丢失。 8、自带打印机。测定数据自动打印,或重复打印。 9、每天自动生成非重复的样品编码。 10、用户可选配RS232串行接口及动态测控软件,与上位计算机联机,由计算机进行操作和数据处理。 煤的全水分测定中应该注意哪些问题 煤的全水分测定中的关键问题是要保证原来煤样的水分没有损失也没有增加,即从制样到测试前的全过程中煤样中的水分没有变化,因此必须注意以下几个问题:采集的全水分试样保存在密封良好的容器内,并放在阴凉的地方;制样操作要快,最好用密封式破碎机;进行全水分测定的煤样不宜过细,如要用较细的试样进行测定,则测定该用密封式破碎机或用两步法进行测定--先破碎成较大颗粒测其外在水分,再破碎到较细颗粒测其内水。2目前测定空气干燥煤样水分的标准方法有那几种其原理是什么有什么特点空气干燥煤样水分测定的标准方法最常用的是加热干燥和共沸蒸馏法。(一)、加热干燥法分为干燥失重法和直接重量法。干燥失重法为煤样在105~110℃下加热干燥,根据试样的质量损失来测定水分,方法简单,对于年老煤比较适合,但是由于空气中加热时间教长(1~2h),煤样容易氧化增重,而使测定结果偏低,对于年轻煤影响尤其大。为了克服这一缺点,一般采用两种措施。一种是在真空或惰性气氛(如

食品中灰分的测定

实验2 食品中灰分的测定 一、实验原理 对于食品行业来说,灰分是一项重要的质量指标。例如,在面粉加工中,常以总灰分含量来评定面粉等级,因为小麦麸皮的灰分含量比胚乳高20倍左右,因此,面粉的加工精度越高,灰分含量越低。在生产果胶、明胶等胶质产品时,总灰分可说明这些制品的胶冻性能;水溶性灰分则在很大程度上表明果酱、果冻等水果制品中的水果含量;而酸不溶性灰分的增加则预示着污染和掺杂。这对保证食品质量是十分重要的。 总灰分采取简便、快速的干灰化法测定。即先将样品中的水分去掉,然后再尽可能低的温度下将样品小心地加热炭化和灼烧,除尽有机质,称取残留的无机物,即可求出总灰分的含量。本方法适用于各类食品中灰分含量的测定。 二、试剂和器材 高温电炉(马弗炉) 坩埚:测定食品中的灰分含量时,通常采用瓷坩埚(30mL ),可耐1200℃高温,理化性质稳定且价格低廉,但它的抗碱能力较差。 三、实验步骤 1、总灰分的测定 (1)样品预处理 1)样品称量 以灰分量10-100mg 来决定试样的采取量。通常奶粉、大豆粉、调味料、鱼类及海产品等取1-2g ;谷类食品、肉及肉制品、糕点、牛乳取3-5g ;蔬菜及其制品、糖及糖制品、淀粉及其制品、奶油、蜂蜜等取5-10g ;水果及其制品取20g ;油脂取50g 。 2)样品处理 谷物、豆类等含水量较少的固体试样,粉碎均匀备用;液体样品需先在沸水浴上蒸干;果蔬等含水分较多的样品则采用先低温(66-70℃)后高温(95-105℃)的方法烘干,或采用测定水分后的残留物作样先提取脂肪后再进行分析。 3)瓷坩埚处理 将坩埚用体积分数为20%的盐酸煮1-2h ,洗净晒干后,用氯化铁与蓝墨水的混合液或铅笔在坩埚外壁、底部及盖上写上编号。置于马弗炉中,在600℃灼烧。取出,冷却至200℃以下时,移入干燥器内冷却至室温后称重。重复灼烧至恒重。 (2)称取适量样品于坩埚中;在电炉上小心加热,使样品充分炭化至无烟。然后将坩埚移至高温电炉中,在500-600℃灼烧至无炭粒(即灰化完全)。冷却到200℃以下时,移入干燥器中冷却至室温后称量,重复灼烧至前后两次称量相差不超过为恒重。 (3)结果计算 100*0 2011m m m m x 式中 x 1——样品中灰分的质量分数,% m 0——坩埚的质量,g m 1——坩埚和总灰分的质量,g m 2——坩埚和样品的质量,g 2、水溶性灰分与水不溶性灰分的测定 在总灰分中加水约25mL ,盖上表面皿,加热至近沸,用无灰滤纸过滤,以25mL 热水洗涤,将滤纸和残渣置于原坩埚中,按总灰分测定方法再行干燥、炭化、灼烧、冷却、称量。以下式计算水溶性灰分与水不溶性灰分的含量: 100*0 2032m m m m x --= 式中 x 2——样品中水不溶性灰分的质量分数,% m 0——坩埚的质量,g

食品中水分和灰分含量的测定

实验一食品中水分和灰分含量的测定 水分含量的测 一、目的及意义 通过测定食品中的水分含量,可以研究食品的最佳保存条件,食品的成熟程度,以及食品所含有的营养素浓度等一系列有关食品的问题。 二、试剂与药品 奶粉 三、实验原理 利用食品中水分的性质,在101.3Kpa (一个大气压),温度在101℃~105℃下采用挥发方法测定样品中干燥减失的重量,包括吸湿水、部分结晶水和该条件能挥发的物质,再通过干燥前后的称量数值计算出水分的含量。 四、仪器及设备 铝盒、电热恒温干燥箱、干燥器(内附有效干燥剂)、电子天平 五、分析步骤 1. 取洁净铝盒,置于101℃~105℃干燥箱中,铝盒盖斜支于铝盒边,加热1.0h ,取出盖好,置于干燥器内冷却0.5h ,称量,并重复干燥前后两次质量不超过2mg ,取为恒重 2. 称取奶粉2g 左右放入铝盒中,置于101℃~105℃干燥箱中,盒盖斜支于盒边,干燥2h~4h 后,盖好取出放入干燥器内冷却0.5h 后称量。然后再放入101℃~105℃干燥箱中干燥1h 左右,取出,放入干燥器内冷却0.5h 后再称量。并重复以上操作至前后两次质量差不超过2mg ,即为恒重。 六、结果分析与讨论 食品中(水分%+干物质%=100%) 水分%= %100%100103?--m m m 3m --------干物质与铝盒的总重 3m =18.2208g 0m --------铝盒恒重的重量 实验数据 0m =16.2665g 1m --------奶粉的称量重量 1m =2.0084g

计算可得 水分%=2.694% 由此可知奶粉中水分的百分比为2.694% 灰分含量的测定 一、 目的及意义 检测食品中矿物质的含量,是食品有机物破坏的方法之一。 二、 试剂与药品 奶粉 三、 实验原理 食品经灼烧后,所残留的无机物称灰分,灰分数值系用灼烧、称重后计算得出。 四、 仪器及设备 马弗炉、电子天平、坩埚、干燥器(内附有效干燥剂)。 五、 分析步骤 1. 取大小适宜的石英坩埚或瓷坩埚置于马弗炉中,在550℃下灼烧0.5h ,冷却至200℃左 右,取出,放入干燥器中冷却0.5h ,准确称量。重复灼烧至前后两次称量相差不超过0.5mg 为恒重。 2. 称取2g 左右奶粉,放入瓷坩埚,然后先在电热板上以小火加热使试样充分碳化至无烟, 然后置于马弗炉中,在550℃灼烧4h ,冷却至200℃左右,取出,放入干燥器中冷却30min 。重复灼烧至前后两次称量相差不超过0.5mg 为恒重。 3. 注意事项; 把坩埚放入高温炉或从炉中取出时,要在炉口停留片刻,使坩埚预热或冷却。 防止因温度剧变而使坩埚破裂. 六、 结果分析与讨论 计算 灰分%=%1001 02?-m m m 2m --------灰分与瓷坩埚的总重 2m =51.4785g 0m --------瓷坩埚恒重的重量 实验数据 0m =51.3679g 1m --------奶粉的称量重量 1m =2.0004g 计算可得 灰分%=5.528%

---GBT211煤中全水分的测定方法

煤中全水分的测定方法 GB/T 211-2007 代替GB/T 211-1996 1 范围 本标准规定了测定煤中全水分的试剂、仪器设备、操作步骤、结果计算及精密度。 在氮气流中干燥的方式(方法A1和方法B1)适用于所有煤种;在空气流中干燥的方式(方法A2和方法B2)适用于烟煤和无烟煤;微波干燥法(方法C)适用于烟煤和褐煤。 以方法A1作为仲裁方法。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 474 煤样的制备方法 GB/T 19494.2 煤碳机械化采样第2部分:煤样的制备(GB/T 19494.2-2004,ISO 13909-4:2001,NEQ) GB/T 212 煤的工业分析方法(GB/T 212-2001,eqv ISO 11722:1999,eqv ISO 1171:1997,eqv ISO 562:1998) 3 方法提要 3.1 方法A(两步法) 3.1.1 方法A1:在氮气流中干燥 一定量的粒度<13mm的煤样,在温度不高于40℃的环境下干燥到质量恒定,再将煤样破碎到粒度<3mm,于(105~110)℃下,在氮气流中干燥到质量恒定。根据煤样两步干燥后的质量损失计算出全水分。 3.1.2 方法A2:在空气流中干燥 一定量的粒度<13mm的煤样,在温度不高于40℃的环境下干燥到质量恒定,再将煤样破碎到粒度<3mm,于(105~110)℃下,在空气流中干燥到质量恒定。根据煤样两步干燥后的质量损失计算出全水分。 3.2 方法B(一步法) 3.2.1 方法B1:在氮气流中干燥

煤中含氧官能团测定方法.doc

煤中含氧官能团测定方法 1.碳和氢 碳是煤中最重要的组成元素.碳含量(Cr)随煤化程度的升高而增加.泥炭的Cr为50~60%;褐煤为60~77%;烟煤为 74~92%;无烟煤为90~98%.在煤化程度相同的煤中,丝质组的Cr最高,镜质组次之,稳定组最低.氢中煤中第二个重 要的组成元素.腐泥煤的氢含量(HR)比腐植煤高,一般在6%以上,有时达11%,这是由于形成腐泥煤的低等生物富 含氢.在腐植煤中,稳定组的HR最高,镜质组次之,丝质组最低.随煤化程度升高,它们的HR均逐渐减少. 2.氮 煤中的氮,主要是由成煤植物中的蛋白质转化而来.人们认为煤中的氮通常都是有机氮,其中有一些是杂环形的. 煤中的NR通常约为0.8~1.8%,但也随煤公程度的升高而略有下降.我国弱粘结煤和不粘结烟煤的NR多低于1%,可 能是在泥炭化阶段受到不同程度的氧化作用,成煤植物中的蛋白质氧化分解,故NR普遍较低. 3.氧 氧是煤中主要元素之一,氧在煤中存在的总量和形态直接影响着煤的性质煤的元素组成煤的组成以有机质为主 体,构成有机高分子的主要是碳、氢、氧、氮等元素。煤中存在的元素有数十种之多,但通常所指的煤的元素 组成主要是五种元素、即碳、氢、氧、氮和硫。在煤中含量很少,种类繁多的其他元素,一般不作为煤的元素 组成,而只当作煤中伴生元素或微量元素。 一、煤中的碳

一般认为,煤是由带脂肪侧链的大芳环和稠环所组成的。这些稠环的骨架是由碳元素构成的。因此,碳元素是 组成煤的有机高分子的最主要元素。同时,煤中还存在着少量的无机碳,主要来自碳酸盐类矿物,如石灰岩和 方解石等。碳含量随煤化度的升高而增加。在我国泥炭中干燥无灰基碳含量为55~62%;成为褐煤以后碳含量 就增加到60~76.5%;烟煤的碳含量为77~92.7%;一直到高变质的无烟煤,碳含量为88.98%。个别煤化度 更高的无烟煤,其碳含量多在90%以上,如北京、四望峰等地的无烟煤,碳含量高达95~98%。因此,整个成 煤过程,也可以说是增碳过程。 二、煤中的氢 氢是煤中第二个重要的组成元素。除有机氢外,在煤的矿物质中也含有少量的无机氢。它主要存在于矿物质的 结晶水中,如高岭土(Al203·2Si02·2H2O)、石膏(CaS04·2H20 )等都含有结晶水。在煤的整个变质过程中, 随着煤化度的加深,氢含量逐渐减少,煤化度低的煤,氢含量大;煤化度高的煤,氢含量小。总的规律是氢含 量随碳含量的增加而降低。尤其在无烟煤阶段就尤为明显。当碳含量由92%增至98%时,氢含量则由2.1%降到 1%以下。通常是碳含量在80~86%之间时,氢含量最高。即在烟煤的气煤、气肥煤段,氢含量能高达6. 5%。 在碳含量为65~80%的褐煤和长焰煤段,氢含量多数小于6%。但变化趋势仍是随着碳含量的增大而氢含量减 小。

灰分和矿物质复习题

灰分和主要矿物元素的分析测定 一、填空题: 1.灰分的主要成分是矿物盐和无机盐,灰分按其溶解性可分为水溶性灰分、水不溶性灰分和酸不溶性灰分;灰分测定的主要设备是马福炉;灰分测定的温度是:550~600℃;灰分测定中,盛装样品的器皿叫坩埚,使用的钳叫坩埚钳。 2.灰分含量测定步骤:瓷坩埚的准备→样品预处理→炭化→灰化。 3.干法灰化中加速灰化的方法有改变操作条件、加入灰化助剂、加入惰性不溶物。 4.灰分测定样品应碳化时,应采用先低温后高温的方法进行炭化,样品应碳化至无黑烟;样品经高温灼烧后,正常灰分的颜色是纯白色;灰化时对特别容易膨胀的试样可先于试样上加数滴辛醇或纯植物油,再进行炭化。 5.面粉的加工精度,在面粉加工中,常以总灰分含量评定面粉等级。 6.高锰酸钾滴定法测食品中钙的原理为:样品经灰化后,用.盐酸溶解,钙与草酸生成草酸钙沉淀;沉淀经洗涤后,加入硫酸溶解,把草酸游离出来,再用高锰酸钾标准溶液滴定。 7.吸光光度法测定溶液浓度的方法有__标准溶液比较法__和__标准曲线法__。 8.原子吸收分光光度计,应用最广泛的光源是空心阴极灯;分光系统的作用是获得待测元素的特征谱线;原子吸收分光光度法测定溶液浓度的方法有标准曲线、__标准加入法。 二、判断 1.(×)陶瓷容器盛装碱性食品时尤其容易引起重食品金属含量过多。 2.(√)测定灰分可判断食品受污染的程度。 3.(×)测定食品总灰分时,为了加速灰化,可将去离子水直接洒在残灰上后继续灰化。 4.样品经消化后,在碱性溶液中铜离子与铜试剂作用,生成红色的络合物,溶于四氯化碳,与标准系列分光光度比色定量。加柠檬酸铵及EDTA掩蔽干扰离子。( × ) 5.(×)恒重是指烘烤或灼烧后,前后两次质量之差不超过2g。 6.原子吸收分光光度法与吸光光度法在本质上都属于吸收光谱分析的范畴。不同者在于前者利用原子的吸收光谱特性,是一带状光谱,后者则利用分子的吸收光谱特性,是一线状光谱。( × ) 三、选择题: 1.(C )测定食品总灰分含量进行恒重操作时质量差不超过。 A. 0.02g B. 2mg C. 0.5mg D. 0.005g 2.(B )测定食品中酸不溶性灰分时所用的酸为一定浓度的。 A. 硫酸 B. 盐酸 C. 硝酸 D. 冰醋酸 3.(A )测定下列物质时,不能采用比色法的是。 A. 铜 B. 汞 C. 锌 D. 铅

煤中全水分的测定方法(国标)

煤中全水分的测定方法 本标准适用于褐煤、烟煤和无烟煤的商品煤样、生产煤样和煤层煤样的全水分测定。全水分是指煤样在采取时所含水分的总量。 本标准规定测定煤中全水分的三种方法,其中方法A 仅适用于烟煤和无烟煤,并作为测定烟煤和无烟煤全水分的仲裁方法。而方法B 和C 适用于褐煤、烟煤和无烟煤,并以方法B 作为测定褐煤全水分的仲裁方法。 方法要点:煤样在105~110℃或145±5℃的干燥箱中干燥至恒重,以煤样的失重计算水分的百分含量。 1 仪器设备 1.1 干燥箱:内附鼓风机,并带有自动调温装置,温度能保持在105~110℃或145±5℃范围内。 1.2 浅盘:由镀锌薄铁板或铝板等耐腐蚀又耐热的材料制成,其面积能以大约每平方厘米0.8g煤样的比例容纳500g 煤样。而且盘的重量应小于500g。 1.3 托盘天平:感量为1g 和5g 各一台。 1.4 干燥器:内装干燥剂(变色硅胶或未潮解的块状无水氯化钙)。 1.5 玻璃称量瓶:直径为70mm,高为35~40mm,并带有严密的磨口盖。 1.6 分析天平:感量为1mg。 2 煤样的制备 2.1 按照GB 474—83《煤样的制备方法》中第 3.9 条缩制煤样。 2.2 方法A 和B 采用最大粒度不超过13mm,煤样量约2kg。方法C 采用最大粒度不超过6mm,煤样量不应少于300g①。 2.3 在测定全水分之前,首先应检查装有煤样的容器的密封情况,然后将其表面擦拭干净,用托盘天平(1.3)称重②,并与容器上标签所注明的重量进行核对。如果称出的煤样毛重(即煤样与容器的总重量)小于标签上所注的毛重(不超过1%),并且能确定煤样在运送过程中没有损失时,应将减轻的重量作为煤样在运送过程中的水分损失量。并计算出该量对煤样净重(标签上煤样毛重减去容器的重量)的百分数(W1),在计算煤样全水分时,应加入这项损失,并将容器中的煤样充分地混合。 注:①GB474—83《煤样的制备方法》中3.9.3 全水分煤样粒度小于3mm,煤样量100g 的规定改为本条的规定。 ②当煤样与容器的总重量不超过1kg 时,应采用感量为1g 的托盘天平进行称重。 3 测定步骤 3.1 方法A 用已知重量的干燥、清洁的浅盘(1.2)称取煤样500g(称准到1g),并将盘中的煤样均匀地摊平。将装有煤样的浅盘放入预先鼓风注并加热到105~110℃的干燥箱(1.1)中,在不断鼓风的条件下烟煤干燥2~2.5h,无烟煤干燥3~3.5h。再从干燥箱

实验五 食品中总灰分含量的测定

实验五食品中总灰分含量的测定 1.实验目的 (1)学习食品中总灰分测定的意义和原理; (2)掌握称重法测定灰分的基本操作技术及测定条件的选择; (3)学会用减重法称取试样。 2.实验原理 将样品炭化后置于500~600 ℃高温炉内灼烧,样品中的水分及挥发物质以气体放出,有机物质中的碳、氢、氮等元素与有机物质本身的氧及空气中的氧生成二氧化碳、氮氧化物及水分而散失,无机物以硫酸盐、磷酸盐、碳酸盐、氧化物等无机盐和金属氧化物的形式残留下来,这些残留物即为灰分,称重残留物的质量即可计算出样品中总灰分的含量。 3.仪器及材料 3.1仪器 高温电炉(马福炉);坩埚钳;瓷坩埚;分析天平;干燥器 3.2材料 面包(高筋面粉制作)、饼干(低筋面粉制作) 3.3试剂 1:1盐酸 4.实验步骤 4.1瓷坩埚的准备 将坩埚用体积分数为20﹪的盐煮1~2h,洗净晾干后,用铅笔在坩埚外壁及盖上写上编号。置于马福炉中,在(550±25)℃下灼烧0.5 h,冷至200℃一下后,取出。放入干燥器中冷却至室温,准确称量,并反复灼烧至恒重(两次称重之差不超过0.5mg)。 4.2样品的处理 用分析天平准确称取5.00g面包两份,以及相同质量的两份饼干,放入之前标好号码的瓷坩埚中,以小火加热使试样充分炭化至无烟。 4.3样品的灰化 炭化后的试样置马福炉中,在(550±25)℃下灼烧4h。冷至200℃以下后取出,放入干燥器中冷却30min。在称量前如灼烧残渣有碳粒时,应向试样中滴入少许水湿润,使结块松散,蒸出水分再次灼烧至无碳粒即灰化完全,冷至200℃以下,取出放入干燥器中冷却30min后,准确称量。反复灼烧至前后两次称量相差不超过0.5mg即为恒重。 5.实验结果及分析

煤中灰分测定方法说明

煤中灰分测定方法说明 1、煤中灰分的来源及煤在受热过程中的变化 (1)煤中灰分来源 煤中灰分,主要来自煤中的矿物质,所谓矿物质,是指赋予煤中的无机物质。煤中矿物质又有内在与外在的矿物质之分。内在矿物质是在成煤过程中形成的,由成植物本身所含技术元素所组成的,成为原生矿物质;在成煤过程中,由外界混入的矿物质,称为次生矿物质,它们易用机械或洗选方法去除。 由原生与次生矿物质所形成的灰分,称为内在灰分;而由外来矿物质所形成的灰分,称为外在灰分。 煤中矿物质与灰分呈线性相关。煤中矿物质越多,则灰分含量越高,发热量月底,燃烧稳定性越差,同时还得增加磨煤机的能耗,引发与家具锅炉结渣,增加除尘与灰渣处理机利用难度等。 (2)煤在灰分测定过程中的变化 煤中矿物质是指除水分以外的所有矿物质,它们是由各种硅酸盐、碳酸盐、硫酸盐、氧化亚铁等矿物所组成。 所谓灰分,具体说就是指煤中所有可燃成分完全燃烧以及煤中矿物质在灰化温度下产生一系列分解,化合等复杂反应生成的残渣。 煤在灰化过程中,即在测定灰分时规定的(815±10)℃内所发生的主要变化是:各种矿物质先后失去结晶水,低于500℃时,硫化物分解生成二氧化硫;高于500℃后,碳酸盐矿物分解。 标准中规定的煤样灰化温度(815±10)℃,实际上就是碳酸盐完全分解而硫酸盐尚未分解的温度。了解煤样在815℃内加热所发生的各种变化,有助于正确掌握灰分测定技术要点,以提高测定结果的可靠性。 二、灰分(挥发分)测定用高温电阻炉及测温表(计) 煤种灰分(挥发分)测定中,其所用主要仪器设备为高温电阻炉及测温表(计),它们也是煤炭实验室中利用率最高的通用仪器设备。

灰分及几种重要矿物元素含量的测定灰分的测定

第六章灰分及几种重要矿物元素含量的测定 第一节灰分的测定 一、概述 食品的组成十分复杂,除含有大量有机物质外,还含有丰富的无机成分,这些无机成分包括人体必须的无机盐(或称矿物质),其中含量较多的有Ca、Mg、K、Na、S、P、C1等元素。此外还含有少量的微量元素,如Fe、Cu、Zn、Mn、I、F、Ca、Se等。当这些组分经高温灼烧时,将发生一系列物理和化学变化,最后有机成分挥发逸散,而无机成分(主要是无机盐和氧化物)则残留下来,这些残留物称为灰分。灰分是标示食品中无机成分总量的一项指标。 食品组成不同,灼烧条件不同,残留物亦各不同。食品的灰分与食品中原来存在的无机成分在数量和组成上并不完全相同,因此严格说应该把灼烧后的残留物称为粗灰分。这是因为食品在灰化时,某些易挥发的元素,如氯、碘、铅等,会挥发散失,磷、硫等也能以含氧酸的形式挥发散失,这部分无机物减少了。另一方面,某些金属氧化物会吸收有机物分解产生的二氧化碳而形成碳酸盐,又使无机成分增多了。 食品的灰分常称为总灰分(粗灰分)。在总灰分中,按其溶解性还可分为水溶性灰分,水不溶性灰分和酸不溶性灰分。其中水溶性灰分反映的是可溶性的钾、钠、钙、镁等氧化物和盐类含量。水不溶性灰分反映的是污染的泥沙和铁铝等氧化物及碱土金属的碱式磷酸盐含量。酸不溶性灰分反映的是环境污染混入产品中的泥沙及样品组织中的微量氧化硅含量。测定灰分具有十分重要意义:1、不同食品,因所用原料,加工方法和测定条件不同,各种灰分的组成和含量也不相同。当这些条件确定后,某种食品的灰分常在一定范围内,如果灰分含量超过了正常范围,说明食品生产过程中,使用了不合乎卫生标准的原料,或食品添加剂,或食品在生产、加工、贮藏过程中受到了污染。因此测定灰分可以判断食品受污染的程度。2、灰分可以作为评价食品的质量指标。例如在面粉加工中,常以总灰分含量评定面粉等级,富强粉为0.3~0.5%;标准粉为0.6~0.9%;加工精度越细,总灰分含量越小,这是由于小麦麸皮中灰分的含量比胚乳的高20倍左右。生产果胶、明胶之类的的胶质品质时总灰分是这些胶的胶冻性能的标志。水溶性灰分可以反映果酱果冻等制品中的果汁含量。3、测定植物性原料的灰分可以反映植物生长的成熟度和自然条件对其的影响,测定动物性原料的灰分可以反映动物品种,饲料组分对其的影响。常见食品的灰分含量见表6-1。 表6-1食品的灰分含量 食品名称含量(%) 食品名称含量(%) 食品名称含量(%) 牛乳0.6-0.7 罐藏甜炼乳 1.9-2.1 鲜肉0.5-1.2乳粉5-5.7 鲜果0.2-1.2 鲜鱼(可食部分) 0.8-2.0脱脂乳粉7.8-8.2 蔬菜0.2-1.2 鸡蛋白0.6 罐藏淡炼乳 1.6-1.7 小麦胚乳0.5 鸡蛋黄 1.6 精制糖、糖果痕量-1.8 糖浆、峰蜜痕量-1.8 纯油脂无 二、总灰分的测定 1、原理:将食品经炭化后置于500-600℃高温炉内灼烧,食品中的水分及挥发物质以气态放出,有机物质中的碳、氢、氮等元素与有机物质本身的氧及空气中的氧生成二氧化碳、氮的氧化物及水分而散失;无机物质以硫酸盐、磷酸盐、碳酸盐、氯化物等无机盐和金属氧化

相关文档
相关文档 最新文档