文档库 最新最全的文档下载
当前位置:文档库 › 2016-2017学年高中数学第2讲直线与圆的位置关系第1节圆周角定理课后练习新人教A版选修4-1资料

2016-2017学年高中数学第2讲直线与圆的位置关系第1节圆周角定理课后练习新人教A版选修4-1资料

2016-2017学年高中数学第2讲直线与圆的位置关系第1节圆周角定理课后练习新人教A版选修4-1资料
2016-2017学年高中数学第2讲直线与圆的位置关系第1节圆周角定理课后练习新人教A版选修4-1资料

2016-2017学年高中数学 第2讲 直线与圆的位置关系 第1节 圆周

角定理课后练习 新人教A 版选修4-1

一、选择题(每小题5分,共20分)

1.如图所示,等腰△ABC 内接于⊙O ,AB =AC ,∠A =40°,D 是BC ︵

的中点,E 为AC ︵

的中点,分别连接BD 、DE 、BE ,则△BDE 的三内角的度数

分别是( )

A .50°,30°,100°

B .55°,20°,105°

C .60°,10°,110°

D .40°,20°,120°

解析: 如右图所示,连接AD .

∵AB =AC ,D 是BC ︵

的中点,

∴AD 过圆心O .

∵∠A =40°,∴∠BED =∠BAD =20°, ∠CBD =∠CAD =20°.

∵E 是AC ︵

的中点,

∴∠CBE =1

2∠CBA =35°,

∴∠EBD =∠CBE +∠CBD =55°. ∴∠BDE =180°-20°-55°=105°. 答案: B

2.如图所示,AB 是半⊙O 的直径,弦AD ,BC 相交于点P ,若CD =3,AB =4,则tan ∠

BPD =( )

A .34

B .43

C .53

D .

73

解析: 如右图所示.

连接BD ,则∠BDP =90°, ∵∠DCP =∠BAP ,∠CDP =∠ABP ,

∴△APB ∽△CPD .∴PD PB =CD AB =3

4

.

在Rt △BPD 中,cos ∠BPD =

PD PB

, ∴cos ∠BPD =34.∴tan ∠BPD =7

3.

答案: D

3.AB 为⊙O 的直径,AC 为圆中的任意一弦,点D 为BC 的中点,那么OD ( ) A .等于1

2

B .等于A

C C .与AC 相交

D .与AC 平行

解析: 如右图所示,连接OC .

∵D 为BC ︵

的中点, ∴∠BOD =∠DOC =1

2∠BOC .

又∵∠A =1

2∠BOC ,∴∠A =∠BOD .

∴OD ∥AC ,故选D . 答案: D

4.如图,点A 、B 、C 是圆O 上的点,且AB =4,∠ACB =30°,则圆O

的面积等于( )

A .4π

B .8π

C .12π

D .16π 解析: 由∠ACB =30°知AB ︵

所对圆心角为60°,

由OB =OA 知△BOA 为等边三角形,故AB =OB =OA =4, 故S 圆=πr 2

=π×42

=16π. 答案: D

二、填空题(每小题5分,共10分)

5.如图所示,在⊙O 中,∠AOB =100°,则AB ︵

的度数为_________,AOB ︵

的度数为________.

解析: 由圆心角定理,得AB ︵

的度数=∠AOB 的度数=100°, AOB ︵ 的度数=360°-AB ︵

的度数=360°-100°=260°,

故填100°,260°. 答案: 100° 260°

6.如图,△ABC 是圆O 的内接等边三角形,AD ⊥AB ,与BC 的延长线相交于点D ,与圆O 相交于点E ,若圆O 的半径r =1,则DE =________.

解析: 连接BE .∵AD ⊥AB .

所以BE 为⊙O 的直径,且BE =2r =2. 又∵∠AEB =∠ACB =60°, ∴∠ABE =30°,∠EBD =30°, 又∵∠ABD =60°, ∴∠D =∠EBD =30°, ∴DE =BE =2. 答案: 2

三、解答题(每小题10分,共20分)

7.如图,AB 是⊙O 的一条弦,∠ACB 的平分线交AB 于点E ,交⊙O 于点D .

求证:AC ·CB =DC ·CE .

证明: 连接BD .在△ACE 与△DCB 中, ∵∠EAC 与∠BDC 是同弧所对的圆周角, ∴∠EAC =∠BDC . 又∵CE 为∠ACB 的平分线, ∴∠ACE =∠DCB ,∴△ACE ∽△DCB . ∴AC CE =DC CB

.∴AC ·CB =DC ·CE .

8.已知如图,BC 为半圆O 的直径,F 是半圆上异于B 、C 的一点,

A 是BF ︵

的中点,AD ⊥BC 于点D ,BF 交AD 于点E .

(1)求证:BE ·BF =BD ·BC ;

(2)试比较线段BD 与AE 的大小,并说明道理. 解析: (1)证明:连接FC ,则BF ⊥FC . 在△BDE 和△BCF 中,

∵∠BFC =∠EDB =90°, ∠FBC =∠EBD , ∴△BDE ∽△BFC . ∴BE BC =BD BF

.

即BE ·BF =BD ·BC .

(2)连接AC 、AB ,则∠BAC =90°. ∵AF ︵ =AB ︵

, ∴∠1=∠2.

又∵∠2+∠ABC =90°,∠3+∠ABD =90°, ∴∠2=∠3. ∴∠1=∠3. ∴AE =BE .

在Rt △EBD 中,BE >BD , ∴AE >BD .

尖子生题库 ☆☆☆

9.(10分)如图,BC 是半圆O 的直径,A 、D 为半圆O 的三等分点,且BC =4,P 是直径

BC 上的一动点,且PF ⊥BD ,PE ⊥AC .

(1)求PE +PF 的值;

(2)如果点P 是AD 边上的动点,那么PE +PF 的值是不是定值?如果PE +PF 是定值,请证明你的结论,如果不是定值,请说明理由.

解析: (1)∵A ,D 为半圆O 的三等分点. AB ︵ =AD ︵ =CD ︵

, ∴∠DBC =∠ACB =30°,

又∵∠PFB =∠PEC =90°, ∴BP =2PF ,PC =2PE , ∴BP +PC =2(PF +PE ), ∴PF +PE =4

2

=2.

(2)P 点在AD 上时,PE +PF 是定值. ∵A 、D 是半圆O 的三等分点, ∴∠DAC =∠ADB =30°, 在Rt △PAE 中,PE =1

2AP ,

在Rt △PDF 中,PF =1

2PD .

∴PE +PF =12(AP +PD )=1

2AD ,

连接OA ,OD ,

∵AD ︵ 是半圆的1

3

,∴∠AOD =60°,

又OA =OD ,

∴△OAD 为等边三角形, ∴AD =OA =1

2BC =2,

∴PE +PF =1(定值).

高级中学数学公式定理汇总

高中数学公式结论大全 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。 (2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是 。

(3) 在给定区间 的子区间上含参数的不等式(为参数)的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数)有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有个 小于 不小于 至多有个 至少有 个 对所有,成立 存在某,不成立 或 且 对任何,不成立 存在某,成立 且 或 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

高中数学《立体几何》重要公式、定理

高中数学《立体几何》重要公式、定理 1.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 2.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行. 3.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 4.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 5.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直. 6.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 7.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a . (2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb . 8.共线向量定理 对空间任意两个向量a 、b(b ≠0 ),a ∥b ?存在实数λ使a=λb . P A B 、、三点共线?||AP AB ?AP t AB =?(1)OP t OA tOB =-+. ||AB CD ?AB 、CD 共线且AB CD 、不共线?AB tCD =且AB CD 、不共线. 9.共面向量定理 向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++. 10.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角 线所表示的向量. 11.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1 k ≠

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

高中数学公式及定理

高中数学公式及定理Newly compiled on November 23, 2020

1.乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a- b(a^2+ab+b^2) 2.三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 3.一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 4.根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根 b^2-4ac<0 注:方程没有实根,有共轭复数根 5.三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 6.倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 7.半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 8.和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB; 9.某些数列前n项和 1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n- 1)=n2 _ 2+4+6+8+10+12+14++(2n)=n(n+1) 5 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2++n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+n^3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3 10.正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 11.余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x- a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 _ 圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0 12.抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 13.直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h'

(推荐)高中数学二项式定理

二项式定理 【2011?新课标全国理,8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ). A .-40 B .-20 C .20 D .40 【答案】D 【最新考纲解读】 二项式定理 (1)能用计数原理证明二项式定理. (2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】 1.二项式定理的展开式 011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二 项式系数;展开式共有n +1项. 注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1 时,系数就是二项式系数。如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第

3.项的系数和二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等( m n m n n C C- = ). 【方法技巧提炼】

(2)()()n m a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、 的通项公式,综合考虑. 例2 61034(1)(1)x x 展开式中的常数项为( ) A .1 B .46 C .4245 D .4246

答案: D 例3 5 )2 1 2 (+ + x x 的展开式中整理后的常数项为 .

答案: 632 例5 若对于任意实数x,有 323 0123 (2)(2)(2) x a a x a x a x =+-+-+- ,则2 a的值为()

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

高中数学定理公式大全

抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上bx再加上c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

高中数学公式及定理

高中数学公式及定理标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

1.乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a- b(a^2+ab+b^2) 2.三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 3.一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 4.根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根 b^2-4ac<0 注:方程没有实根,有共轭复数根 5.三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 6.倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 7.半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 8.和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB; 9.某些数列前n项和 1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n- 1)=n2 _ 2+4+6+8+10+12+14++(2n)=n(n+1) 5 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2++n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+n^3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3 10.正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 11.余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x- a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 _ 圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0 12.抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 13.直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 14.锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

高中数学常用公式及定理

高中数学常用公式及定理 1.熟悉这些解题小结论,启迪解题思路、探求解题佳径,防止解题易误点的产生,对提升数 学成绩将会起到很大的作用。 2.所有定义、概念、公式、解题方法都须熟记,且应在弄清它们的来龙去脉后再熟记。 1.元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式:();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ????U A C B ?=Φ()U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n -1个;非空子集有2n -1个;非 空的真子集有2n -2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式:()N f x M <

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

高中数学公式定理定律大全

高中数学公式大全 (最全面,最详细) 高中数学公式大全 抛物线: y = ax *+ bx + c 就是 y 等于 ax 的平方加上 bx 再加上 c a > 0 时开口向上 a < 0 时开口向下 c = 0 时抛物线经过原点 b = 0 时抛物线对称轴为 y 轴 还有顶点式 y = a ( x+h) * + k 就是 y 等于 a 乘以( x+h)的平方 +k -h 是顶点坐标的 x k 是顶点坐标的 y 一般用于求最大值与最小值抛物线标准方程 :y^2=2px 它表示抛物线的焦点在 x 的正半轴上 , 焦点坐标为 (p/2,0) 方程为 x=-p/2 由于抛物线的焦点可在任意半轴 , 故共有标准方程 准线y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积 =4/3(pi )(r^3) 面积=(pi)(r^2) 周长=2(pi)r

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式: L=2πb+4(a -b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长 (2πb)加上四倍的该椭圆长半轴长( a)与短半轴长( b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长 ( a)与短半轴长( b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率 T,但这两个 公式都是通过椭圆周率 T 推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI* 高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-

(完整版)高中数学学考公式大全

高中数学学考常用公式及结论 必修1: 一、集合 1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法 2、集合间的关系: 子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。记作A B ? 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ≠ ?B 集合相等:若:,A B B A ??,则A B = 3. 元素与集合的关系:属于∈ 不属于:? 空集:φ 4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B U 交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B I 补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:* N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性 1、定义: 奇函数 <=> f (– x ) = – f ( x ) , 偶函数 <=> f (–x ) = f ( x )(注意定义域) 2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形; (3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性 1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2 ① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减 三、二次函数y = ax 2 +bx + c (0a ≠)的性质 1、顶点坐标公式:??? ? ??--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442- 2.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠.

[整理]年高中数学定理汇总

124推论2 经过切点且垂直于切线的直线必经过圆心 125切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 126圆的外切四边形的两组对边的和相等 127弦切角定理弦切角等于它所夹的弧对的圆周角 128推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 129相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 130推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 131切割线定理从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 132推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 133如果两个圆相切,那么切点一定在连心线上 134①两圆外离d﹥r+r ②两圆外切d=r+r ③两圆相交r-r﹤d﹤r+r(r﹥r) ④两圆内切d=r-r(r﹥r) ⑤两圆内含d﹤r-r(r﹥r) 135定理相交两圆的连心线垂直平分两圆的公共弦 136定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 137定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 138正n边形的每个内角都等于(n-2)×180°/n 139定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 149正n边形的面积sn=pnrn/2 p表示正n边形的周长 141正三角形面积√3a²/4( a表示边长) 142如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 143弧长计算公式:l=nπr/180 144扇形面积公式:s扇形=nπr2/360=lr/2 145内公切线长= d-(r-r) 外公切线长= d-(r+r) 146等腰三角形的两个底角相等 147等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 148如果一个三角形的两个角相等,那么这两个角所对的边也相等 149三条边都相等的三角形叫做等边三角形 150两边的平方的和等于第三边的三角形是直角三角形 编辑本段数学归纳法 (—)第一数学归纳法: 一般地,证明一个与正整数n有关的命题,有如下步骤: (1)证明当n取第一个值时命题成立 (2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。 (二)第二数学归纳法: 第二数学归纳法原理是设有一个与自然数n有关的命题,如果:

二项式定理的十一种考题解法

二项式定理的十一种考题解法 1.二项式定理: 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用 1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n , 是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等, 即0n n n C C =,···1k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为 0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11 222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???=?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项 式系数1 2n n C -,12n n C +同时取得最大值。 ⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。设 展开式中各项系数分别 为121,,,n A A A +???,设第1r +项系数最大,应有112 r r r r A A A A +++≥??≥?,

相关文档
相关文档 最新文档