文档库 最新最全的文档下载
当前位置:文档库 › 第二型曲线积分的第二中值定理

第二型曲线积分的第二中值定理

第二型曲线积分的第二中值定理
第二型曲线积分的第二中值定理

第二型曲线积分的第二中值定理

作者:唐国吉, TANG Guo-ji

作者单位:广西民族大学,数学与计算机科学学院,广西,南宁,530006

刊名:

数学的实践与认识

英文刊名:MATHEMATICS IN PRACTICE AND THEORY

年,卷(期):2009,39(17)

被引用次数:0次

参考文献(7条)

1.华东师范大学数学系数学分析(上、下册)(第三版) 2001

2.刘玉琏数学分析讲义(上、下册)(第四版) 2003

3.徐森林.薛春华数学分析 2006

4.范江华.杨斌妮多重积分的积分中值定理 2007(12)

5.刘许成Rn牛顿积分中值定理与取值范围的改进 2004(04)

6.杨彩萍二重积分中值定理的进一步讨论 2000(02)

7.唐国吉第二型曲线积分的中值定理 2008(23)

相似文献(1条)

1.期刊论文唐国吉.TANG Guo-ji第二型曲线积分的中值定理-数学的实践与认识2008,38(23)

引入了定义在曲线上的函数的介值性概念,函数的介值性要弱于其连续性,作为该概念的特殊情形,一元函数的介值性定义比李衍禧所给的定义更宽松.同时引入了关于坐标无反向的曲线的概念.在此基础上证明了定义在关于坐标无反向的曲线上的函数的第二型曲线积分的中值定理.李衍禧和关若峰的主要结果及熟知的定积分中值定理均是主要结果的简单推论.

本文链接:https://www.wendangku.net/doc/8c4180007.html,/Periodical_sxdsjyrs200917029.aspx

授权使用:中共汕尾市委党校(zgsw),授权号:b80542c7-0f56-4593-9034-9dce016b2e61

下载时间:2010年8月10日

人教A版选修2-2 1.6 微积分基本定理 学案 (2)

学习目标 1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分. 知识点一 微积分基本定理(牛顿—莱布尼茨公式) 思考1 已知函数f (x )=2x +1,F (x )=x 2+x ,则?10(2x +1)d x 与F (1)-F (0)有什么关系? 答 由定积分的几何意义知,?10(2x +1)d x =12 ×(1+3)×1=2,F (1)-F (0)=2,故?10(2x +1)d x =F (1)-F (0). 思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使得F ′(x )=f (x )? 答 不唯一,根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,都有[F (x )+c ]′=F ′ (x )+c ′=f (x ). 1.微积分基本定理 (1)条件:f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ); (2)结论:?b a f (x )d x =F (b )-F (a ); (3)符号表示:?b a f (x )d x =F (x )|b a =F (b )-F (a ). 2.常见的原函数与被积函数关系 (1)?b a C d x =Cx |b a (C 为常数). (2)?b a x n d x = ???1n +1x n +1b a (n ≠-1). (3)?b a sin x d x =-cos x |b a . (4)?b a cos x d x =sin x |b a . (5)?b a 1x d x =ln x | b a (b >a >0). (6)?b a e x d x = e x |b a .

第二积分中值定理

第二积分中值定理 若函数()f x 在区间[,]a b 上连续,而()p x 是区间[,]a b 上的单调有界函数,则有点()c a c b ≤≤,使 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? 其中()lim ()x a p a p x + +→=【右极限】,()lim ()x b p b p x --→=【左极限】。特别,若()0p a +=,则 ()()d () ()d b b a c p x f x x p b f x x - =? ? ()a c b ≤≤ 证明前的说明:()p x 是单调有界函数,所以它是可积的,而()()p x f x 作为可积函数的乘积也是可积的。其次,在下面的证明中, ①不妨认为()0p a +=,否则,令()()()q x p x p a +=-,则()0q a +=,于是由 ()()d () ()d b b a c q x f x x q b f x x - =? ? 即 [()()]()d [()()]()d b b a c p x p a f x x p b p a f x x + - + -=-?? ,可得一般情形 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? ②不妨认为()p x 是单调增加函数,因为若()p x 是单调减小函数,就用[()]p x -替换()p x 。 证 首先划分区间[,]a b ,即 01211i i n n a x x x x x x x b --=<<< <<<<<= 而在每一个小区间1[,]i i x x -上,都存在点1(,)i i i x x ξ-∈,使 1 1()d ()()i i x i i i x f x x f x x ξ--=-? 【第一积分中值定理】 于是,1 1() ()d ()()()i i x i i i i i x p f x x p f x x ξξξ--=-? ,求和得 1 11 1 ()()d ()()()i i n n x i i i i i x i i p f x x p f x x ξξξ--=== -∑∑? (※) 现在,将左端做变换,即 1 11 1 ()()d ()()d ()d i i i i n n x b b i i x x x i i p f x x p f x x f x x --==?? =-??????∑∑ ? ?? ξξ 1 11 2 () ()d ()()()d i n b b i i a x i p f x x p p f x x ξξξ--=??=+ -??∑? ? 因为()p x 是单调增加函数且()()0p x p a +≥=,所以11()0,()()0i i p p p ξξξ-≥-≥;再用m 和

积分中值定理的推广与应用

积分中值定理的推广与应用 系别数学系 专业数学与应用数学姓名韩凤 指导教师张润玲 职称副教授 日期2011年6月

国内图书分类号: 吕梁学院本科毕业论文(设计) 积分中值定理的推广与应用 姓名韩凤 系别数学系 专业数学与应用数学 申请学位学士学位 指导教师张润玲 职称副教授 日期2011年6月

摘要 在微积分学中积分中值定理与微分中值定理一样有着重要的地位.微积分的许多问题和不等式的证明都以它为依据,积分中值定理在证明有关中值问题时具有极其重要的作用.它是《数学分析》、《高等数学》课程中定积分部分的基本定理之一.众所周知积分中值定理包括积分第一中值定理与积分第二中值定理,而在数学分析课本上已有过这两个定理的详细证明,但这两个定理的推广与应用尚未提及.因此,在教学过程中,学在运用这一知识点解决有关的数学问题比较困难,常常不知如何下手,本文主要讲述的是积分第一中值定理的各种形式的推广以及通过以下几方面的列举例题,加以归纳总结,并充分体现积分中值定理在学习解题练习中的应用. 关键词:积分中值定理;推广;应用

ABSTRACT The integral median value theorem and differential median value theorem has the same important position in the questions and the proof of the inequality are all based on the integral theorem,the integral median theorem has played an important role in solving the problems about is one of the basic theorems in the definite integral part of“the mathematical analysis”and“the higher mathematics”.Well-known that the integral median theorem include the first median theorem for integrals and the second median theorem for integrals and the textbooks of the mathematical analysis have the detailed proof about the two theorems,but the popularization and application of the two theorems have not been addressed .Therefore,it is difficult when students use this knowledge to solve the related problems during the process of article mainly introduce various popularization of the first median theorem for integrals and giving some example through the following aspects,and giving some summary,strive to reflect the application of integral median value theorem in studying the way which can slove the ploblems. Keywords:Integral median value theorem; Promotion; Applications.

第二型曲线积分

§2 第二型曲线积分 教学目的:掌握第二型曲线积分的定义,性质和计算公式. 教学要求:(1)掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别. (2)了解两类曲线积分的联系. 教学建议:(1) 要求学生必须掌握第二型曲线积分的定义和计算公式. (2)两类曲线积分的联系有一定的难度,可要求较好学生掌握,并布置这方面习题 教学程序: 一. 第二型曲线积分的定义: 1. 力场()),( , ),(),(y x Q y x P y x =沿平面曲线L 从点A 到点B 所作的功: 一质点受变力F(x,y)的作用沿平面曲线C 运动,当质点从C 之一端点A 移动到另一端B 时,求力F(x,y)所做功W. 大家知道,如果质点受常力 F 的作用沿直线运动, 位移为s.那末这个常力所做功为 W=||F||||s||cos θ 其中||F||.||s||分别表示向量(矢量)的长度,θ为F 与S 的夹角 现在问题的难度是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢?还是用折线逼近曲线和局部一常代变的方法来解决它(微分分析法). 为此,我们对有向曲线C 作分割 },,.....,,{110n n A A A A T -=,即在AB 内 插入n-1个分点,,.....,,121-n M M M 与 A=n M B M =,0一起把曲线分成n 个有向 小曲线段i i M M 1-(i=1,2,……,n)以Si ? 记为小曲线段i i M M 1-的弧长.}max{Si ?=λ 设力F(x,y)在x 轴和y 轴方向上的投影分别为 P(x,y)与Q(x,y) 即F(x,y)=(P(x,y),Q(x,y))=P(x,y)i+Q(x,y)j 由于),,().,(111i i i i i i y x M y x M --- 记11,---=?-=?i i i i i i y y y x x x 和i i m C 1-=(),(y x ??) 从而力F(x,y)在小曲线段i i M M 1-上所作的功 i W ),(i F ηξ≈i i m C 1-= P(j i ηξ,)i x ?+Q (j i ηξ,)i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力F 沿C(AB)所作的功可近似 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),()),((ηη 当0→λ时,右端积分和式的极限就是所求的功,这种类型和式极限计算上述形式的和式上极限,得

积分第二中值定理证明

这个定理的推导比较复杂,牵扯到积分上限函数:Φ(x) = ∫f(t)dt(上限为自变量x,下限为常数a)。以下用∫f(x)dx表示从a到b的定积分。 首先需要证明,若函数f(x)在[a,b]内可积分,则Φ(x)在此区间内为一连续函数。 证明:给x一任意增量Δx,当x+Δx在区间[a,b]内时,可以得到 Φ(x+Δx) = ∫f(t)dt = ∫f(t)dt + ∫f(t)dt = Φ(x) + ∫f(t)dt 即 Φ(x+Δx) - Φ(x) = ∫f(t)dt 应用积分中值定理,可以得到 Φ(x+Δx) - Φ(x) = μΔx 其中m<=μ<=M,m、M分别为f(x)在[x,x+Δx]上的最小值和最大值,则当Δx->0 时,Φ(x+Δx) - Φ(x)->0,即 lim Φ(x+Δx) - Φ(x) = 0(当Δx->0) 因此Φ(x)为连续函数 其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为 Φ'(x) = f(x) 证明:由以上结论可以得到,对于任意的ε>0,总存在一个δ>0,使|Δx|<δ时,对于一切的t属于[x,x+Δx],|f(t)-f(x)|<ε恒成立(根据函数连续的ε-δ定义得到),得f(x)-ε0时, Φ'(x) = lim [Φ(x+Δx) - Φ(x)]/Δx = lim μ = f(x) 命题得证。 由以上可得,Φ(x)就是f(x)的一个原函数。设F(x)为f(x)的任意一个原函数,得到 Φ(x)=F(x)+C 当x=a时,Φ(a)=0(由定义可以得到),此时 Φ(a)=0=F(a)+C 即C=-F(a) 得到 Φ(x)=F(x)-F(a) 则当x=b时,Φ(b)=∫f(x)dx,得到 Φ(b)=∫f(x)dx = F(b)-F(a)

第二型曲线积分与曲面积分的计算方法

第二型曲线积分与曲面积分的计算方法 摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目. 关键词: 曲面积分;曲线积分 1 引 言 第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的 重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义. 2 第二型曲线积分 例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-?,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线y=22ax x -到点o (0,0) 的弧. 方法一:利用格林公式法 L D Q P Pdx Qdy dxdy x y ?? ??+=- ????????,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的. 解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L , ()()()()()()11sin cos sin cos x x L L x x L I e y b x y dx e y ax dy e y b x y dx e y ax dy =-++---++-?? 记为12I I I =- , 则由格林公式得:()1cos cos x x D D Q P I dxdy e y a e y b dxdy x y ??????=-=---- ??????????? ()()22 D b a dxdy a b a π =-= -?? 其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0

积分平均值定理、积分第二中值定理

定积分不有等式、积分平均值定理、积分第二中值定理(连续可微情形)的证明 简单不等式 定理1、设)(x f 在[]b a ,上可积,且0)(≥x f ,([]b a x ,∈),则有?≥b a dx x f 0)(。 定理2、设)(x f 在[]b a ,上连续且非负,(即0)(≥x f ,[]b a x ,∈),如果)(x f 不恒等于0,则有?>b a dx x f 0)(。 证明:由条件得,存在一点[]b a x ,0∈使0)(0>x f 。由连续函数的性质,存在一个子区间[]βα,,适合[][]b a x ,,0?∈βα,使得对一切[]βα,∈x ,有 )(21)(0x f x f ≥ 由积分对区间的可加性,知????++=b a a b dx x f dx x f dx x f dx x f αβ βα)()()()( ?≥β αdx x f )( ? ≥βαdx x f )(210 0))((2 10>-=αβx f 。 推论1、设[]0,,≥∈f b a f ,如果有?=b a dx x f 0)(,则有0)(=x f ,[] b a x ,∈。 推论2、设[]b a f ,∈,如果对任意[]b a g ,∈都有?=b a dx x g x f 0)()(,则必有0)(=x f , []b a x ,∈。 积分平均值定理 定理3、设[],f C a b ∈,则存在),(b a ∈ξ,使得?-=b a a b f dx x f ))(()(ξ 证明:设m M ,分别是f 在[]b a ,上的最大值和最小值,显然[]b a x M x f m ,,)(∈≤≤ 于是 ???≤≤b a b a b a Mdx dx x f mdx )( )()()(a b M dx x f a b m b a -≤≤-? 从而有 M dx x f a b m b a ≤-≤?)()(1。 如果M m =,则)(x f 常数,则对任意),(b a ∈ξ, 有?-=b a a b f dx x f ))(()(ξ。

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

数学分析第二型曲线积分

数学分析第二型曲线积分

————————————————————————————————作者:————————————————————————————————日期:

§2 第二型曲线积分 教学目的与要求: 掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别. 教学重点,难点: 重点:第二型曲线积分的定义和计算公式 难点:第二型曲线积分的计算公式 教学内容: 第二型曲线积分 一 第二型曲线积分的意义 在物理学中还碰到另一种类型的曲线积分问题。例如一质点受力),(y x F 的作用沿平面曲线L 从点A 移动到点B ,求力),(y x F 所作的功(图220-)。 为此在曲线B A ) 内插入1-n 个分点121,,,-n M M M Λ,与n M B M A ==,0一起把有向曲线B A ) 分成n 个有向小曲线段),,2,1(1n i M M i i Λ=-,若记小曲线段i i M M 1-的弧长为 i s ?,则分割T 的细度为 i n i s T ?=≤≤1max 。 设力),(y x F 在x 轴和y 轴方向的投影分别为),(y x P 与),(y x Q ,那么 )),(),,((),(y x Q y x P y x F =。 又设小曲线段i i M M 1-在x 轴与y 轴上的投影分别为1--=?i i i x x x 与1--=?i i i y y y ,其中),(i i y x 与),(11--i i y x 分别为分点i M 与1-i M 的坐标,记 ),(1i i M M y x L i i ??=-, 于是力),(y x F 在小曲线段i i M M 1-上所作的功 i i i i i i M M i i i y Q x p L F W i i ?+?=?≈-),(),(),(1ηξηξηξ, 其中),(i i ηξ为小曲线段i i M M 1-上任一点。因而力),(y x F 沿曲线B A ) 所作的功近似的等于 ∑∑∑===?+?≈=n i i i i n i i i i n i i y Q x p W W 1 1 1 ),(),(ηξηξ 当细度0→T 时,上式右边和式的极限就应该是所求的功。这种类型的和式的极限就是下面所要讨论的第二型曲线积分。

(新)积分第一中值定理及其推广证明

2.1积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 ()()()(),()b b a a f x g x dx f g x dx a b ξξ=≤≤? ? 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 ()()()()mg x f x g x Mg x ≤≤ 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 ()()()b b a a f x g x dx g x dx μ=? ? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 2.2积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数, ()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 ()()()(),(,)b b a a f x g x dx f g x dx a b ξξ=∈? ?

2-4定积分与微积分基本定理(理)

1.(文)(2011·广州检测)若sinα<0且tanα>0,则α是() A.第一象限角B.第二象限角 C.第三象限角D.第四象限角 [答案] C [解析]∵sinα<0,∴α为第三、四象限角或终边落在y轴负半轴上, ∵tanα>0,∴α为第一、三象限角, ∴α为第三象限角. (理)(2011·绵阳二诊)已知角A同时满足sin A>0且tan A<0,则角A的终边一定落在() A.第一象限B.第二象限 C.第三象限 D.第四象限 [答案] B [解析]由sin A>0且tan A<0可知,cos A<0,所以角A的终边一定落在第二象限.选B. 2.(2010·安徽省168中学联考)已知集合A={(x,y)|y=sin x},集合B={(x,y)|y=tan x},则A∩B=() A.{(0,0)} B.{(π,0),(0,0)} C.{(x,y)|x=kπ,y=0,k∈Z}

D .? [答案] C [解析] 函数y =sin x 与y =tan x 图象的交点坐标为(k π,0),k ∈Z. 3.设a =sin π6,b =cos π4,c =π3,d =tan π 4,则下列各式正确的是 ( ) A .a >b >d >c B .b >a >c >d C .c >b >d >a D .c >d >b >a [答案] D [解析] 因为a =12,b =22,c =π 3>1,d =1,所以a

积分中值定理

编号 2010011202 毕业论文(设计) ( 2014 届本科) 论文题目:积分中值定理 学院:数学与统计学院 专业:数学与应用数学 班级: 2010级本科(2)班 作者姓名:曹强 指导教师:完巧玲职称:副教授 完成日期: 2014 年 5 月 5 日

目录 诚信声明-------------------------------------------------------------------------------------------------- 错误!未定义书签。摘要 ---------------------------------------------------------------------------------------------------------------------------------- 2 1积分中值定理 ------------------------------------------------------------------------------------------------------------------- 2 1.1定积分中值定理及推广 ---------------------------------------------------------------------------------------------- 2 1.1.1定积分中值定理----------------------------------------------------------------------------------------------- 2 1.1.2定积分中值定理的推广 ------------------------------------------------------------------------------------- 2 1.2定积分第一中值定理及推广---------------------------------------------------------------------------------------- 3 1.2.1定积分第一中值定理----------------------------------------------------------------------------------------- 3 1.2.2定积分第一中值定理的推广 ------------------------------------------------------------------------------- 3 1.3定积分第二中值定理及推广---------------------------------------------------------------------------------------- 4 1.3.1定积分第二中值定理----------------------------------------------------------------------------------------- 4 1.3.2积分第二中值定理的推广 ---------------------------------------------------------------------------------- 6 1.4 重积分的中值定理 --------------------------------------------------------------------------------------------------- 7 1.4.1二重积分的中值定理----------------------------------------------------------------------------------------- 7 1.4.2三重积分的中值定理----------------------------------------------------------------------------------------- 8 1.5曲线积分中值定理 ---------------------------------------------------------------------------------------------------- 8 1.5.1第一曲线积分中值定理 ------------------------------------------------------------------------------------- 8 1.5.2第二曲线积分中值定理 ------------------------------------------------------------------------------------- 8 1.6 曲面积分中值定理 -------------------------------------------------------------------------------------------------- 10 1.6.1第一曲面积分中值定理 ------------------------------------------------------------------------------------ 10 1.6.2第二曲面积分中值定理 ------------------------------------------------------------------------------------ 10 2中值点的渐进性 --------------------------------------------------------------------------------------------------------------- 10 2.1第一积分中值定理中值点的渐进性 ----------------------------------------------------------------------------- 10 2.2第二积分中值定理中值点的渐进性 ----------------------------------------------------------------------------- 13 3积分中值定理的应用--------------------------------------------------------------------------------------------------------- 14 3.1估计积分值------------------------------------------------------------------------------------------------------------- 14 3.2求含定积分的极限 --------------------------------------------------------------------------------------------------- 15 3.3确定积分值符号 ------------------------------------------------------------------------------------------------------ 15 3.4比较积分大小---------------------------------------------------------------------------------------------------------- 16 3.5证明函数的单调性 --------------------------------------------------------------------------------------------------- 16 3.6证明定理---------------------------------------------------------------------------------------------------------------- 16 结论 ------------------------------------------------------------------------------------------------------------------------------- 18 参考文献--------------------------------------------------------------------------------------------------------------------------- 19 英文摘要-------------------------------------------------------------------------------------------------- 错误!未定义书签。致谢 ------------------------------------------------------------------------------------------------------------------------------- 21

二元函数的积分中值定理的探究

目录 摘要................................................................................ I 关键词.............................................................................. I Abstract ........................................................................... II Key words .......................................................................... II 前言.. (1) 1预备知识 (1) 1.1相关定理 (1) 2 多元函数积分中值定理的各种形式 (2) 2.1 曲线积分中值定理的推广 (2) 2.1.1第一型曲线积分中值定理 (2) 2.1.2第二型曲线积分中值定理 (4) 2.2二重积分中值定理的探究及推广 (5) 2.3曲面积分中值定理的探究及推广 (7) 2.3.1第一型曲面积分中值定理 (7) 2.3.2第二型曲面积分中值定理 (7) 结论 (9) 参考文献 (10) 致谢 (11)

摘要:积分中值定理是数学分析的重要定理,我们主要讨论了二元函数的曲线、重积分、曲面的各种形式中值定理,而且还给出了这些定理的证明过程,最后总结出各类积分中值定理的形式. 关键词:积分中值定理;第二中值定理;曲线积分中值定理;二重积分中值定理;曲面积分中值定理

高中数学选修2-2公开课教案16微积分基本定理

1.6 微积分基本定理 一、教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二、教学重难点 重点 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有 120x dx ?=3101|3x =33111033?-?=13 例2.计算下列定积分:

第二型曲线积分论文

目录 1 引言 (1) 2 文献综述 (1) 2.1国内外研究现状 (1) 2.2国内外研究现状评价 (1) 2.3提出问题 (2) 3预备知识 (2) 3.1第二型曲线积分的定义 (2) 3.2第二型曲线积分的性质 (3) 4第二型曲线积分的计算 (4) 4.1直接计算 (4) 4.2利用格林公式计算 (12) 4.3利用曲线与路径无关计算 (14) 4.4利用奇偶对称性计算 (16) 4.5利用数学软件Mathmatic进行计算 (16) 5结论 (19) 5.1主要观点 (19) 5.2启示 (19) 5.3局限性 (19) 5.4努力方向 (19) 参考文献 (20)

1 引言 第二型曲线积分与第一型曲线积分相比有明显不同的几何意义和物理意义,第一型曲线积分可以看成是定积分的计算,其意义较容易理解,计算也相对简单.而第二型曲线积分又称为对坐标的积分,具有第一型曲线积分不具有的方向性,计算较为复杂,物理意义十分明显,变力分别在x轴,y轴沿曲线做功,这在物理学上有着重要的应用. 对于不同类型的被积函数,对应的计算方法也不同.为了使计算更为简单,本文阐述了第二类曲线积分的计算方法,不仅可以通过参数方程转化为定积分来计算,而且对于平面曲线还可以通过格林公式转化为对二重积分的计算,第二类曲线积分还可以通过对称性分奇偶两种情况简化计算或利用了数学软件Mathmatic进行计算. 2 文献综述 2.1 国内外研究现状 查阅相关文献,众多数学教育者从不同角度和侧面探讨了第二型曲线积分的计算.刘玉琏在文献[1]中论述了第二形曲线积分的概念及其性质;富景龙在文献[2]中概括了第二型曲线积分被积函数的类型;薛嘉庆在文献[3]中讲了被积函数的类型不同有不同的计算方法,并给出了相应的例子;刘国均等在文献[4-5]中探究了第二型曲线积分可以化为定积分来计算,并给出公式及相应的证明;刘莲芬等在文献[6-7]介绍了在第二型曲线积分的计算中将路径的参数方程表示出来;王景克在文献[8-9]简述了做题常用的技巧;陈先开在文献[11-12]研究了曲线积分与路径无关问题与如何判断曲线积分与路径无关;陈文灯,黄先开在文献[13]中介绍了格林公式,并提供了一定的实例,并通过实例总结了计算第二型曲线积分的一般步骤;武艳等在文献[14]给出利用对称性计算第二型曲线积分,使得计算简单;阳明盛及林建华在文献[15]中提出了用数学软件Mathemactica解题的调用格式,使得复杂的计算简单化. 2.2国内外现状评价 从上面相关的研究中可以看出,许多对第二型曲线积分计算的研究者从不同的方面进行了相应的研究,但都只是从某一个方面进行讨论,大部分文献都没有结合数学软件Mathmatic进行空间画图及计算.

相关文档
相关文档 最新文档