文档库 最新最全的文档下载
当前位置:文档库 › 各元素在植物生长中的作用

各元素在植物生长中的作用

各元素在植物生长中的作用
各元素在植物生长中的作用

各元素在植物生长中的作用

植物有16种必须元素,缺一种也不行。其中有6种大量元素:碳、氢、氮、磷、钾;有3种中量元素:钙、镁、硫;有七种微量元素:铁、锌、锰、铜、硼、钼、氯。这16种元素除碳、氢、氧来自于大气和水之外,其余13种都来自于土壤。这13种元素的供应要达到一种平衡,才有利于植物生长发育,不论哪种必需元素,多了少了都不行。

1、氮:氮是氨基酸、蛋白质、核酸、酶、叶绿素、激素、维生素、生物碱以及磷脂等物质的重要组成成分,是最基本的生命物质,植物任何一个生长发育过程都离不开氮。叶菜类需氮多。

2、磷:①磷是核酸的组成成分,维持着生命的遗传基因。

②磷是磷酸腺苷的组成成分,糖、淀粉、有机酸、氨基酸、脂肪、蛋白质等营养物质的合成过程中,始终以磷酸腺苷为能量的载体。

③磷是肌醇六磷酸的组成成分,使植物形成了种子和果实等繁殖器官,所以磷促使籽粒饱满,增进品质,并促进成。

3、钾:钾不是植物体内各种结构物质的组成成分,但钾极其重要。

①钾促进糖等营养物质的运输,促进光合作用,促进糖、氨基酸等小分子转化成纤维素、木质素、蛋白质等大分子,增加营养积累,所以钾能增进品质,促进上色。抗倒伏、抗寒、抗旱、抗病虫。

②钾使60多种酶被激活,使植物的各种组织器官维持正常发育。

③钾是一价阳离子,最有优势调节渗透压,将水分子拉入体内,维持细胞膨压,促进细胞伸长,调节气孔开关以控制蒸腾,所以钾能增强植物抗旱力,并在干旱条件下正常生长。

④钾使PH值及阴阳离子保持平衡,促进植物对硝态氨的吸收,促使氨基酸合成蛋白质并维持蛋白质稳定。

⑤果类需钾多。

4、钙:①钙与果胶酸结合后固定在细胞壁中,稳定细胞壁,加固植株结构,增强了植物抗病力和抗倒伏能力。

②钙调节原生质胶体,使细胞冲水富有弹性,有利于细胞伸长,减轻果实萎缩。

③钙保持一些重要酶的活性,使植物能够正常生长发育。

④钙调节细胞液PH值,稳定细胞内环境,防止有机酸在植物体积累而中毒。

⑤钙促进植物对硝态氮的吸收。

⑥钙改善土壤理化性质。

5、镁:①镁是叶绿素分子的中心原子,光合作用离不开镁。

②镁促进氨基酸合成蛋白质,缺镁氨基酸积累,所以植物易染病。

③镁在营养的合成与转化过程中,参与了所有的磷酸转化过程,所有没有镁也就形成不了产量。

④镁与硫同时起作用,植物的含油量会大大提高。

6、硫:①硫参与了蛋白质的合成,大部分蛋白质中都有含硫氨基酸。

②硫参与了脂肪的合成与代谢。

③硫不是叶绿素的组成成分。但硫影响叶绿素的合成。

④硫是铁氧还蛋白和谷胱甘肽的组成成分,参与了有机营养的合成,并在植物代谢过程中其重要作用。

⑤硫使葱、蒜、芥菜等具有特殊辛辣气味。

7、铁:①铁是铁硫蛋白和铁卟咻蛋白等酶的组成成分,传递光合电了,在光合和呼吸两个代谢过程中起到氧化还原的作用。

②铁是铁磷蛋白的组成成分,是光合作用所必需的。

③铁是铁钼蛋白(固氮酶)的组成成分,使植物具有固氮功能。

8、锌:①锌是怒前已知的59种酶的构成成分,在光合、呼吸、蛋白质合成、激素合成中起重要作用。

②锌促进了生长素(吲哚乙酸)的合成,促进根、茎、叶、花、果等新生器官生长。

③锌起到保护根表和根内细胞膜的作用,提高植物抗旱力。

9、锰:①锰是许多酶的组成成分,参与有机营养的合成和代谢。

②缺锰会抑制蛋白质的合成,造成硝酸盐在植物体内积累,使植物食品变的有害。

③锰能促进吲哚乙酸氧化,高浓度的锰促进生长素分解,所以锰过量会抑制植物生长。

10、铜:①铜是多种酶的组成成分,参与蛋白质和糖代谢,稳定叶绿素功能,防止叶绿素过早破坏。

②铜在光合电子传递和能量转换中起作用,参与呼吸代谢。

③铜参与固氮根瘤的形成。

11、硼:硼不是植物体各种结构物质的组成成分,但硼很重要。

①硼促进了糖和生长素的运输,产生花蜜,吸引昆虫授粉,促使糖和生长素向花果集中,促进生殖器官的发育。

②硼促使生长素向维管束运输,使木质部正常形成。

③硼和钙共同作用形成细胞间胶结物,保持细胞壁结构完整,增强植物抗寒力和抗病力。

④硼还有利于豆科植物固氮。

12、钼:①植物对钼需求最少,钼是铁钼担保固氮酶和硝酸还原酶的组成成分。

②缺钼时钼黄蛋白不能合成,导致硝酸盐在植物体内积累,是植物食品变得有害。

③缺钼影响固氮菌固氮,引起豆科植物缺氧。

④钼能消除铝对植物的毒害。

⑤钼能促进磷的吸收,并促进维生素C的合成。

13、氯:氯与阳离子保持电荷平衡,维持PH值平衡,维持细胞膨大,与钾一起调节气孔关闭,平衡光合作用和水分蒸腾。

微量元素对植物生长的作用

微量元素对植物生长的作用 汤美巧 (江西农业大学,江西南昌 330045) 摘要目前被世界公认的微量元素有Fe、Mn、Zn、Cu、B、Mo、Cl 7种元素。微量元素在作物体内含量虽少,但由于它们大多数是酶或辅酶的组成部分,与叶绿素的合成有直接或间接的关系。在作物体内非常活跃,具有特殊的作用,是其它元素不可替代的。 关键词微量元素植物体内叶绿素的合成不可替代 1 植物生长的必需元素 地球上自然存在的元素有82种,其余的为人工合成,然而植物体内却有60余种化学元素。植物必需的营养元素有16种:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)、钙(Ca),镁(Mg)、硫(S)、铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(CL)。各必需植物营养元素在植物体内含量差别很大,一般可根据植物体内含量的多少而划分为大量营养元素和微量营养元素。大量营养元素一般占植物干物质重量的0.1%以上,有碳、氢、氧、氮、磷、钾、钙、镁和硫共9种;微量营养元素的含量一般在0.1%以下,最低的只有 0.lmg/kg(0.lppm),它们是铁、硼、锰、铜、锌、钼和氯7种。 2 微量元素的重要性 微量元素在作物体内含量虽少,但它对植物的生长发育起着至关重要的作用,是植物体内酶或辅酶的组成部分,具有很强的专一性,是作物生长发育不可缺少的和不可相互代替的。因此当植物缺乏任何一种微量元素的时候,生长发育都会受到抑制,导致减产和品质下降。当植物在微量元素充足的情况下,生理机能就会十分旺盛,这有利于作物对大量元素的吸收利用,还可改善细胞原生质的胶体化学性质,从而使原生质的浓度增加,增强作物对不良环境的抗逆性。 3 微量元素对植物生长的作用 3.1 硼 3.1.1 硼对植物生长的作用 土壤的硼主要以硼酸(H 3BO 3 或B(OH) 3 )的形式被植物吸收。它不是植物体 内的结构成分,但它对植物的某些重要生理过程有着特殊的影响。硼能参与叶片光合作用中碳水化合物的合成,有利其向根部输送;它还有利于蛋白质的合成、提高豆科作物根瘤菌的固氮活性,增加固氮量;硼还能促进生长素的运转、提高植物的抗逆性。它比较集中于植物的茎尖、根尖、叶片和花器官中,能促进花粉萌发和花粉管的伸长,故而对作物受精有着神奇的影响。 3.1.2 缺硼症状

各元素在植物的作用

各元素在植物的作用 1. 氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2. 磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。 抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量(增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积,形成花青素(紫色) 3. 钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收;

抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变,减少病菌所需养分; 4. 钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5. 镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、Al3+、NH4+可引起Mg缺乏; 镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少6. 硫(S)的生理功能-----中量元素 生理功能:蛋白质和许多酶的组成成分,参与呼吸作用、脂肪代谢和氮代谢和淀粉合成。组成维生素B1、辅酶A和乙酰辅酶A等生理活性物质。 硫素缺乏:籽粒中蛋白质含量降低;影响面粉的烘烤质量; 蛋白质合成受阻,与缺氮症状类似,但是先出现在幼叶。 7.铁(Fe)生理功能:微量元素 生理功能:叶绿素合成所必需;参与体内氧化还原反应和电子传递; 参与核酸和蛋白质代谢;参与植物呼吸作用;还与碳水化合物、有机酸和维生素的合成有关。

植物生理学 植物的矿质营养复习进程

第三章植物的矿质营养 第一节植物必需的矿质元素 一植物体内的元素 方法:将植物烘干,充分燃烧. 气体:C、H、O、N。灰分:不能挥发的残烬物。 灰分元素:以氧化物形式存在于灰分中的元素(矿质元素)。(氮不是矿质元素) 二植物必需的矿质元素和确定方法 (一)方法: 1 溶液培养法(水培法water culture method):在含有全部或部分营养元素的溶液中栽培 植物的方法。 2 砂基培养法(砂培法):用洗净的石英砂或玻璃球等,加入含有全部或部分营养元素的溶液来栽培植物的方法。 3 气培法(aeroponics) :将根系置于营养液气雾中栽培植物的方法称为气培法。 (二)植物必需的矿质元素 19种:大量元素:C、H、O、N、P、K、S、Ca、Mg、Si 微量元素:B、Cu、Zn、Mn、Mo、Cl、Fe、Na、Ni (三)矿质元素必需具备的条件 1、由于缺乏该元素,植物生长发育受阻,不能完成其生活史; 2、除去该元素,表现为专一的病症,这种缺素病症可用加入该元素的方法预防或恢复正常; 3、该元素物营养生理上能表现直接的效果,而不是由于土壤的物理、化学、微生物条件的改善而产生的间接效果。 三植物必需的矿质元素的生理作用及缺乏症 1 氮 (1)生理作用 1)氮是构成蛋白质的主要成分。 2)氮是叶绿素的成分。 3)氮是维生素的成分。 4)氮是拟脂的成分。 5)氮是植物激素和生物素的成分。 (2)吸收形式 NH4+或NO3- ;尿素、氨基酸。 (3)充足、缺乏时的症状 氮肥过多时:营养体徒长,抗性下降,易倒伏,成熟期延迟。然而对叶菜类作物多施一些氮肥,还是有好处的。 植株缺氮时:植物生长矮小,分枝、分蘖少,叶片小而薄;叶片发黄发生早衰,且由下部叶片开始逐渐向上。 2 磷 生理作用: (1)是磷脂的成分、参与膜的形成。 (2)是核苷酸的主要成分。 (3)在碳水化合物代谢中起重要作用。 (4)促进氮的代谢。 (5)对脂肪的代谢也有影响。

农作物生长所需的各种必需元素

农作物生长所需的各种必需元素 氮:是蛋白质、核酸、叶绿素、植物酶维生素、生物碱的重要成分。促进细胞的分裂与增长,使作物叶面积大,浓绿色。缺氮时,生长缓慢,植株矮小,叶片薄小,发黄;禾木科植物表现为分孽少,短小穗,子粒不饱满;双子叶植物表现为分枝少,易早衰。过量的氮素会使细胞壁变薄且肥大,柔软多汁,易受病虫侵袭,对恶劣天气失去抗性,导致生育期延长,贪青晚熟;对一些块根、块茎作物,只长叶子,不易结果。 磷:促进根系发育及新生器官形成,有利于作物内干质的积累,谷物子粒饱,块根、块茎作物淀粉含量高,瓜、果、菜糖分提高,油料作物产量和出油率提高;使作物具抗旱、抗寒特性。缺磷:生长缓慢,根系发育不良,叶色紫红,上部叶子深绿发暗,分孽少,生育期推迟,出现穗小、粒少、子秕,玉米秃顶,油菜脱荚,棉花落花落蕾,成桃少,吐絮晚。过磷:作物呼吸作用强烈,消耗大量糖分和能量,无效分孽增多,秕子增多,叶色浓绿,叶片厚密,节间过短,植株矮小,生长受阻,因早熟而产量降低;蔬菜纤维含量高,烟草燃烧性差;能引起锌、铁、镁等元素的缺乏,加重可对作物的不利影响。 钾:促进光合作用。适宜钾量的光合速率是钾量低的2倍以上。促进植株对氮的利用,对根瘤菌的固氮能力提高2—3倍。对粒数和粒重有良好的作用。增强植物的抗性如干旱、低温、含盐量、病虫危害、倒伏等。能减轻水稻胡麻叶斑病、稻瘟病、赤枯病、玉米茎腐病、棉花红叶茎枯病、烟草花叶病等危害。缺钾:叶边缘呈焦枯状,叶卷曲、赫黄色斑点、或坏死。 钙:形成细胞壁,促进细胞分裂,促进根系发育,增强植物的吸收能力,并能消除某种离子毒害的作用。缺钙:幼叶卷曲,粘化烂空,根尖细胞腐烂死亡。 镁:它是叶绿素的组成部分,许多酶的活化剂,能促进磷的转化吸收。还能合成维生素A、C以及对钙、钾、铵、氢等离子有拮抗作用。 硫:能促进氮的吸收,对呼吸有重要作用。硫还是某些植物油的成分。缺硫时叶绿素含量降低,根瘤形成少。 铁:是叶绿素的成分,对呼吸和代谢有重要作用,缺铁时上部叶子出现失绿症。 硼:能促进碳水化合物及生长素的正常运转。促进生殖器官的正常发育。还能调节水分吸收和氧化还原过程。缺硼:生长点和维管束受损。过硼:叶形发皱,叶色发白。 锰:是多种酶的成分和活化剂。参与呼吸、光合、硝酸还原作用。能够提高含糖率、块根产量。 铜:参与呼吸作用,提高叶绿素的稳定性。缺铜时:生殖器官发育受阻。 锌:对植物体内物质水解、氧化还原及蛋白质的合成有重要作用。能提高子粒重量,改变子实和茎干的比率。水稻的缩苗症、玉米的白叶病是有缺锌引起的。 钼:促进豆科作物固氮,促进光合作用的强度,消除酸性土壤中的活性铝的毒害作用。缺钼:植株矮小,生长受阻,叶片失绿,枯萎以致坏死。 氯:参与光合作用,对很多植物有着相反的作用。 各种营养元素的作用是同等重要和不可替代的,缺一不可,否则整个生长周期不能完成。人们强调施用氮、磷、钾三要素,这仅仅是由于植物与土

各元素在植物的作用(同名8940)

各元素在植物的作用(同名 8940) 各元素在植物的作用 1.氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2.磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳 水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量 (增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积, 形成花青素(紫色)

3.钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、 脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收; 抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变, 减少病菌所需养分; 4.钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5.镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、AI3+、NH4+可引起Mg缺乏;镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少 6.硫(S)的生理功能-----中量元素

植物的矿质营养练习题

第二章植物的矿质营养 一、名词解释 1.必需元素 2.微量元素 3.矿质元素的被动吸收 4.矿质元素的主动吸收 5.生理酸性盐 6.生理碱性盐 7.生理中性盐 8.胞饮作 用9.可再利用元素 10.离子通道 11. 载体蛋白 12.单盐毒害 13. 诱导酶14.生物固氮15.离子拮抗 16.叶片营养 二、填空题 1. 离子扩散的方向取决于和。 2. 植物细胞吸收矿质元素的三种方式 为、和。3. 外界溶液的 pH 值对根系吸收盐分的影响一般来说,阳离子的吸收随 pH 值的升高 而,而阴离子的吸收随 pH 值的升高 而。 4. 缺乏元素时,果树易得“小叶病”,玉米易得“花白叶病”。 5. 缺乏元素时,禾谷类易得“白瘟病”、果树易得“顶枯病”。 6. 缺乏元素时,油菜“花而不实”,小麦“穗而不实”,棉花“蕾而不花”,甜菜易得“心腐病”,萝卜易得“褐心病”。 7. 和两类研究结果为矿质元素主动吸收的载体学说提供了实验证据。 8. 植物吸吸的 NO 3 -运到叶片后,在中 由酶催化产生,然后以 HNO 2 形式运到,由酶催化,接 受提供的电子而还原成。 9. 在植物生理研究中常用的完整植物培养方法 有、和。 10. 水培时要选用黑色溶器,这是为了防止。 11.栽培叶菜类植物时,应多施肥。 12.主动吸收包括和种形式。 13.植物主动吸收矿质元素的主要特点 是和。 三、选择题 ()1. 植物根部吸收的无机离子向植物地上部运输时主要通过 A.韧皮部 B.质外体 C.转运细胞 D.共质体()2. 影响根毛区主动吸收无机离子最重要的原因是 A.土壤中无机离子的浓度 B.根可利用的氧 C.离子进入根毛区的扩散速度 D.土壤水分含量 ()3. 在维管植物的较幼嫩的部分,亏缺下列哪种元素时,缺素症首先表现出来。 A. K B. Ca C. P D. N ()4. 植物吸收矿质量与吸水量之间的关系是 A.既有关,又不完全一样 B.直线正相关关系

植物生长需要的16种元素教学文案

氮(N)对作物的生理作用 氮不仅是植物体内蛋白质、核酸以及叶绿素的重要组成部分,而且也是植物体内多种酶的组成部分。同时,植物体内的一些维生素和生物碱中都含有氮。在蛋白质中,氮的平均含量是16-18%,而蛋白质是构成原生质的基本物质。一切有生命的有机体都是处于蛋白质的不断合成与分解之中,如果没有氮素,就不会有蛋白质,也就没有生命。氮也是植物体内叶绿素的组成部分,氮素的丰缺与叶片中叶绿素的含量有着密切的关系,如果绿色植物缺少氮素,会影响叶绿素的形成,光合作用就不能顺利进行。氮素供应充足,植物可以合成较多的叶绿素。一般作物缺乏氮时的症状是:从下部叶开始黄化,并逐渐向上部扩展,作物的根系比正常生长的根系色白而细长,但根量减少。 磷(P)对作物的生理作用 磷是植物体内许多重要有机化合物的成分(如核酸、磷脂、腺三磷等),并以多种方式参与植物体内的生理、生化过程,对植物的生长发育和新陈代谢都有重要作用。核酸和蛋白质是原生质、细胞核和染色体的重要成分,在植物的生命活动和遗传变异中起重要作用。细胞分裂和新器官的形成都少不了他们。供给正常的磷营养,能加速细胞分裂和增殖,促进生长发育,并有利于保持优良品种的遗传特性。特别是作物的生育早期,充足的磷营养对促进作物的生长发育和早熟、优质高产有重要作用,否则,生长受到抑制,根系发育不良,而且这种影响即使以后大量补给也难于完全弥补。 在氮素代谢中,磷也是重要的,如果磷不足,就会影响蛋白质的合成,严重时蛋白质还会分解,从而影响氮素的正常代谢。所以在缺磷时单施氮肥效果不好,所以我们提倡氮磷肥配合使用。 如果供磷不足,能使细胞分裂受阻,生长停滞;根系发育不良,叶片狭窄,叶色暗绿,严重时变为紫红色。大量事实表明,充足的磷营养能提高植物的抗旱、抗寒、抗病、抗倒伏和耐酸碱的能力,能促进植物的生长发育,促进花芽分化和缩短花芽分化的时间,因而能促使作物提早开花、成熟。 钾(K)对作物的生理作用 钾对植物的生长发育也有着重要的作用,但它不象氮、磷一样直接参与构成生物大分子。它的主要作用是,在适量的钾存在时,植物的酶才能充分发挥它的作用。 钾能够促进光合作用。有资料表明含钾高的叶片比含钾低的叶片多转化光能50%-70%。因而在光照不好的条件下,钾肥的效果就更显著。 此外钾还能够促进碳水化合物的代谢、促进氮素的代谢、使植物经济有效地利用水分和提高植物的抗性。 由于钾能够促进纤维素和木质素的合成,因而使植物茎杆粗壮,抗倒伏能力加强。此外,由于合成过程加强,使淀粉、蛋白质含量增加,而降低单糖,游离氨基酸等的含量,减少了病原生物的养分。因此,钾充足时,植物的抗病能力大为增强。例如,钾充足时,能减轻水稻纹枯病、白叶枯病、稻瘟病、赤枯病及玉米茎腐病,大小斑病的危害。 钾能提高植物对干旱、低温、盐害等不良环境的忍受能力和对病虫、倒伏的抵抗能力。 土壤缺乏钾的症状是:首先从老叶的尖端和边缘开始发黄,并渐次枯萎,叶面出现小斑点,进而干枯或呈焦枯焦状,最后叶脉之间的叶肉也干枯,并在叶面出现褐色斑点和斑块。 钙(Ga)对作物的生理作用

植物生长所必需的元素

一。必需元素 某一元素是否属于必需,并不能根据生长在土壤上植物的矿质成分来确定。水培养和砂基培养技术对较精确地研究矿质元素的必要性提供了可能,并使人们对它们在植物代谢中的作用有了更深的了解。化学药品的纯化和测定技术的提高也促进了这一领域的发展。确定植物的必需元素(essential element)有三条标准。当某一元素符合这三条标准时,则称为必需元素,这三条标准是: (1)在完全缺乏该元素时,植物不能进行正常的生长和生殖,不能完成其生活周期。 (2)该元素的功能不能被其他元素所替代。 (3)该元素必需直接参与植物的代谢。如参与植物体某些重要分子或结构的组成,或者作为某种酶促反应的活化剂。 到目前为止,确定下列17种元素是植物生长发育所必需的:C,H,O,N,S,P,K,Ca,Mg,Fe,B,Cu,Zn,Mn,Mo,Cl,Ni 除17种必需元素外,一些对生长有促进作用但不是必需的,或只对某些植物种类,或在特定条件下是必需的矿质元素,通常称为有益元素(beneficial elements)。钠、硅、钴、硒、和铝等被认为属于有益元素。已证明Na为某些沙漠植物和盐碱植物以及某些C4植物和CAM植物所必需,Na属于这些植物的微量元素。硅在玉米和许多禾本科植物中的积累达到干重的1%~4%,水稻则高达16%,而大多数双子叶植物中硅的含量较低。当水稻缺硅时营养生长和谷物产量都严重下降,并发生缺素症,例如成熟叶片枯斑和植株凋萎。土壤溶液中硅以单硅酸(H4SiO4或Si(OH)4)形式存在和被植物吸收,其在植物体内多以无定形硅(SiO4·nH2O)或称蛋石的形式积累。在植物的根茎叶和禾本科植物花序的表皮细胞壁以及其他细胞的初生壁和次生壁含有丰富的硅。硅影响高等植物的稳固性,一方面是由于它能被动沉积在木质化的细胞壁中,另一方面是由于它能调节木质素的生物合成。 钴对许多细菌是必需的。由于根瘤菌及其他固氮微生物需要钴,因而钴对豆科及非豆科植物的根瘤固氮非常重要。不过,钴对高等植

植物大中微量元素大汇总(汇编)

植物必需元素的生理作用及缺素症状 根据必须元素在植物体内的移动性,必需元素可分为两类,可移动的,如N、P、K、Mg、Zn、B、Mo,这些元素在植物体内可被再利用,当植物缺乏这些元素时,这些元素从老的部位转移到幼嫩部位,因此缺素症状表现在老叶上。难移动的元素,包括Ca、S、Fe、Mn、Cu,这些元素被利用后,很难移动,当植物缺乏这些元素时,新生的组织由于缺乏这些元素,首先表现出缺素症状。 植物缺素症状的识别 一、大量元素 1.氮(N) 症状植株变态叶根、茎生殖器官打油诗 氮缺乏 生长受抑制,植 株矮小、瘦弱。地 上部受影响较地下 部明显 叶片薄而小,整个叶 片呈黄绿色,严重时 下部老叶几乎呈黄 色,干枯死亡 茎细,多木质。根受抑 制,较细小。分蘖少(禾 本科)或分枝少(双子 叶) 花、果穗发育迟缓。不正 常的早熟。种子少而小, 千粒重低。 植株矮小长势弱,叶色失绿较细小。 叶片变黄无斑点,从下而上逐扩展。 根系细长且稀小,严重下叶枯黄落。 花果少而种子小,产量下降成熟早。 氮过剩1、叶呈深绿色,多汁而柔软,对病虫害及冷害的抵抗能力减弱 2、根的生长虽然旺盛,但细胞少; 3、茎伸长,分蘖增加,抗倒伏性降低 4、籽实成熟推迟 蔬菜缺氮症状蔬菜缺氮时叶绿素含量减少,植株生长发育不良,生长缓慢,从老叶开始失绿,渐渐发黄,并逐步向上发展,直至整株作物失绿而变为黄绿色。缺氮时蛋白质合成受阻,导致细胞小而壁厚,植株矮小瘦弱,花蕾容易脱落,果实小而少,产量低,品质差。 番茄黄瓜辣椒、茄子大白菜包菜 缺氮时果实 小,色淡 果实色浅白绿,靠果柄前一段很细,果实 端部靠花蒂一段突然膨大成畸形果;果实少而小 缺氮时,叶片从下向上 渐渐发黄,株形小; 缺氮时,发棵慢,下部叶子渐渐发 红; 2.磷(P) 症状植株变态叶根、茎生殖器官打油诗 精品文档

钠元素对植物的危害和钾元素对植物的作用

钠元素对植物的危害和钾元素对植物的作用 以下是钠元素对植物的危害和钾元素对植物的作用详解。 一.钠离子对植物的危害 盐碱对植物可造成两种危害:一是毒害作用,当植物吸收进较多的钠离子或氯离子时,就会改变细胞膜的结构和功能。例如,植物细胞里的钠离子浓度过高时,细胞膜上原有的钙离子就会被钠离子所取代,使细胞膜出现微小的漏洞,膜产生渗漏现象,导致细胞内的离子种类和浓度发生变化,核酸和蛋白质的合成和分解的平衡受到破坏,从而严重影响植物的生长发育。同时,因盐分在细胞内的大量积累,还会引起原生质凝固,造成叶绿素破坏,光合作用率急剧下降。此外,还会使淀粉分解,造成保卫细胞中糖分增多、膨压增大,最终导致气孔扩张而大量失水。这些危害,都会造成植物死亡。二是提高了土壤的渗透压,给植物根的吸收作用造成了阻力,使植物吸水发生困难。结果植物体内出现严重缺水,光合作用和新陈代谢无法进行;同时,还会出现细胞脱水、植株萎蔫,最后导致植物死亡。 二.钾对植物的作用 1、酶类活化 在化学反应过程中,酶起着催化剂的作用。酶将各种分子聚集在一起,促成化学反应的进行。植物生长过程所涉及的60多种不同类型的酶均需要钾加以“活化”。钾可改变酶分子的物理构型,使适宜的化学活性位置暴露出来,参加反应。细胞的含钾量可决定酶的活化量,进而决定化学反应的速度,因此,钾进入细胞的速度可控制某一反应进行的速度。钾对酶的活化作用或许是钾在植物生长过程中最重要的功能之一。 2、水分利用 钾在植物根系内积累从而产生渗透压梯度,使水分吸入根系。缺钾植株吸水能力减弱,遇供水不足时,较易遭受胁迫。植株亦依靠钾素来调节其气孔(叶片与大气交换二氧化碳、水蒸汽和氧气的孔隙)的启闭。气孔作用的正常发挥有赖于供钾充足。当钾进入气孔两侧的保卫细胞时,细胞因充水而膨胀,孔隙张开,使气体能自由进出。当供水不足时,钾则被泵出保卫细胞外,孔隙关闭,以防水分亏损。若供钾不足,气孔将变得反应迟钝,造成水蒸汽逸损;反之,供钾充足的植株则不易遭受水分胁迫。 3、光合作用 利用太阳能将二氧化碳和水化合成糖分这一过程最初形成的高能物质是三磷酸腺苷(ATP),ATP 继而作为能源用于其他化学反应。钾离子可以使ATP生成位置的电荷保持平衡状态。当植株缺钾时,光合作用和ATP 生成速度均减慢,因而所有依靠ATP的过程都受到抑制。钾在光合作用中的作用较为复杂,但在调节光合作用方面,钾对酶的活化和在ATP制造过程的作 用比它对气孔的调节作用更为重要。 4 、糖分运输 植物通过韧皮部将光合作用产生的糖分运输到植物的其他部位供利用或贮藏起来。植物的运输系

植物必须元素及其缺素症状

植物营养元素的生理功能及缺素 一、营养元素种类 植物营养元素可分为必需营养元素和有益营养元素。 (一)、必需营养元素: 1、判定某种元素是不是植物生长所必需的,要看其是否具备以下三个条件: 1、这种元素是完成作物生活周期所不可缺少的; 2、缺少时呈现专一的缺素症,具有不可替代性,惟有补充后才能恢复或预防; 3、在作物营养上具有直接作用的效果,并非由于它改善了作物生活条件所产生的间接效果,也不是依照它在作物体内的含量的多少,而是以它对作物生理过程所起的作用来决定。 2、植物必需营养元素有十六种: 大量营养元素:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K); 中量营养元素:钙(Ca)、镁(Mg)、硫(S); 微量营养元素:铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(Cl)。 此外,有人认为,镍(Ni)元素是植物必需营养元素。 (二)、有益营养元素: 有益营养元素是为某些植物正常生长发育所必需而非所有植物所必需的元素。如硅(Si)、钠(Na)、钴(Co),它们可代替某种营养元素的部分生理功能,或促进某些植物的生长发育。如: 甜菜是喜钠植物,它可在渗透调节等方面代替钾的作用,并促进细胞伸长,

增大叶面积;硅是稻、麦等禾本科植物所必需,可增强植株抗病虫害能力,使茎叶坚韧,又能防止倒伏;钴是豆科植物固氮及根瘤生长所必需。固植物所必需,可增强植株抗病虫害能力,使茎叶坚韧,又能防止倒伏, (三)、稀土元素: 稀土元素是指化学周期表中镧系的15个元素和化学性质相似的钪与钇。镧系:镧La* 铈Ce* 镨Pr 铷Nd * 钷Pm 钐Sm* 铕Eu 钆Gd 铽Tb 镝Dy 钬Ho 铒Er 铥Tm 镱Yb 镥Lu* 和钪Sc 钇Y 。 其中的镧、铈、钕、钐和镥等有放射性,但放射性较弱,造成污染可能性很小。土壤中普遍含有稀有元素,但溶解度很低,有效性低。磷肥及石灰中往往含有较多的稀土元素。稀土元素在植物生理上的作用还不够清楚,现在只知道在某些作物或果树上施用稀土元素后,有增大叶面积、增加干物质重、提高叶绿素含量、提高含糖量、降低含酸量的效果。由于它的生理作用和有效施用条件还不很清楚,所以施用稀土元素不是总是有效的。 二、营养元素的生理功能与缺素症状 (一)、一般不需通过施肥补充的营养元素:碳、氢、氧 1、碳、氢、氧是植物体内各种重要有机化合物的组成元素,如碳水化合物、蛋白质、脂肪和有机酸等; 2、植物光合作用的产物-糖是由碳、氢、氧构成的,而糖是植物呼吸作用和体内一系列代谢作用的基础物质,同时也是代谢作用所需能量的原料; 3、氢和氧在植物体内的生物氧化还原过程中起着很重要的作用。 (二)、需要通过施肥补充的营养元素: 1.氮(N):

微量元素与农业增产

微量元素与农业增产 微量元素是指植物正常生长和发育必不可少而又需要量很小的一类营养元素,它在农业生产上已显示出越来越重要的作用。据报道,许多发达国家都在大量施用微量元素肥料,并已收到明显的增产效果。目前,混有微量元素的肥料在施肥中所占的比例,日本是39%,西德51%,法国61%,美国67%,英国则高达97%。我国开展微肥试验研究是从50年代末60年代初开始的。近几年随着农业生产和科学技术的发展,全国各地进行了大量的微肥肥效试验,证实微肥对许多作物有显著增产效果,因而微肥的推广使用发展得很快。1981年微肥使用面积约二千多万亩,占全国耕地总面积的1.4%。 微量元素在植物体内的功能 到目前为止,已知植物体内含有70多种化学元素,其中碳、氢、氧、氮、磷、钾等元素的含量较高,因而植物体对它们的需要量也较大,所以被称为常量元素。而硼、锰、锌、铜、钼、钴等元素的含量较低,植物体对它们的需要量也低,因此常称为微量元素。 虽然植物体内微量元素的含量一般只有百万分之一到十万分之一,但在植物生长发育的过程中,它们却扮演着十分重要的角色。它们在植物体内多为酶或辅酶的组成成分,参加醣和氮的代谢氧化还原过程,影响着植物光合作用、呼吸作用的过程,同时,还可以提高作物对病害和不良环境的抗性。在农业生产中,满足了农作物对微量元素的需要,作物就会较好地生长,产量和品质就会提高和改善。反之,就会使作物的产量和品质下降,严重时甚至颗粒不收。 微量元素在植物体内的作用具有很强的专一性,即既不可缺少也不能代替。例如硼是植物开花时期的重要营养元素之一,在植物的花中硼的含量最高。它能促进花粉萌发和花粉管伸长,对植物受精有着特别的影响。另外,硼还参与植物分生组织的细胞分化过程,能加速植物体内碳水化合物的运输和积累,提高糖用作物的含糖量。因此,当植物营养中缺硼时,首先是植物生长点受到危害,使植物生长缓慢甚至停止,而且花器官的发育不正常,产生不孕或落花落果。 锌在植物体内主要参与生长素的合成和某些酶系统的活动,植物缺锌将使体内生长激素减少,色氨酸的形成受到抑制,从而植株生长缓慢或停止。在氮素代谢中,锌能改变植物体内有机氮和无机氮的比例,缺锌后植物蛋白质含量减少,同时影响氨基酸成分的变化。锌还是碳酸酐酶、苹果酸去氢酶等许多金属蛋白酶的组成成分,对植物体内的酶促反应非常有意义。 锰在植物的光合作用中起着重要作用。植物叶绿体中含有丰富的锰,如果缺锰,就会使光合作用降低,叶绿素含量减少。锰是某些脱氢酶、氢氧化铁还原酶的组成成分,能参加醣代谢中的水解和基团转移,改变碳水化合物的合成与运输,特别是能加速醣由叶部向结实器官的运输。此外,锰对植物的氮素营养有良好影响,在植物体内的氧化还原过程和含氮物质的合成过程中起着一定作用。 钼是固氮酶的组成成分,参与固氮菌固定大气氮素的过程,因此施用钼能提高作物的固氮能力。钼又是硝酸还原酶的金属成分,参与植物体内的氮素代谢,能促进氨基酸、蛋白质的合成,提高豆科作物的蛋白质含量,钼还参与植物的醣类代谢,能提高植物地上部分的含糖量并促进糖类向根部的输运。人们还发现,在钼供应充足时植物体内抗坏血酸的含量增加,这有助于作物的抗寒越冬。 铜、钴、铁等微量元素也都直接参与植物的各种代谢活动,在植物的生命活动中起着重要作用。 微量元素的增产效果

农作物需要各种元素的情况

农作物生长所需的各种必需元素 一、各种元素的作用 氮:是蛋白质、核酸、叶绿素、植物酶维生素、生物碱的重要成分。促进细胞的分裂与增长,使作物叶面积大,浓绿色。缺氮时,生长缓慢,植株矮小,叶片薄小,发黄;禾木科植物表现为分孽少,短小穗,子粒不饱满;双子叶植物表现为分枝少,易早衰。过量的氮素会使细胞壁变薄且肥大,柔软多汁,易受病虫侵袭,对恶劣天气失去抗性,导致生育期延长,贪青晚熟;对一些块根、块茎作物,只长叶子,不易结果。 磷:促进根系发育及新生器官形成,有利于作物内干质的积累,谷物子粒饱,块根、块茎作物淀粉含量高,瓜、果、菜糖分提高,油料作物产量和出油率提高;使作物具抗旱、抗寒特性。缺磷:生长缓慢,根系发育不良,叶色紫红,上部叶子深绿发暗,分孽少,生育期推迟,出现穗小、粒少、子秕,玉米秃顶,油菜脱荚,棉花落花落蕾,成桃少,吐絮晚。过磷:作物呼吸作用强烈,消耗大量糖分和能量,无效分孽增多,秕子增多,叶色浓绿,叶片厚密,节间过短,植株矮小,生长受阻,因早熟而产量降低;蔬菜纤维含量高,烟草燃烧性差;能引起锌、铁、镁等元素的缺乏,加重可对作物的不利影响。 钾:促进光合作用。适宜钾量的光合速率是钾量低的2倍以上。促进植株对氮的利用,对根瘤菌的固氮能力提高2—3倍。对粒数和粒重有良好的作用。增强植物的抗性如干旱、低温、含盐量、病虫危害、倒伏等。能减轻水稻胡麻叶斑病、稻瘟病、赤枯病、玉米茎腐病、棉花红叶茎枯病、烟草花叶病等危害。缺钾:叶边缘呈焦枯状,叶卷曲、赫黄色斑点、或坏死。 钙:形成细胞壁,促进细胞分裂,促进根系发育,增强植物的吸收能力,并能消除某种离子毒害的作用。缺钙:幼叶卷曲,粘化烂空,根尖细胞腐烂死亡。 镁:它是叶绿素的组成部分,许多酶的活化剂,能促进磷的转化吸收。还能合成维生素A、C以及对钙、钾、铵、氢等离子有拮抗作用。 硫:能促进氮的吸收,对呼吸有重要作用。硫还是某些植物油的成分。缺硫时叶绿素含量降低,根瘤形成少。 铁:是叶绿素的成分,对呼吸和代谢有重要作用,缺铁时上部叶子出现失绿症。 硼:能促进碳水化合物及生长素的正常运转。促进生殖器官的正常发育。还能调节水分吸收和氧化还原过程。缺硼:生长点和维管束受损。过硼:叶形发皱,叶色发白。

初中生物植物生长所必需的营养元素一

初中生物植物生长所必需的营养元素(一) 初中生物植物生长所必需的营养元素(一) 在植物整个生长期内所必需的营养元素是:碳()、氢(H)、氧()、氮(N)、磷(P)、钾()、钙(a)、镁(g)、硫(S)、铁(Fe)、锰(n)、锌(Zn)、铜(u)、钼()、硼(B)、氯(L)十六种。 这十六种必须的营养元素又可分为大量营养元素、中量营养元素、微量营养元素。 大量营养元素,它们在植物体内含量为植物干重的千分之几到百分之几。有碳()、氢(H)、氧()、氮(N)、磷(P)、钾()。 中量营养元素有钙(a)、镁(g)、硫(S)。 微量营养元素,它们在植物体内含量很少,一般只有只占干重的十万分之几到千分之几。有铁(Fe)、锰(n)、锌(Zn)、铜(u)、钼()、硼(B)、氯(L)。氮(N)对作物的生理作用氮不仅是植物体内蛋白质、核酸以及叶绿素的重要组成部分,而且也是植物体内多种酶的组成部分。同时,植物体内的一些维生素和生物碱中都含有氮。在蛋白质中,氮的平均含量是16-18%,而蛋白质是构成原生质的基本物质。一切有生命的有机体都是处于蛋白质的不断合成与分解之中,如果没有氮素,就不会有蛋白质,也就没有生命。氮也是植物体内叶绿素的组成部分,氮素的丰缺与叶片中叶绿素的含量有着密切的关系,如果绿色植物缺少氮素,会影响叶绿素的形成,光合作用就不能顺利进行。氮素供应充足,植物可以合成较多的叶绿素。一般作物缺乏氮

时的症状是:从下部叶开始黄化,并逐渐向上部扩展,作物的根. 系比正常生长的根系色白而细长,但根量减少。磷(P)对作物的生理作用磷是植物体内许多重要有机化合物的成分(如核酸、磷脂、腺三磷等),并以多种方式参与植物体内的生理、生化过程,对植物 的生长发育和新陈代谢都有重要作用。核酸和蛋白质是原生质、细胞核和染色体的重要成分,在植物的生命活动和遗传变异中起重要作用。细胞分裂和新器官的形成都少不了他们。供给正常的磷营养,能加速细胞分裂和增殖,促进生长发育,并有利于保持优良品种的遗传特性。特别是作物的生育早期,充足的磷营养对促进作物的生长发育和早熟、优质高产有重要作用,否则,生长受到抑制,根系发育不良,而且这种影响即使以后大量补给也难于完全弥补。 在氮素代谢中,磷也是重要的,如果磷不足,就会影响蛋白质的合成,严重时蛋白质还会分解,从而影响氮素的正常代谢。所以在缺磷时单施氮肥效果不好,所以我们提倡氮磷肥配合使用。 如果供磷不足,能使细胞分裂受阻,生长停滞;根系发育不良, 叶片狭窄,叶色暗绿,严重时变为紫红色。大量事实表明,充足的 磷营养能提高植物的抗旱、抗寒、抗病、抗倒伏和耐酸碱的能力,能促进植物的生长发育,促进花芽分化和缩短花芽分化的时间,因而能促使作物提早开花、成熟。钾()对作物的生理作用钾对植物的生长发育也有着重要的作用,但它不象氮、磷一样直接参与构成生物大分子。它的主要作用是,在适量的钾存在时,植物的酶才能充分发挥它的作用。

微量元素对植物生长的作用

微量元素对植物生长的 作用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

微量元素在植物生长过程中的重要性 1 植物生长的必需元素 地球上自然存在的元素有82种,其余的为人工合成,然而植物体内却有60余种化学元素。植物必需的营养元素有16种:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)、钙(Ca),镁(Mg)、硫(S)、铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(CL)。各必需植物营养元素在植物体内含量差别很大,一般可根据植物体内含量的多少而划分为大量营养元素和微量营养元素。大量营养元素一般占植物干物质重量的%以上,有碳、氢、氧、氮、磷、钾、钙、镁和硫共9种;微量营养元素的含量一般在%以下,最低的只有kg,它们是铁、硼、锰、铜、锌、钼和氯7种。 2 微量元素的重要性 微量元素在作物体内含量虽少,但它对植物的生长发育起着至关重要的作用,是植物体内酶或辅酶的组成部分,具有很强的专一性,是作物生长发育不可缺少的和不可相互代替的。因此当植物缺乏任何一种微量元素的时候,生长发育都会受到抑制,导致减产和品质下降。当植物在微量元素充足的情况下,生理机能就会十分旺盛,这有利于作物对大量元素的吸收利用,还可改善细胞原生质的胶体化学性质,从而使原生质的浓度增加,增强作物对不良环境的抗逆性。 3 微量元素对植物生长的作用 硼 硼对植物生长的作用 土壤的硼主要以硼酸(H3BO3或B(OH)3)的形式被植物吸收。它不是植物体内的结构成分,但它对植物的某些重要生理过程有着特殊的影响。硼能参与叶片光合作用中碳水化合物的合成,有利其向根部输送;它还有利于蛋白质的合成、提高豆科作物根瘤菌的固氮活性,增加固氮量;硼

植物生理学的习题集及答案第二章植物矿质营养.doc

第二章植物的矿质营养一、英译中(Translate) 1、mineral element 2、pinocytosis 3、passive absorption 4、essential element 5、macroelement 6、ash element 7、fluid mosaic model 8、phospholipid bilayer 9、extrinsic protein 10、intrinsic protein 11、integral protein 12、ion channel transport 13、membrane potential gradient 14、electrochemical potential gradient 15、passive transport 16、uniport carrier 17、symporter 18、antiporter 19、ion pump 20、proton pump transport 21、active transport 22、calcium pump 23、selective absorption 24、physiologically acid salt 25、physiologically alkaline salt 26、physiologically neutral salt 27、toxicity of single salt 28、ion antagonism 29、balanced solution 30、exchange adorption 31、ectodesma 32、induced enzyme 33、transamination 34、biological nitrogen fixation 35、nitrogenase 36、transport protein 37、nitrate reductase 38、critical concentration 二、中译英(Translate) 1.矿质营养 2.胞饮作用 3.被动吸收 4.必需元素 5.大量元素 6.灰分元素 7.流动镶嵌模型8.磷脂双分子层 9.外在蛋白 10.内在蛋白 11.整合蛋白 12.离子通道运输 13.膜电位差 14.电化学势梯度

植物所需各元素及其作用

植物所需各元素及其作用 作者:ets时间:2009-5-22浏览:【字体:小大】 植物正常生长发育所需要的营养元素有必需元素和有益元素之分。按照作物对养分需求量的多少将必需元素分为大量元素,包括氮、磷和钾;中量元素,包括钙、镁、硫;微量元素,包括锌、硼、锰、钼、铁、铜;此外,还有一些有益元素如含硅、稀土等。 一、大量元素氮磷钾 1.氮的营养作用 氮是植物体内许多重要有机化合物的成份,在多方面影响着植物的代谢过程和生长发育。 氮是蛋白质的主要成份,是植物细胞原生质组成中的基本物质,也是植物生命活动的基础。没有氮就没有生命现象。氮是叶绿素的组成成份,又是核酸的组成成份,植物体内各种生物酶也含有氮。此外,氮还是一些维生素(如维生素B1、B2、B6等)和生物碱(如烟碱、茶碱)的成份。 2.磷的营养作用 磷是植物体内许多有机化合物的组成成份,又以多种方式参与植物体内的各种代谢过程,在植物生长发育中起着重要的作用。 磷是核酸的主要组成部分,核酸存在于细胞核和原生质中,在植物生长发育和代谢过程都极为重要,是细胞分裂和根系生长不可缺少的。

磷是磷脂的组成元素,是生物膜的重要组成部分。磷还是其他重要磷化合物的组成成份,如腺三磷(ATP),各种脱氢酶、氨基转移酶等。磷具有提高植物的抗逆性和适应外界环境条件的能力。 梨树缺磷症状西葫芦缺磷症状 3.钾的营养作用 钾不是植物体内有机化合物的成份,主要呈离子状态存在于植物细胞液中。它是多种酶的活化剂,在代谢过程中起着重要作用,不仅可促进光合作用,还可以促进氮代谢,提高植物对氮的吸收和利用。钾调节细胞的渗透压,调节植物生长和用水,增强植物的抗不良因素(旱、寒、病害、盐碱、倒伏)的能力。钾还可以改善农产品品质。 二、中量元素 作物所需的大量营养元素除NPK三要素外。Ca、Mg、S被认为是第二位元素。随着作物产量水平不断提高,作物体内正常代谢活动所需要的这三种元素也在增加,加上近年来不含镁、硫、的浓缩复合肥的大量施用,因此世界各国镁、硫的缺乏有逐渐增加的趋势。 合理施用钙、镁、硫肥,不仅有营养作物的作用,又有改良土壤的效果,还会影响动物和人体的健康。

钙元素在植物中的作用

酸性土壤主要分布于南方地区,种类有:棕壤、褐土、娄土、灰褐土、灌淤土等。 碱性土壤多分布于北方地区,种类有:碱土、黄绵土、黑垆土、棕钙土、栗钙土等。 土壤的主要类型: 1.棕壤:棕壤又称棕色森林土,主要分布于半湿润半干旱地区的山地垂直带谱中,如秦岭北坡、吕梁山、中条山、六盘山等高山与洮河流域的密茂针叶林或针阔混交林的林下。在褐土分布区之上。 具有深达1.5-2m发育良好的剖面,有枯枝落叶层、腐殖质聚积层,粘化过渡层,疏松的母质层等。表土层厚约15-20cm,质地多为中壤。其下则为粘化紧实的心土层,粘粒聚合作用明显,厚约30-40,富含胶体物质和粘粒,有明显的核状或棱块状结构,在结构体表面有明显的铁锰胶膜复被。再下逐渐过渡至轻度粘化的底土层。K、Ca、Mg、Mn在表层腐殖质中有明显聚积。土壤胶体吸收性较强,土壤代换总量约5—25当量/100g土,土壤吸收性复合体大部分为盐基所饱和,盐基饱和度达80%以上。土壤呈微酸性反应,PH值6.5左右。发育在酸性基岩母质上的棕壤,PH值可达5.5-6,盐基饱和度也较低,约在60—70%。棕壤土养分释放迅速,因土壤质地粘重,结构和通透性差,水分不易入渗,在地势较高的山坡地,易受干旱威胁,在地势低洼地带,又易形成内涝。 2.褐土:褐土分布区为暖温带半干旱半湿润的山地和丘陵地区,在水平分布上处于棕壤以西的半湿润地区,在垂直分布上,位于棕壤带以下,在黄土高原地区主要分布于秦岭北坡、陇山、吕梁山、伏牛山、中条山等地形起伏平缓、高度变化不大的山地丘陵和山前平原以与河谷阶地平原。 褐土多发育在各种碳酸盐母质上,其成土过程,主要是粘化过程和碳酸钙的淋溶淀积过程。典型的褐土剖面包括暗灰色的腐殖质层(A层)、鲜褐土的粘化层(B层)、碳酸钙积聚的钙积层(BCa)和母质层(C层)。土体中的粘化现象明显,粘化层紧实而具有核状或块状结构,物理性粘粒含量一般在30—50%。钙积层碳酸钙含量20—30%。土壤上层呈中性或微酸性反应,下层呈中性或微碱性。土壤代换量较高,可达20—40mg当量/100g土,代换性盐基以钙、镁为主,粘粒矿物以水云母和蛭石为主。具有良好的渗水保水性能,但水分的季节性变化明显,表现为春旱明显。土壤胶体吸收能力强,盐基饱和度高。在自然植被下,有机质含量为1—3%,但由于褐土适于耕作,大部分已辟为农地,致使有机质含量逐渐减少(一般为1%左右),氮磷贮量少。褐土肥效反应快,但稳肥性差。由于粘化现象明显,土壤易板结,耕性较差。 3.碱土:分布面积很小,主要分布在银川平原西大滩一带的洼地。其主要特征是土壤胶体复合体吸收了大量的交换性钠,土壤呈碱性,PH值大于9,农作物和高等植物均无法生长。 4.娄土:主要分布在潼关以西、宝鸡以东的关中平原地区,在山西的南部,河南的西部也有一定面积的分布。 娄土是褐土经人为长期耕种熟化、施肥覆盖所形成的优良农业土壤。其剖面构型大体可分上

相关文档
相关文档 最新文档